

Energy XT Pro
ADD Chiller / Heat Pump Applications

424,9
232 85

 ADD Chiller/Heat Pump Applications
Energy XT PRO

2/64

CONTENTS
1 Use of the Manual.. 5
2 Introduction to AppMaker... 6

2.1 AppMaker potential and constraints .. 6
2.1.1 Limit of development philosophy of the Applications.. 6

2.2 Use of languages IEC-61131-3 .. 6
2.3 Libraries and function blocks.. 6
2.4 Possibilities of application parameterisation .. 6
2.5 AppMaker application implementation possibilities .. 7
2.6 Using the Arrays ... 8
2.7 Design criteria and system optimisation.. 8

3 General architecture of the reversible heat pump application ... 10
3.1 Introduction... 10
3.2 Main principles of architecture .. 12
3.3 General structure ... 13

3.3.1 Begin Section... 13
3.3.2 Sequential section.. 14
3.3.3 End section... 15
3.3.4 Functions and Function Blocks .. 15
3.3.5 Procedure for modifying the baseline procedure .. 16

4 Data dictionary of the reversible heat pump application... 17
4.1 Nomenclature ... 17
4.2 Control structure definition .. 18
4.3 Global and support variables .. 20

4.3.1 Vector KOMP_CIR_EV.. 20
4.3.2 Vector CirPresence .. 21
4.3.3 Vector CirEv... 22
4.3.4 Vector CirKomp.. 22
4.3.5 Vector EvPresence ... 24
4.3.6 1.3.6 Vector EvCir ... 24
4.3.7 Vector KOMP_STEP... 25
4.3.8 Vector KompCir.. 26
4.3.9 KompFans (Part of IV_Komp) .. 26
4.3.10 Variables EvNo, CirNo, KompNo.. 26
4.3.11 Checks of consistency and cycles on objects ... 27
4.3.12 Parameter FANS_NO (Part of IV_Fans) ... 31
4.3.13 CIR_FANS (Part of IV_Plant).. 32
4.3.14 1.3.14 FansCir (Part of IV_Fans).. 32
4.3.15 1.3.15 FansNo (Part of IV_Fans)... 34
4.3.16 Parameter PUMP_NO.. 34

4.4 Constants (Defined words) .. 34
5 Description of the baseline reversible heat pump application.. 37

5.1 IniVar ... 37
5.1.1 CheckCon ... 37
5.1.2 IV_Plan.. 38
5.1.3 IV_Ev.. 38
5.1.4 IV_Cir... 38
5.1.5 IV_Komp .. 38
5.1.6 IV_Fans ... 38
5.1.7 IV_Pump... 38
5.1.8 IV_Def ... 38

5.2 Phy2Log... 38
5.2.1 P2L_xxx ... 38

5.3 AlHnd .. 39
5.3.1 AHFans .. 40

5.3.1.1 AHFansTh .. 40
5.3.2 AHKomp ... 40

5.3.2.2 AHKompEr .. 40
5.3.2.3 AHKompTh ... 40
5.3.2.4 AHKompDis .. 41

5.3.3 AHCir ... 41

 ADD Chiller/Heat Pump Applications
Energy XT PRO

3/64

5.3.3.5 AHCirEr .. 41
5.3.3.6 AHCirHPr and AHCirLPr .. 41
5.3.3.7 AHCirPD... 42

5.3.4 AHEv... 42
5.3.4.8 AHEvEr.. 42
5.3.4.9 AHEvAf ... 42

5.3.5 AHPumpG... 42
5.3.5.10 AHPumpTh.. 42

5.3.6 AHDef .. 42
5.3.7 AHPlan... 42

5.3.7.11 AHPlanEr.. 42
5.3.7.12 AHPlantHT... 42
5.3.7.13 AHPlantLT.. 42

5.4 AvaCalc ... 43
5.4.1 Status variables ... 43
5.4.2 AC_Plan .. 43
5.4.3 AC_Ev .. 43
5.4.4 AC_Cir ... 44
5.4.5 AC_Komp... 44
5.4.6 AC_Def.. 44
5.4.7 AC_Fans.. 44
5.4.8 AC_PumpG .. 44

5.4.8.1 AC_Pump .. 44
5.5 DefReg... 44

5.5.1 Status variables ... 44
5.6 CompeReg.. 44

5.6.1 Status variables ... 44
5.7 IntReg .. 44

5.7.1 Status variables ... 44
5.8 ThermReg... 44

5.8.1 ThermReg ... 44
5.8.1.1 DynSet.. 44

5.8.2 Status variables ... 45
5.9 CtrlCalc ... 45

5.9.1 Status variables ... 45
5.9.2 CC_Plan... 45
5.9.3 CC_Ev .. 45

5.9.3.1 CC_Def... 46
5.9.3.2 CC_Cir .. 46

5.9.4 CC_Pump.. 46
5.9.5 Komp: control ... 46

5.9.5.3 Initial state .. 47
5.9.5.4 OFF Status ... 48
5.9.5.5 GT2 transition .. 48
5.9.5.6 ON Not Ready.. 48
5.9.5.7 GS3 step... 49
5.9.5.8 GT3 transition .. 49
5.9.5.9 GT6 transition .. 49
5.9.5.10 ON status... 50
5.9.5.11 GT4 transition .. 50
5.9.5.12 OFF Not Ready... 50

5.10 Fans (Single condensation).. 51
5.11 Liquid injection ... 51
5.12 Log2Phy... 52

5.12.1 L2P_Plan.. 52
5.12.2 L2P_Ev ... 54
5.12.3 L2P_Cir .. 54
5.12.4 L2P_Komp .. 54
5.12.5 L2P_Fans ... 55
5.12.6 L2P_Pump... 55

5.13 BbxDrv... 55
5.14 KbdDrv .. 56

6 Specification of the function blocks of the reversible heat pump .. 57
7 Specification of the reversible heat pump functions... 58

 ADD Chiller/Heat Pump Applications
Energy XT PRO

4/64

8 Specification of the library function blocks of the reversible heat pump... 59
8.1.1 KompDrv .. 59
8.1.2 PI ... 59

9 Use of the device.. 60
9.1 Permitted Use ... 60
9.2 Responsibility and residual riscks... 60

10 Disclaimer ... 61
11 Inalitic Index... 63

 ADD Chiller/Heat Pump Applications
Energy XT PRO

5/64

56,65

1 USE OF THE MANUAL
To facilitate use of the manual, customers may find the following useful:

Callout column:
Callouts on the topics described are placed to the left of the text to allow the user to find the desired information quickly.

Cross references:
All the words in italics are listed in the index with a reference to the page where they are described in more detail;
the text below serves as an example:
�activation of the alarm stops the compressors�
The italics indicate that under Compressors in the index there is a reference to the page where compressors are described
in more detail.
If the online Help on the PC is used, the words in italics become proper hyperlinks (automatic links activated with a click of
the mouse) that connect the different sections in the manual and allow you to navigate through the document.

Some parts of the text are highlighted in the callout column using icons that have the following meanings:

Note: draws attention to a specific topic that users should take into account.

Tip: highlights a suggestion that helps users to understand and use the information on the topic described.

Warning! : highlights information that may damage the system or place persons, equipment, data, etc at risk

if not known. These sections must always be read prior to use.

Call-outs

Cross references

Highlighted icons

 ADD Chiller/Heat Pump Applications
Energy XT PRO

6/64

2 INTRODUCTION TO APPMAKER

2.1 AppMaker potential and constraints
The aims of this chapter are to identify the potential and constraints of AppMaker for the purpose of specifying the
methods for optimal use in the development of air-conditioning applications.

AppMaker is a SoftPLC environment belonging to the standard IEC 61131-3 with the following characteristics:

• Present on the market since the early 1990s.
• It is widely referenced.
• It is the only application providing a professional version for distributed control for over five years now.
• It has one of the most sophisticated development workbenches available on the current market.
• It has total opening to porting and customisations (the target sources can be purchased from ICS Triplex).

2.1.1 Limit of development philosophy of the Applications
The limits are mainly tied to the fact that in the PLC world (and therefore SoftPLC), there is a scarce adoption of code re-
usability, usually producing applications with a low level of parameterisation potential (with the exception of the approach,
now increasingly used, to produce super-configurators in vertical application sectors, able to automatically generate
applications that can then be reprocessed with their standard workbenches: for example, automation application IEC
61131 and relative SCADA type HMI) . The immediate consequence is that the adopted programming model above all
gives priority to easy and speed of development, and not the re-use or parameterisabilty of all that is generated.
However, in the world of air-conditioning there is the need to produce units that combine both high levels of
programmability and equally high levels of parameterisability.

2.2 Use of languages IEC-61131-3
AppMaker implements the entire range of languages supported by the standard IEC 61131-3, and also supports a model of
flow-chart programming. The various parts of an AppMaker application can be written in different languages, selecting
each time the most convenient language for the software module to be generated.

The languages available for the development of applications are the following:

Textual languages
IL : used very little as it is highly cryptic, in fact similar to an �old � assembly language for 8 bit microprocessors.
ST : its similarity to languages such as �C� or �Pascal� this language can be easily used by all those with experience in these
common programming languages.
Graphic languages
LD : Other than being the language most used by PLC programmers, this language offers the benefits of using �Quick LD
editor� to enable the development of parts of codes that can be allocated dynamically. Its use therefore enables a range of
benefits along with high computational speed.
FBD : used when graphic/visual comprehension is important.
SFC : very powerful and enables traceabiluty (enables the placing of break-points and display at a glance of the status of
automata); and is therefore worth using, above all when a relation between the algorithm and one or more automata in
finished states is evident;
FC : As this is an extension available only on AppMaker and not part of the standard IEC 1131, use of this language would
preferably be avoided.

2.3 Libraries and function blocks
Among the manifold possibilities offered by AppMaker there is that of including specific functional algorithms in the core
of the controller, while enabling use from the workbench. In general �function blocks� included in the controller BIOS are
those requiring �Real Time� execution times or for which development in �C� language is deemed more convenient. While
in the first case, in principle, it is not possible for the developer of Energy XT-PRO to obtain the same behaviour of a
function block included in the BIOS with a IEC 1131 �program unit�, in the second case there is no restriction for the IEC
1131 software engineer to develop alternative �program units� to those supplied as a basic library for the chiller
application. However, to maintain the correct architecture, it will be important that the I/O interfaces of the new program
unit developed (that which in language �C� is commonly known as the �functional prototype�) are identical to that of the
library function block.

2.4 Possibilities of application parameterisation
Although in the development of the chiller �baseline� application the approach of a �programmable application� is
adopted, there remains the objective of making an application that can also be �parameterised� within specific limits.

The non �structural� machine parameters may in any event be modified or set from the user interface to obtain the
required application from the range of possible applications. However, once compiled and downloaded into the developed
XT-PRO application this domain is finite and limited and parameters cannot be entered over their physical limit. Therefore
it will not be possible to set the number of compressors to a value exceeding the number of compressors compiled and
wired in the application.
Another example that highlights a limit to the possibility of paramterising the application is that related to the �wiring� of
the physical I/O. This type of baseline application does not enable modifications to the physical wiring scheme. Therefore
the I/O basket of AppMaker will adopt fixed wiring, modifiable only via the workbench of AppMaker.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

7/64

2.5 AppMaker application implementation possibilities
AppMaker provides a series of access levels, protected by means of �passwords�, to enable controlled release of the
application sources.
There are 16 levels available (00..15). A specific password can be entered for each level. Access is hierarchical, i.e. the
priority descends from level �n� to level �n+1� (i.e. the highest level is 00). For example, to modify the password of level 03
the user enters using the passwords for levels 00..03.
The figure below shows the protection window after access on level 01.

The figure shows that the highest level (00) is concealed, in other words if the user attempts to modify it APPMAKER
notifies the user that he does not have the rights.

The passwords for all lower access levels are displayed and are modifiable. The protection levels can then be associated
with single files (programs) making up the application, and can be associated with more general objects such as the I/O
connections, global variables, etc.
In the case of most objects1, including the developed programs, a �Full� access level can be associated, i.e. read/write, and
a �Read� level, i.e. read-only.
In the following example the program DynSet is accessible in read-only mode, on entry of a level 01 password and in read-
write mode on entry of a level 00 password.

1 For some types of object, such as the possibility of creating (adding) programs to an application, only one type of access
is envisaged; these objects are those for which it does not make sense to envisage read-only type access.

340 1

 ADD Chiller/Heat Pump Applications
Energy XT PRO

8/64

Note that the AppMaker data protection window contains a flag for encryption.
If this flag is not selected, the files are protected in terms of access by means of the WorkBench (in other words if the files
have passwords, this is requested on an attempt to open the file) but they are in any event saved in their original format
and remain legible by any �external� editor (e.g. a text editor). This means that the source would therefore be available
and copyable by a client.
Outside this context, we can envisage that some Program Units become simply containers for calls to Functions and
Function Blocks encoded in C and implemented in the BIOS. At present, it is maintained that the most significant parts of
the application are those that implement the thermoregulator and resource allocation logics (saturation, balancing,
advanced policies).
Even without studying how to use the level hierarchies to provide different levels of visibility with a single source pack
(providing individual clients with the suitable level password), �cloned� applications can be generated easily and quickly, in
which the level of visibility can be customised, protecting the parts which for the specific client should remain hidden
(protected) and revealing those which should be visible.

2.6 Using the Arrays
The use of �arrays� enables the user to have functions that operate on �data sets� declared as single dimension vectors
and identified by a different index for each instance or copy of Program Unit that implements the same function.
An example can be seen in a general Program Unit that implements management of a compressor. To understand the
great potential of using single dimension arrays, it is enough to consider that if this data structure is not available, the user
would be obliged to have N versions of the same program, differentiated both in name (and therefore individually
modifiable) and also where use is necessary of global variables that would have to be different for each compressor. The
problem obviously does not apply to local variables of the Program Unit as they have �scopes� of the Program Unit in
which they are declared.
On the other hand, the ability to define vectors of global variables means that each copy of a Program Unit will have one
�index� variable only, to which a different value can be assigned. In this way the entire code remains identical in the
different copies of the Program Unit enabling use of global_variable[index] type notations.
As neither MenuMaker PRO norTabMaker are able to manage the arrays, it must be taken into account that these data
structures are only used for internal computation variables and cannot be used directly as I/O variables.
There are other situations in which care must be taken when using vectors, wither because use is not possible or because
improper use would impair correct operation of the application.

A solution to adopt for solving the limits tied to the use of vectors is that of using static I/O variables both for inputs and
outputs. This solution, (with the only contraindication of memory waste due to the fact that the quantity of I/O variables
allocated must be equal to the maximum possible dimensions of the two I/O vectors), enables access of MenuMaker PRO
to the I/O, as well as enabling the MODBUS protocol to read specific I/Os with a fixed MODBUS address.

2.7 Design criteria and system optimisation
This paragraph is particularly important as it provides the guidelines used in the design and those to follow in the
development phase for system optimisation.

340 1

 ADD Chiller/Heat Pump Applications
Energy XT PRO

9/64

The first choice regards the languages to be used when not set by AppMaker as in the case of SFC for a number of
sequential parts.
The decision was made to privilege the ST language as it enables increased legibility of the code and enables the �C�
programmer rapid comprehension of the code and quick customisation. In other points, priority was given to the use of
languages such as FBD and QLD, which, with respect to textual versions, enable increased legibility to users familiar with
working with graphic languages. Furthermore, the use of QLD with the �in-line� option becomes necessary when nesting
of functions is required with status variables, but this language, if its use is widespread, leads to a significant increase in
code dimensions.
The alternative is to use a textual language (ST) transforming the status variables into vectors of global variables. In this
way the code dimensions are reduced (reducing execution speed) but the price to be paid is that the �interface pins�
between functions are lost.
As a borderline case we could have all global variables placed in a single common area with no explicit interface between
modules.

On the other hand there are some inevitable constraints:

the application must be �containable� in the memory available
the execution time must be compatible with the dynamics of the system to be controlled
the system must perform all specified tasks

In the development of a new application, it is always good practice to envisage alternative solutions, including the decision,
in the development phase, which enable the user to economise the resource which, on a case by case basis is the most
critical, i.e. space or time.

Therefore the correct approach to development should be the following:

development with graphic languages where compatible with specified constraints
alternative development in textual language
profiling of performance with AppMaker simulation tools
optimisation, if necessary, of space by �compacting� from FBD in ST
optimisation if necessary in time by increasing use of memory
possible processing of steps 3, 4, 5.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

10/64

3 GENERAL ARCHITECTURE OF THE REVERSIBLE HEAT PUMP APPLICATION

3.1 Introduction

The chiller is a system comprising a circuit through which a refrigerant fluid is conveyed by means of a compressor; the
compressed (and therefore heated) fluid is delivered to a condenser where heat is dispersed via an expansion vessel thus
cooling, after which it passes through an evaporator from which it extracts heat.
In a water-air �chiller� the evaporator cools water, while an air-air version cools air.
In a reversible machine, in other words able to operate both in chiller mode and heat pump mode, the condenser and
evaporator exchange roles depending on the operating mode, thus enabling the generation of both cold and heat. The
fact that the system operates in chiller mode (thus generating cold) or heat pump mode (generating heat) depends on the
status of the inversion valve, used to determine the direction of the refrigerant fluid in the circuit and thus setting the
thermo-dynamic operation mode.
Water-air machine layout

The Energy XT-PRO application is based on a hierarchical structure, which may be either symmetrical or asymmetrical,

homogeneous or inhomogeneous.

For example this structure imposes the restraint that each node on the same level must have the same number of child
elements. Each evaporator should therefore control an equal number of circuits, and in the same way each circuit should
control an equal number of compressors.

T. Probe

T. Probe

FL

TC TOC

TP

TV

PLPH

PO

P.
 P

ro
be

PD

PDO

T. Probe

Ev
ap

or
at

or

Electricalheater

Compressor

Pump

C
on

de
ns

er Fa
nPF

S
PS

S

Reversing valve

TR

Common out. Probe

Common cond. Probe

TVC

TCC

TG
P

PH&L PH&L

P.
 P

ro
be

P.
 P

ro
be

P.
 P

ro
be

Common in. Probe

Discharge Probe

Solenoid valve

Oil pressure

 ADD Chiller/Heat Pump Applications
Energy XT PRO

11/64

The structure of Energy XT-PRO overcomes these restraints, requiring the developer to define only the number of
elements of each type. The links between the elements can be managed later according to a �data driven� scheme.
An example of such a structure is provided below:

Modularity is achieved by using parameters to define the number of child elements belonging to each father element:
evaporators per machine, circuits per evaporator and compressors per circuit. There is also no restraint that the type of
compressor must be the same. The graph shows the different types of compressor with colour coding.

This example can apply also to all elements making up the machine, and therefore this enables evaporators, each with a
different number of circuits, or fan coils each with a different number of fans.

The main advantages of this type of structure are:

• possibility of offsetting machines: one circuit with two compressors and one with three;
• possibility of generating inhomogeneous machines: one circuit with several compressors, different from one

another;
• extreme ease in standard management of asymmetrical elements: a fan block that serves two condensers on two

different circuits.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

12/64

3.2 Main principles of architecture
For the sake of clarity, a number of general features of an AppMaker application are listed below:

• Each application is divided into the following Sections
Begin
Sequential
End
Function and Function Block local to the application;
bear in mind that use of the sections is optional: if required, the entire application can be inserted in the section
Begin.

• Each section comprises a number of Program Units sized as required (compatibly with the physical memory
available).

• There are no restraints or limitations in the selection of languages used in the development of the Program
Units, remaining within the restraints of the AppMaker system.

• The Function Blocks are autonomous application units that can be invoked in different program units: they
encapsulate frequently used logics.

• The data are stored in a Data Dictionary separately from the program logic. The data have �scopes� as in modern
program languages, i.e. the contents of these data during the debugging phase may be displayed and modified
during program execution.

With the above in mind, the main principles of the software architecture described in this document are illustrated below:

1. Use of Sections

The sections are used according to the following guidelines:

Section Program Unit Contents Languages used
Begin Contains the program units dedicated to the initialisation of

the application, those dedicated to pre-processing of input
signals and their conversion from physical to logical, and the
computation of thermoregulation algorithms.

Quick LD/FBD, ST

Sequential Contains the program units that encapsulate the status logics
of the compressors.

SFC for automata, and ST,
Quick LD/FBD for auxiliary
logics

End Contains additional program units related to the
management of condensation and fans, and the conversion
of signals from logical to physical.

Quick LD/FBD, ST

Function Contains non-library functions, and in general all functions
auxiliary to the computation and structures of fundamental
data.

Quick LD/FBD, ST, or C.

Function
Block

Contains the non-library FBs, and in general all functions
auxiliary to the computation and structures of fundamental
data.

Quick LD/FBD, ST, or C.

2. Modularity
Modularity regards various aspects:

a. Program Unit: the division of the code into program units must enable easy identification of a
function within the application. As far as possible, a function will be enclosed in a specific program
unit. However, take into account that "function" does not refer to the entire control function but a
homogenous series of operations. For example, the core of the compressor 1 governing logic will be
in a program unit of the Sequential section, but the pre-processing of its input signals and processing
of the alarm conditions will be in other program units of the Begin section, and the post-processing
from logic implementation or physical implementation will be in another program unit of the End
section. This does not violate the principle of mapping functions-program units, as it is effectively
possible to have cases in which the application maintains the same management logic, but modifies
that of implementation etc.

b. Function Blocks: these are typically elementary functional units and therefore extremely small. They
are normally catalogued in libraries, but there may be some �application specific� FBs which are
therefore allocated in the last section of the application.

c. Complex data structures: Represented by management of the �one-dimensional arrays�. With suitable
provisions, used also in the baseline application, two-dimensional structures can be managed through
simple one-dimensional arrays.

3. Names of variables and program units

These must be, as far as possible, highly �significant�. In the case of tool restraints (for example the length
of program unit names) the use of adequate comments will be required.

4. Data driven code

As far as possible the code will be data driven type: in other words there will be data structure which,
depending on the parameterisation (default value for fixed parameters, or value overridden via
keyboard/serial port for dynamic parameters) will enable modifications of important attributes of the
application: for example the presence (or not) of compressor n, its association with circuit p, etc. Obviously
in doing this there are the objective limitations of the characteristics of AppMaker (see Chapter 1).

 ADD Chiller/Heat Pump Applications
Energy XT PRO

13/64

5. Readability of code

Also this aspect has various implications.
a. Use of descriptive strings in the configuration of parameters: it is clearly useful that a parameter

indicating the configuration of a compressor is not assigned the value 0 or 1 but is rather �inhibited"
or �active", also in the case of the variable that indicates the alarm status, which should be "normal"
or "alarm" rather than 0 or 1 as previously.

 b. Extended use of indentation: for ST code.
c. Extended use of comments, notes and scrolls.
d. Use of a clearly defined graphic layout: for FDB code.
e. Use of statuses that enable immediate comprehension of the current situation of the logics, including

auxiliary statuses such as those in which an non-configured or dynamically excluded object is
entrapped: for SFC code.

The main principles illustrated here not only have been observed in the development of the baseline reversible heat pump
application, but should also be observed in the application of future modifications. This applies not only to �entropize� the
implementation, but also to prevent a number of architectural mechanisms from being broken down by the introduction
of modifications not consistent with the basic philosophy.

3.3 General structure
The following section describes the general structure of the application. Note that the aim of this chapter is to provide
guidelines only to the architecture. Therefore Chapter 5 should be consulted for more specific information on the
program units shown in the figures below, and also the structure adopted to form the program unit.
The criteria adopted is to implement, in the various program units, the algorithms necessary for the control of the
reversible heat pump. In more detail, the functions can be identified in the various sections:

- begin : Pre-processing of data and calculation of the main algorithms

• pre-processing of the auxiliary logics to give core logics a totally updated photo;
• management of the passage on input from physical to logical;
• Management of logic alarms;
• Calculation of availability;
• Management of defrosting;
• Management of integration resistances;
• Computation of thermoregulation;
• Computation of control;

- sequential : logics related to the compressors

- end : �Special� algorithms and conversion of sizes from logical to physical.

• Management of Condensation;
• Management of liquid injection;
• Logical-physical conversion of thermoregulation results;
• Management of Black Box;
• Management of data exchange with keyboard.

3.3.1 Begin Section
This section mainly implements purely combinatorial parts of logic. These are often program units without memory in
which the data produced depend exclusively on the data on input.
There are exceptions to this rule, such as the logic for generation of alarms which activate the Function Blocks containing
the automata of evolution of the alarms themselves.

The main program units contained in this section are:

1. Configuration validation
2. Variable initialisation
3. Converter of physical input on variable work logics
4. Logic alarm generator
5. Calculation of availability
6. Defrost management (with relative compensation phase)
7. Management of integration resistances
8. Management of algorithm for the dynamic Set Point
9. Calculation of power requested (thermoregulator)
10. Calculation of control

Proceeding in top-down mode, each program unit can be broken down into sub-program units to obtain improved
modularisation and encapsulation of the various functions.

The implementation language will be FBD/QLD where maximum legibility is required to simplify the modification for a user
used to working with these programming languages and ST in parts where compactness of the code is to be optimised or
where the situation requires implementation of cycles difficult to manage with graphic languages.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

14/64

The following diagram illustrates how the section is divided2

3.3.2 Sequential section
In this section, the automata are implemented, which describe the evolution of the �compressor� system from a dynamic
point of view.
The language used must be SFC reducing textual sections to a minimum and referring, where possible, executive parts to
functions and function blocks developed with graphic languages and when necessary ST.

The program units implemented will fundamentally be the compressor management automata (possibly in several copies).

Note that no explicit hierarchical relation is envisaged (see a detailed explanation of this subject in paragraph 4�.) and
therefore the implementation scheme will be of the following type:

1. Compressor 1 management automata
2. Compressor 2 management automata
3. �
4. Compressor n management automata

2 The diagram uses the nomenclature as described in the next chapter

 ADD Chiller/Heat Pump Applications
Energy XT PRO

15/64

As a general rule, the program units will contain compressor management automata: these are N copies of the same
program that operate on a set of local variables and on the i-th set of global variables allocated in vectors with the
dimension N. These automata are delegated with the compressor activation logic in observance of the block times for the
various operations and maintaining the current availability data of the compressor.

The AppMaker project, for the Sequential section only, would therefore be the following:

3.3.3 End section
The main program units contained in this section are:

• Management of condensation and fans;
• Management of algorithm for liquid injection into compressors;
• Conversion of variables from logical to �physical output � variables;
• Management of Black Box;
• Management of data exchange with keyboard.

Proceeding in top-down mode, each program unit can be broken down into lower level program units to obtain improved
modularisation and encapsulation of the various functions.
The following diagram illustrates how the section is divided

3.3.4 Functions and Function Blocks
In this section functions and function blocks are implemented for the calculation of thermoregulation algorithms. As well
as the hysteresis and bypass algorithms, the end section also contains all algorithms commonly used and those requiring
personalisation (such as the �bit counter�), and algorithms for the selection of �strategic� cooling resources which can
neither be modified nor displayed (such as the Program Unit PolicyCC). When personalised algorithms for the selection of
cooling resources are required, the user needs to cancel the program units in the baseline application and then generate a
new program.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

16/64

3.3.5 Procedure for modifying the baseline procedure
The following section provides a general overview of the procedure that a developer could follow to obtain a new
application, starting from the baseline application described in this document. Although the use of the workbench
AppMaker enables the free execution of modifications to the application, we strongly recommend observing the following
simple rules:

1. If the modification implies a change to the wiring scheme, for example with the aim of adding an output
signal, the �I/O basket� must be modified. This modification will have little impact on the program logic as
the I/O variables have logical names and therefore movement into the basket do not implicate changes to
the logics. Therefore it will be sufficient to localise the program units and FBs involved in the modifications
after evaluating possible changes in the global data structures for parameterisation and status.

2. If changes are made to the global data structures, the necessary modifications to the application
�dictionary� must be made, in respect of the philosophy of the data structure that supports the baseline
application.

3. If changes to a FB are required, it must be rewritten and its instances in the application will have to be
replaced with those of the newly created FB.

4. Lastly, the code of the program unit involved in the modification will need to be changed/extended. In fact
in some cases, the introduction of changes may lead to �side effects� also in program units not directly
involved in the modifications: these cases should be adequately rare thanks to the optimal modularisation
of the application and strong mapping between functionalities and software modules (program units).

5. Then a new TC must be generated (compilation).
6. The new TIC must then undergo validation by means of a preliminary simulation (validation on PC) and

then by debugging (validation on Target) to ensure that the modifications entered obtain the required
procedure and do not generate undesired effects (regression testing). Regression testing will in turn be
significantly limited by the strong mapping between functionalities and software modules (program units).

7. Produce the project documentation in the updated version by means of the special functionalities of the
workbench AppMaker.

Note that the conceived architecture will enable considerable changes to the structure of the application by simply re-
using program units (codes), accompanied by suitable modifications/extensions of the code and structure of the global
data of parameterisation and status (dictionary). For more details and explanations of this mechanism, refer to the next
two chapters.

Note lastly that many changes, even significant, to the application structure (such as the movement of a compressor from
one circuit to another) may not require any effective software modifications, as they are obtained by pure and simple re-
parameterisation of the baseline application.

IMG INFO

 ADD Chiller/Heat Pump Applications
Energy XT PRO

17/64

4 DATA DICTIONARY OF THE REVERSIBLE HEAT PUMP APPLICATION
This chapter describes the global data areas, accessible to each program, while the local data areas of each program will be
described in chapter 4.
Global data play a central role; they constitute to all effects the software interfaces between the various
programs, and thus completely represent the mechanisms for communication and synchronisation between the
various programs.

The data on which the application works are classified in different areas, divided where necessary into sub-areas.
The hierarchical division is as follows:

1. Parameters: data that define, on various levels, operation of the application. The application uses these data
accessing them in read-only mode. Using the classification already used, the parameters are divided into three
categories:

a. FIXED parameters (referred to in the rest of this manual as Defined Words): this category contains read-

only values (not modifiable by the user) identifying the maximum machine domain, such as:

•∴ταβ maximum number of evaporators;
•∴ταβ maximum number of circuits;
•∴ταβ maximum number of compressors;

b. COLD parameters: these are modifiable by the user but implicate in general the need to stop and restart
the plant. The following belong to this category:

•∴ταβ number of compressors enabled;
•∴ταβ regulation algorithm (proportional, PI)
•∴ταβ resource selection algorithm (saturation/balancing)

c. HOT parameters: these are operating parameters modifiable during operating conditions without special

provisions, such as:

•∴ταβ minimum compressor off time
•∴ταβ minimum time between start-up of two compressors
•∴ταβ temperature set-point

2. Variables: these are data that define, on various levels, machine status. The application produces and uses these

data, accessing them in read and write mode. The classification is by functional area or physical component and
by �scope� in other words differentiating between global variables of the application and local variables of the
different programs and copies of the same program. This section will also specify the different areas, specifying
the global variables while local variables will be dealt with in chapter 4 in the paragraphs related to the various
function areas.

2.1 plant variables
2.2 condenser variables
2.3 circuit variables
2.4 compressor variables
2.5 fan set variables
2.6 pump unit variables
2.7 defrosting variables

4.1 Nomenclature
To facilitate interpretation of the various objects present in the dictionary, the following conventions are adopted:

1. object names: these are made up of an acronym identifying the physical area of classification, the function to
which the object refers or the object type:

1.1 KOMP: compressor area
1.2 CIR: circuit area
1.3 EV: evaporator area
1.4 COND: condenser area
1.5 FANS: fan / fan unit area
1.6 PUMP: pump / pump unit area

1.7 CH: chiller
1.8 HP: heat pump
1.9 A: alarms
1.10 DF: de-frost
1.11 AF: anti-freeze
1.12 PD: pump down
1.13 DTSET: dynamic set point
1.14 SOL: solenoid
1.15 PRES: pressure
1.16 TEMP: temperature

1.17 DI : digital input (e.g. a pressure switch)
1.18 SENS: analogue sensor (analogue input)

 ADD Chiller/Heat Pump Applications
Energy XT PRO

18/64

when applicable, the physical area of classification must be used as a pre-fix for each acronym (e.g. for the circuit pressure
sensor, the total acronym must be CIR+PRES+SENS and not PRES+SENS+CIR or SENS+PRES-CIR)

2. syntax: identifies the type or �scope� of the object:

2.1 XXX_YYY: parameter or variable of I/O or defined word (constant)
2.2 XxxYyyy: internal global or local variable; name of function or function block
2.3 xxx_yyy: internal support variable, indexes, temporary etc.

Note that what has been previously defined as �parameter� uses the syntax �XXX_YYY�, i.e. the ID comprises only upper
case and the names/acronyms are separated by the character �_� (underscore), while that previously defined as �variable�
uses the syntax �XxxYyy, i.e. the ID comprises upper case (first character of the name/acronym) and lower case (remaining
characters of the name/acronym) and the names/acronyms are separated by the change between upper and lower case.
Note also that variables in any event related to the I/O and constants use the syntax of �parameters�. The first because in
some way they are also considered external with respect to the application AppMaker (the input is read-only and the
output is write-only), while the second because it is common practice to use upper case characters to define the constants.

4.2 Control structure definition
The application AppMaker must be developed from the start taking into consideration the maximum limits of machine
expandability. This means that the sizing of the control structure (management arrays) must be made taking into account
the �maximum of maximums�.
In particular in the example below the set structural limits are:

Maximum number of machine circuits 8
Maximum number of machine evaporators 4
Maximum number of machine compressors 8
Maximum number of machine pumps 2
Maximum number of machine fan coils 8
Maximum number of machine fans 16
Maximum number of compressors per circuit 8
Maximum number of circuits per evaporator 4
Maximum number of fans per fan unit 8
Maximum number of circuits per fan unit 8

The dimensioning of vectors must be performed not only on the basis of these elements but also according to the specific
use of the vector; therefore it cannot be assumed, for example that all vectors that have circuits as the classification have
the dimension 8.
A clear example can be seen in the fact that CirEv is dimension 8 because it indicates, for each circuit, the relative
evaporator as classification.

On the contrary, the vector CirKomp must have the dimension 64.
In fact this indicates which circuit each compressor belongs to: it may occur that all 8 compressors belong to the first
circuit such as in the case in which only one compressor is present for each of the 8 circuits.
Therefore CirKomp must have the dimension of:

 Maximum number of machine circuits* Maximum number of machine compressors.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

19/64

Since AppMaker does not enable dimensioning of the vectors using the IDs of the constants (�Defined words� in the
dictionary AppMaker), as would happen in a high level programming language, vectors must be sized using a numerical
value in the field �Dim� in the parameter definition window in the dictionary, as shown in the example below:

Obviously, though having nomenclature that can be defined as �self-identifying� by virtue of the acronyms used, the fact
of using the constants in the windows for variable definition could lead to ambiguity or difficulties in identification of the
vectors, as most of the maximum limits are generally 8 (e.g. circuits, compressors) or 4 (e.g. evaporators).
In this case, the only possibility is to make an explicit statement in the vector type variable comment field (�Comment�
field of AppMaker) to what it refers and how many elements (e.g. �i-th circuit in the example above) must be envisaged
for the field �Dim�, within the limits of the 60 characters envisaged by AppMaker for comments on variables.
However, as an aid to compilation of the ST code, and to enable execution of so-called �parametric� loops (in the sense of
loops limited by constant identifiers and not by �magic numbers� entered in the ST code), the insertion is envisaged in

AppMaker also of the definition of the constants as �Defined words�, as shown in the example below:

All the �Defined words� used to define these maximum limits will have to have the ID of (�Name� field of AppMaker) a
string type �MAX_XXX�, where �XXX� , states the object, the maximum of which is to be defined, and obviously a suitable
comment.
Any loops of the AppMaker programs written in ST will thus be able to be written as:

368,3
200,4
0
2
0
0
-1
354
193,5

 ADD Chiller/Heat Pump Applications
Energy XT PRO

20/64

for ind_cir := 0 to (MAX_CIR � 1) do

(* check to perform on single circuit *)
if <circuit vector>[ind_cir] = � then
� (* actions to perform on single circuit*)
end_if;

end_for;

in this way the resulting architecture is:

a) dimensioned on the envisaged maximum and in any event able to work (without any modifications) on machines with
smaller �physical � dimensions (down-sized)
b) potentially ready to be expanded even over the limits currently envisaged. For example, to increase the number of
circuits management, it would be sufficient to simply change the size of all circuit vectors (variables CIR_XXX) and at the
same time modify the value of the relative �Defined word� (the �Define� field of MAX_CIR must take on the new
maximum value for the number of circuits).

4.3 Global and support variables
This chapter and relative sub-chapters, list the global and support variables, of primary importance for the proposed
machine architecture.

For AppMaker, the division between parameters and variables in reality does not exist, as the database envisages variables
(analogue and digital), timers, messages (strings), FB instances and constants (�Defined words�).
As a general rule, the presence of two types of variable can be defined; global and support.
The first are the �working� versions that can be defined �really global�, in the sense that they serve to monitor the
behaviour and status of the plant.
They contain configuration and set-up information that make the application AppMaker able to be parameterised and data
driven (e.g. KOMP_CIR_EV), and information on states, analogue or digital, used (as inputs) by the algorithms to ensure
the correct reactions (output generation) (e.g. CIR_PRES_MAX_SENS[]). In practice these are the parameters of the
application and the virtual and physical I/O. Details and descriptions of the main parameters will be given below, i.e., those
that have an impact on the AppMaker application architecture.

The choice to insert all parameters or not has been made taking into the consideration that:

a) Parameter entry is reasonably quick
d) the overall number of parameters is quite considerable (more than three hundred)
e) it is simpler to follow the evolution of the variables of an application if the total number of variables is smaller
f) AppMaker enables the generation of both dedicated and general �spy and connected to single programs

The second versions (support variables) are those which, though also considered �working� variables, serve to implement,
facilitate and accelerate execution of the algorithms.
This category includes both the constructed link tables, on the basis of the configuration parameters, during initialisation,
and the other variables not directly related to parameters. Both, from many points of view, can thus be considered real
and actual �support variables�.
Some of them, such as the look up tables, are global as they are used by different algorithms, even if for completely
independent purposes, which however require an external support (for example the pumpdown function of a circuit needs
to know which compressors belong to this specific circuit, and therefore a look up table needs to be used).
These variables are described in detail in the following sub-chapters as considered general.
Very probably many other variables will have to be �global� in the sense of �not local� to a single application. However,
these variables, unlike the ones dealt with in this chapter, related to the �Data dictionary of the reversible heat pump
application�, are to be considered part of specific applications. Even if these variables will have to be used in several
applications (and must therefore be �global�), a clearly defined producer-consumer (or producer-consumers) relationship
will remain.

The �local� variables of the single applications are not deemed pertinent to a document on architecture and therefore are
not described.

4.3.1 Vector KOMP_CIR_EV
(Part of IV_Plan)

KOMP_CIR_EV[8]: integer type vector of 8 elements; uses a decimal 2-digit identifier to associate compressors with
circuits and circuits with evaporators. The first digit of each element identifies the evaporator to which the circuit belongs
and the second digit identifies the circuit to which the compressor belongs. Only the first n elements can be initialised with
n <= 8. The value 0 indicates the corresponding compressor is not present. This vector is configured manually.
A single analogue value enables the association of a single compressor both with its relative circuit (decimal value module
10) and the evaporator in which the circuit is located (decimal value divided 10).

Note that the values to be entered as the numbers 1..n, in other words for reasons of clarity the use of the value 0 should
be avoided.
The vector is therefore the entry point that enables the generation of a different family of machines, potentially also not
symmetrical and unbalanced.

For example, in the case of the BASELINE APPLICATION machine, the vector must be initialised as follows, taking care that
there are no gaps and that numbering is monotone, ascending from left to right:

 ADD Chiller/Heat Pump Applications
Energy XT PRO

21/64

KOMP_CIR_EV for machine 2-4-4 (Baseline Application)

Index
in

vector

Compr. Contained (Evaporator) (Circuit) Notes

0 1 11 1 1 First compressor, compressor of first
circuit of first evaporator

1 2 12 1 2 Second compressor, compressor of
second circuit of first evaporator

2 3 21 2 1 Third compressor, compressor of first
circuit of second evaporator

3 4 22 2 2 Fourth compressor, compressor of
second circuit of second evaporator

4 5 0 - - 0 = compressor not present
5 6 0 - - 0 = compressor not present
6 7 0 - - 0 = compressor not present
7 8 0 - - 0 = compressor not present

A machine configured with 2 evaporators, 4 circuits and 8 compressors must have the vector KOMP_CIR_EV initialised as
follows:

KOMP_CIR_EV for machine 2-4-8 (symmetrical balanced)
Index

in
vector

Compr. Contained (Evaporator) (Circuit) Notes

0 1 11 1 1 First compressor, first compressor of first circuit
of first evaporator

1 2 11 1 1 Second compressor, second compressor of first
circuit of first evaporator

2 3 12 1 2 Third compressor, first compressor of second
circuit of first evaporator

3 4 12 1 2 Fourth compressor, second compressor of
second circuit of first evaporator

4 5 21 2 1 Fifth compressor, first compressor of first circuit
of second evaporator

5 6 21 2 1 Sixth compressor, second compressor of first
circuit of second evaporator

6 7 22 2 2 Seventh compressor, first compressor of second
circuit of second evaporator

7 8 22 2 2 Eighth compressor, second compressor of
second circuit of second evaporator

4.3.2 Vector CirPresence
(Part of IV_Cir)

CirPresence[8]: Boolean type vector with 8 elements: defines the presence of the i-th circuit. Calculated by
KOMP_CIR_EV[].

The vector KOMP_CIR_EV is scanned in the initialisation phase, and for each element with a value other than zero sets the
presence value of the relative circuit to true, with the index

 ((<value> MOD 10) � 1) + offset

where offset takes into account the number of circuits belonging to the previous evaporator .

 ADD Chiller/Heat Pump Applications
Energy XT PRO

22/64

Note that this vector will be used in the mode �0..(n � 1)� in the applications, i.e. using the index 0 (index for first circuit).

CirPresence
Index

in
vector

Circuit Contained
(2-4-4)

(BASELINE APPLICATION)

Contents
(2-4-8)

Contents
(2-8-8)

0 1 true (present) true (present) true (present)
1 2 true (present) true (present) true (present)
2 3 true (present) true (present) true (present)
3 4 true (present) true (present) true (present)
4 5 false (not present) false (not present) true (present)
5 6 false (not present) false (not present) true (present)
6 7 false (not present) false (not present) true (present)
7 8 false (not present) false (not present) true (present)

4.3.3 Vector CirEv
(Part of IV_Cir)
CirEv[8]:integer type vector of 8 elements, one per circuit; lists the relative evaporator for the i-th circuit (with i = 0..7),
calculated by KOMP_CIR_EV[].
Used when, on a circuit level, information must be acquired regarding the evaporator to which the circuit belongs.

The vector KOMP_CIR_EV is scanned in the initialisation phase, and for each index element �k� with a value other than
zero sets the CirEv element to �(<value> DIV 10) - 1� with the index

((<value> MOD 10) � 1) + offset

where offset takes into account the number of circuits belonging to the previous evaporator .

Note that this vector will be used in the mode �0..(n � 1)� in the applications, i.e. using the index 0 (index for evaporator of
first circuit).

CirEv
Index

in
vector

Circuit Evaporator
(2-4-4)

(BASELINE
APPLICATION)

Evaporator
(2-4-8)

Evaporator
(2-8-8)

0 1 0 0 0
1 2 0 0 0
2 3 1 1 0
3 4 1 1 0
4 5 -1 (not used) -1 (not used) 1
5 6 -1 (not used) -1 (not used) 1
6 7 -1 (not used) -1 (not used) 1
7 8 -1 (not used) -1 (not used) 1

4.3.4 Vector CirKomp
(Part of IV_Cir)

CirKomp[8*8]: integer type vector of 8*8 elements per circuit; lists the compressors that are part of the i-th circuit
(with i = 0..7) Calculated by KOMP_CIR_EV[].
The support of AppMaker for single dimension arrays only leads the use of a single vector in place of a two dimension
matrix (which would be the more logical solution for this variable).

Given that each circuit can have at the most 8 compressors, and a maximum of 8 circuits is possible, this vector is sized for
64 elements, even though in this case the overall limit of 8 compressors implies that the vector is any event filled partially
(many elements, those unused, will count as �-1�).

For the �i-th� circuits (with 0 <= i <= (MAX_CIR � 1)), the pertinent starting index will be obtained from the expression:

i * (MAX_KOMP4CIR) (representing an offset in the vector)

where �MAX_KOMP4CIR� is the constant that defines the maximum number of compressors per circuit; the valid elements
for this circuit will therefore be MAX_KOMP4CIR.
The vector KOMP_CIR_EV is scanned in the initialisation phase, and for each index element �k� with a value other than
zero sets the CirKomp element to �k� with the index

(((<value> MOD 10) � 1) + offset) * MAX_KOMP4CIR

where offset takes into account the number of circuits belonging to the previous evaporator .

 ADD Chiller/Heat Pump Applications
Energy XT PRO

23/64

Note that this vector will be used in the mode �0..(n � 1)� in the applications, i.e. using the index 0 (index for the first
compressor of the first circuit).

CirKomp
Index

in
vector

Circuit Contents
(2-4-4)

(BASELINE
APPLICATION)

Contents
(2-4-8)

Contents
(2-8-8)

Contents
(1-1-4)

0 1 0 0 0 0
1 1 -1 (not used) 1 -1 (not used) 1
2 1 -1 (not used) -1 (not used) -1 (not used) 2
3 1 -1 (not used) -1 (not used) -1 (not used) 3
4 1 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
5 1 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
6 1 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
7 1 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
8 2 1 2 1 -1 (not used)
9 2 -1 (not used) 3 -1 (not used) -1 (not used)
10 2 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
11 2 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
12 2 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
13 2 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
14 2 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
15 2 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
16 3 2 4 2 -1 (not used)
17 3 -1 (not used) 5 -1 (not used) -1 (not used)
18 3 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
19 3 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
20 3 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
21 3 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
22 3 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
23 3 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
24 4 3 6 3 -1 (not used)
25 4 -1 (not used) 7 -1 (not used) -1 (not used)
26 4 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
27 4 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
28 4 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
29 4 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
30 4 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
31 4 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
32 5 -1 (not used) -1 (not used) 4 -1 (not used)
33 5 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
34 5 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
35 5 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
36 5 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
37 5 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
38 5 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
39 5 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
40 6 -1 (not used) -1 (not used) 5 -1 (not used)
41 6 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
42 6 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
43 6 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
44 6 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
45 6 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
46 6 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
47 6 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
48 7 -1 (not used) -1 (not used) 6 -1 (not used)
49 7 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
50 7 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
51 7 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
52 7 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
53 7 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
54 7 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
55 7 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
56 8 -1 (not used) -1 (not used) 7 -1 (not used)
57 8 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
58 8 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
59 8 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
60 8 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
61 8 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
62 8 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
63 8 -1 (not used) -1 (not used) -1 (not used) -1 (not used)

 ADD Chiller/Heat Pump Applications
Energy XT PRO

24/64

Note that the use of this type of vector leads to the use of several variables (and therefore more memory) but has
substantial benefits in the execution phase.
For example in this case an integer type vector of only 8 elements would have been sufficient (one per compressor, each
element would be the circuit to which the compressor belongs) but this vector would still have to be scanned from the
first to the last element whenever something needs to be done on the compressors in the specific circuit.
However, this vector enables a simple multiplication and cycle interruptible on the first element found with the value �-1�
to significantly reduce the processing times required for run-time, as will be outlined in the subsequent chapters.

4.3.5 Vector EvPresence
(Part of IV_Evap)

EvPresence[4 (MAX_EV)]: Boolean type vector with 4 elements: defines the presence of the i-th evaporator.
Calculated by KOMP_CIR_EV[].
The vector KOMP_CIR_EV is scanned in the initialisation phase, and for each element with a value other than zero sets the
presence value of the relative evaporator to true, with the index

 ((<value> DIV 10) – 1)

Note that this vector will be used in the mode �0..(n � 1)� in the applications, i.e. using the index 0 (index for first
evaporator).

EvPresence
Index

in
vector

Evaporator Contents
(2-4-4)

(BASELINE APPLICATION)

Contents
(2-4-8)

Contents
(4-8-8)

0 1 true (present) true (present) true (present)
1 2 true (present) true (present) true (present)
2 3 false (not present) false (not present) true (present)
3 4 false (not present) false (not present) true (present)

4.3.6 1.3.6 Vector EvCir
EvCir[4*4]: integer type vector of 4*4 elements; lists the circuits that are part of the i-th evaporator (with i = 0..3).
Calculated by KOMP_CIR_EV[].

Also in this case, the support of AppMaker for single dimension arrays only leads the use of a single vector in place of a
two-dimension matrix (which would be the more logical solution for this variable).
Given that each evaporator can have at the most 4 circuits, and a maximum of 8 evaporators is possible, this vector is sized
for 16 elements, and also in this case the vector is filled partially (many elements, those unused, will count as �-1�).
For the �i-th� evaporator (with 0 <= i <= (MAX_EV � 1)), the pertinent starting index will be obtained from the expression:

i * (MAX_CIR4EV)

where �MAX_ CIR4EV� is the constant that defines the maximum number of circuits per evaporator; the valid elements for
this circuit will therefore be MAX_ CIR4EV.
The vector KOMP_CIR_EV is scanned in the initialisation phase, and for each index element �k� with a value other than
zero sets the EV_CIR element to �(<value> MOD 10) � 1 + offset� with the index

 (((<value> DIV 10) – 1)*MAX_CIR4EV) + (<value> MOD 10) – 1)

where offset takes into account the number of circuits belonging to the previous evaporator .

 ADD Chiller/Heat Pump Applications
Energy XT PRO

25/64

Note that this vector will be used in the mode �0..(n � 1)� in the applications, i.e. using the index 0 (index for the first
evaporator of the circuit).

EvCir
Index

in
vector

Evap. Contents
(2-4-4)

(BASELINE
APPLICATION)

Contents
(2-4-8)

Contents
(2-8-8)

Contents
(4-4-4)

0 1 0 0 0 0
1 1 1 1 1 -1 (not used)
2 1 -1 (not used) -1 (not used) 2 -1 (not used)
3 1 -1 (not used) -1 (not used) 3 -1 (not used)
4 2 2 2 4 1
5 2 3 3 5 -1 (not used)
6 2 -1 (not used) -1 (not used) 6 -1 (not used)
7 2 -1 (not used) -1 (not used) 7 -1 (not used)
8 3 -1 (not used) -1 (not used) -1 (not used) 2
9 3 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
10 3 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
11 3 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
12 4 -1 (not used) -1 (not used) -1 (not used) 3
13 4 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
14 4 -1 (not used) -1 (not used) -1 (not used) -1 (not used)
15 4 -1 (not used) -1 (not used) -1 (not used) -1 (not used)

Also in this case, note that the use of this type of vector leads to the use of several variables (and therefore more memory)
but has substantial benefits in the execution phase.
For example in this case an integer type vector of only 8 elements would have been sufficient (one per circuit, each
element would be the evaporator to which the circuit belongs) but this vector would still have to be scanned from the first
to the last element whenever something needs to be done on the circuits of the specific evaporator.
However, this vector enables a simple multiplication and cycle interruptible on the first element found with the value �-1�
to significantly reduce the processing times required.

4.3.7 Vector KOMP_STEP
(Part of IV_Komp)

KOMP_STEP[8]: maximum number of capacity steps for each compressor. Admissible range 0..4.

KOMP_STEP
Index

in
vector

Comp
r

Contents
(2-4-4)

(BASELINE
APPLICATION

)

Notes
(2-4-4)

Contents
(2-4-8)

Notes
(2-4-8)

0 1 3 On/off plus two capacity
steps

(0-33-66-100%)

1 Compressors type on/off for
circuit I (0-100%)

1 2 3 On/off plus two capacity
steps

(0-33-66-100%)

1 Compressors type on/off for
circuit I (0-100%)

2 3 3 On/off plus two capacity
steps

(0-33-66-100%)

2 Compressors type on/off plus one
capacity step for circuit II (0-50-
100%)

3 4 3 On/off plus two capacity
steps

(0-33-66-100%)

2 Compressors type on/off plus one
capacity step for circuit II (0-50-
100%)

4 5 0 (not used) 4 Compressors type on/off plus
three capacity steps for circuit III
(0-25-50-75-100%)

5 6 0 (not used) 4 Compressors type on/off plus
three capacity steps for circuit III
(0-25-50-75-100%)

6 7 0 (not used) 4 Compressors type on/off plus
three capacity steps for circuit IV
(0-25-50-75-100%)

7 8 0 (not used) 4 Compressors type on/off plus
three capacity steps for circuit IV
(0-25-50-75-100%)

 ADD Chiller/Heat Pump Applications
Energy XT PRO

26/64

4.3.8 Vector KompCir
(Part of IV_Komp)

KompCir[8]: integer type vector of 8 elements, one per compressor; lists the relative circuit for the i-th compressor
(with i = 0..7), calculated by KOMP_CIR_EV[].
Used when, on a compressor level, information must be acquired regarding the circuit to which the compressor belongs.
The vector KOMP_CIR_EV is scanned in the initialisation phase, and for each index element �k� with a value other than
zero sets

 (<value> MOD 10)

where offset takes into account the number of circuits belonging to the previous evaporator .

the element KompCir with the index �k�.

Note that this vector will be used in the mode �0..(n � 1)� in the applications, i.e. using the index 0 (index to determine the
circuit of the first compressor).

KompCir
Index

in
vector

Compr. Circuit
(2-4-4)

(BASELINE
APPLICATION)

Circuit
(2-4-8)

Circuit
(2-8-8)

0 1 0 0 0
1 2 1 0 1
2 3 2 1 2
3 4 3 1 3
4 5 -1 (not used) 2 4
5 6 -1 (not used) 2 5
6 7 -1 (not used) 3 6
7 8 -1 (not used) 3 7

4.3.9 KompFans (Part of IV_Komp)
KompFans[8]: integer type vector of 8 elements, one per compressor; lists the fan unit for the i-th compressor (with
i = 0..7) Calculated by CIR_FANS[] and KompCir[].
Used when, on a compressor level, information must be acquired regarding the fan coil to which the compressor belongs.

4.3.10 Variables EvNo, CirNo, KompNo
(Part of IV_Komp)

These variables are not considered mandatory as the �look up tables� defined in the previous chapters (with the values
�stage� �-1�) are (and must be) in reality sufficient to guarantee correct access to all vectorised objects.
The decision whether to implement parameter/variable types �XxxNo� basically depends on the type of consistency checks
to be implemented, to then be executed in �one shot� mode during initialisation.
Also these parameters, which define:

a) the total number of evaporators to be controlled
(EvNo, with 0 < EvNo <= MAX_EV)

b) the total number (overall, not per evaporator) of circuits to be controlled
(CirNo, with 0 < CirNo <= MAX_CIR)

c) the total number (overall, not per circuit) of compressors to be controlled
 (KompNo, with 0 < KompNo <= MAX_KOMP)

can in any event be calculated by KOMP_CIR_EV[].
The vector KOMP_CIR_EV is scanned in the initialisation phase, and for each index element �k� with a value other than
zero

a) increases the number of compressors (KompNo)
b) increases the number of evaporators (EvNo) if, and only if the evaporator
 �(<value> DIV 10) - 1�
 has not already been taken into consideration
c) increases the number of circuits (CirNo) if, and only if, the circuit

 �(<value> MOD 10) - 1�
has not already been taken into consideration

EvNo CirNo KompNo

Var Value per
(2-4-4)

(BASELINE
APPLICATION)

Value per
(2-4-8)

Value per
(2-8-8)

EvNo 2 2 2
CirNo 4 4 8

KompNo 4 8 8
These variables could become local on the initialisation phase (and therefore not visible to the rest of the application)
depending on the selections made for consistency checks.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

27/64

4.3.11 Checks of consistency and cycles on objects
Preliminary note
PLC applications do not typically contain consistency checks on the contents of the parameters on which the algorithms
work. In fact it is supposed that it is task of MMI to perform the operations to check the configuration input made by an
operator, refusing illegal parameters when necessary. If this is supposed to be true also for applications developed by the
final user, some guidelines are provided in this section with the aim of highlighting any critical aspects that may have a
negative influence on the behaviour of the machine. The consistency checks described in this chapter (and also in others)
can therefore be considered as requirements for the operator interface management software (MenuMaker PRO).

Requirements for initialisation of KOMP_CIR_EV

•∴ταβ The array is filled leaving no gaps;
•∴ταβ It must always be filled starting from evaporator 1;
•∴ταβ The evaporator index must be monotone in ascending order (max increment of 1);
•∴ταβ For each evaporator the circuit index must be monotone in ascending order (max increment of 1);

An incorrect configuration is illustrated below (no evaporator 2).

KOMP_CIR_EV for machine 2-4-4 (configuration error)
Index

in
vector

Compr. Contents (Evaporator) (Circuit) Notes

0 1 11 1 1 First compressor, compressor of first circuit
of first evaporator

1 2 12 1 2 Second compressor, compressor of second
circuit of first evaporator

2 3 31 3 1 Third compressor, compressor of first circuit
of third evaporator

3 4 32 3 2 Fourth compressor, compressor of second
circuit of third evaporator

4 5 0 - - 0 = compressor not present
5 6 0 - - 0 = compressor not present
6 7 0 - - 0 = compressor not present
7 8 0 - - 0 = compressor not present

Note that the fact that the previous configuration must be considered wrong is open
to dispute. The decision to make these types of configuration possible or not (defined as �spreaded�) must be made
before the start of development as it has an impact on:

a) presence of variables EvNo, CirNo and KompNo
b) their use in the object scanning cycles
b) overall machine performance

Requirements for initialisation of CIR_FANS

•∴ταβ The array is filled leaving no gaps;
•∴ταβ The fan unit circuit index must be monotone in ascending order (max increment of 1);

If the �spreaded� type configurations are considered possible, variable types �XxxNo� must NOT be present, as they could
generate incorrect reactions in these configurations. In these configurations, the check cycles (see below) must be
performed analysing all possible elements of the vectors through to their maximum (vector limit).
Vice versa, if �spreaded� type configurations are not considered possible, variable types �XxxNo� can be used by the
applications, following a consistency check during initialisation, and the control cycles can be significantly optimised.

The complexity of a general conditioning machine very often involves �cross-references� between the various components
making up the unit. The term �cross-reference� refers both to the obvious evaporator-circuit-compressor (top-down)
hierarchy, but also the possible necessity to return through the hierarchical structure to upper objects to take information
pertinent to the upper objects themselves. Normally this concept is also applicable to the �transversal� objects such as the
fans and functions such as pump-down.
For example, with single condensation, each circuit still has its own sensor/digital input for pressure/temperature, even if
several circuits are then combined on a single fan coil.
Control of the fan unit must therefore scan (creating the need for a cycle) all circuits referring to the specific fan unit to
read the pressure/temperature values on the basis of which fan control is operated.
The fact that the number of these �cross-references� is not exactly limited, together with the fact that the user could
decide to move up and down through the hierarchy in indented mode (from a cycle onto circuits to check something
related to the circuit compressors, but in turn the control on compressors imposes the use of something related to the
circuit), means that this problem must not be underestimated.
To avoid time-wasting processes and pointless calculations, the variables can be used in the cycles in the place of the
relative constants �MAX_XXX�.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

28/64

A first cycle of the type:

(* scan all the circuits *)
 for cir_idx := 0 to (MAX_CIR - 1) do
 if CirPresence[cir_idx] = present then
 result := PumpDown(cir_idx);
 end_if;
 end_for;

is certainly less efficient than a second cycle type (also not admissible in �spread� configurations) :

 (* scan all the circuits (until last one) *)
 cir_idx := 0;
 while CirPresence[cir_idx] = present do
 result := PumpDown(cir_idx);
 cir_idx := cir_idx + 1;
 end_while;
which is interrupted as soon as the first circuit set as �not present� is detected3.
Note that in the first cycle the construct �for� has been used to execute the cycle itself and �(MAX_CIR - 1)� to identify the
final limit of the scan, in this case on the circuits, while in the second case it uses the construct �while�4.
A variant of the first cycle, without a doubt simpler and therefore clearer for non programmers, would be:

(* scan all the circuits *)
 for cir_idx := 0 to (NumCir - 1) do
 result := PumpDown(cir_idx);
 end_for;

which still uses the construct �for� but uses �(NumCir - 1)� to identify the final limit of the scan, and which could be used
if the �spreaded� configurations are not considered possible.
The resulting optimisation from the second cycle is significant and not to be underestimated: for a BASELINE APPLICATION
type machine (four circuits) the time required for the scan of the second cycle is approximately half of that required for
the first cycle (which in any event scans all eight circuits to see if they are present).
However, there is the problem of understanding whether there is a need to enable aspects such as the complete inhibition
of a circuit or evaporator, while maintaining others enabled, for example �there are three circuits and the second is to be
disabled�.
In fact in this case the code of the second cycle would be inadvertently interrupted on the second circuit (which is
disabled), preventing progress to the third which is still active.
For these cases, the proposed solution is to insert a new variable, or rather a new vector, to notify of the fact that the
object may be enabled or disabled, leaving the presence flag on �present�.

Execution of the algorithms would depend, where necessary, on a dual condition:

if (CirPresence[cir_idx] = present) and
 (CirActive[cir_idx] = active) then

�
end_if;

where the variable CirActive[] indicates the �possibility� of the control using the i-th circuit and is therefore modifiable by
means of MMI, whereas this is not possible for the variable CirPresence[] which defines a structural characteristic of the
plant.

3 Again this construct can only be used if the �spreaded� configurations are considered possible.
4 AppMaker provides the construct �while � do � end_while� for perform conditioned loops, but generates a warning in
compilation to notify of use of a potentially hazardous statement given that an incorrect condition on exit from the loop
could influence execution times of the PLC cycle.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

29/64

Another fact to bear in mind is the management of cycles on objects (compressors, circuits, evaporators) outside the ST
code.
While in the case of a program written in �Structured Text� the choice of the type of cycle to perform is not totally critical
(it can be modified very quickly), in other types of program (e.g. FBD/SFC) management of a while cycle could be
complicated if not impossible, or would at least involve the introduction of additional programming level making the
structure more rigid.
The simple ST cycle described above would not be feasible as FBD, unless feedback is introduced, which as managed in
various PLC cycles5 would make the application drastically slow with unforeseeable reactions; in this case the FBD should
necessarily be �exploded in line� as in the following case, referred to 4 circuits.

Note that when the circuits are exploded in line, there is no need for the use of the variables �XXX_NO� or �MAX_XXX�.

Implementation of the same function, for 8 circuits instead of 4, would required the production of a similar scheme but
differing in some aspects (for example the final OR would be with 8 input). If on the one hand the work is simple and
feasible also be personnel without specific high level programming backgrounds, the high number of copy-paste-modify
actions subject to potential errors makes modifications a much more critical operation (for example the following FBD
contains an error).

It must also be remembered that the contents code in the FBD would still be executed regardless of whether the objects
on which it works are present or not (in the example the function �PumpDown� would always be called for all 8 circuits).
There could be the objection that execution within a function could be avoided by verifying, in the function itself, whether
the specific object is effectively present, but in this case there would still be a pointless overhead for calling the function
(and note that this overhead increases proportionally, the smaller the machine to be produced).
Alternatively, the use of Ladder Diagrams could avoid the execution of the code, by using the object presence flag in the
contact to the left of the function.

5 On each PLC cycle a single turn would be performed and the output used as input (feedback) would be taken into
consideration only on the next PLC cycle

 ADD Chiller/Heat Pump Applications
Energy XT PRO

30/64

This hypothesis, though valid, would involve the use of additional local variables and �rungs� to retrieve the result of the
function execution, as shown in the example below.

In the example the function that implements the circuit pump down is only executed for the circuits in which the presence
flag (CirPresence) is true. Note that to obtain the overall result of the function there was the need to introduce the local
vector �result�, a temporary variable �temp� and two �rungs� to queue (and) and obtain the results of the single calls in a
�legible� and printable manner.
Though more efficient than FBD, the LD must also be modified if the maximum number of objects to be treated is
changed.
For these reasons the treatment of the loops is only recommended for the language ST.
The proposed architecture and variables referred to in this chapter lead to the recommendation to implement the control
logics on two levels. The lower level must contain the �pure� control algorithm to be performed on the single object (for
example the logic of pump-down of the single circuit), while the higher level, written in ST, must contain the loop to be
performed on all objects present.
Both algorithms would be part of a library. In this way, the user would then be able to use the low level / high level,
configure to client specifications the low level and use it for all circuits / configure to client specifications the high level
and use it only for specific circuits etc., with the maximum freedom of configuration.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

31/64

4.3.12 Parameter FANS_NO (Part of IV_Fans)

FANS_NO[8]: integer vector of 8 elements; contains the number of fans of each fan coil. Initialised once only in the
start-up phase by parameters FANS_NO_1�8. Admissible range 1�4.
This vector is configured manually.
For example, in the case of the BASELINE APPLICATION machine, the vector must be initialised as follows, taking care that
there are no gaps:

FANS_NO
Index

in
vector

Fan
Coil

Contents
(BASELINE

APPLICATION)

Notes
(2-4-4)

0 1 3 Three fans in first fan coil
1 2 3 Three fans in second fan coil
2 3 1 (not used)
3 4 1 (not used)
4 5 1 (not used)

5 6 1

(not used)

6 7 1 (not used)
7 8 1 (not used)

 ADD Chiller/Heat Pump Applications
Energy XT PRO

32/64

4.3.13 CIR_FANS (Part of IV_Plant)
CIR_FANS[8]: integer vector of 8 elements; contains the association between circuit and fan coil. Initialised once only
in the start-up phase by parameters CIR_FANS_1�8. Admissible range 0�2, the value 0 indicates that no fan coil is
associated with the specific circuit.
This vector is configured manually.
For example, in the case of the BASELINE APPLICATION machine, the vector must be initialised as follows, taking care that
there are no gaps and that numbering is monotone, ascending (max. increment of 1):

CIR_FANS
Index

in
vector

Circuit Contents
(BASELINE

APPLICATION)

Notes

0 1 1 The first circuit belongs to the
first fan coil

1 2 1 The second circuit belongs to
the first fan coil

2 3 2 The third circuit belongs to the
second fan coil

3 4 2 The fourth circuit belongs to
the second fan coil

4 5 0 (not used)

5 6 0

(not used)

6 7 0 (not used)
7 8 0 (not used)

4.3.14 1.3.14 FansCir (Part of IV_Fans)
FansCir[8*8]: vector of MAX_FANGROUPS * MAX_CIR4FANGROUP integer elements; lists the circuits belonging to
the i-th fan unit (with i = 0..7) Calculated by CIR_FANS [].
The support of AppMaker for single dimension arrays only leads the use of a single vector in place of a two dimension
matrix (which would be the more logical solution for this variable).

Given that each circuit can have at the most 8 circuits , and a maximum of 8 fan coils is possible, this vector is sized for 64
elements, even though in this case the overall limit of 8 circuits implies that the vector is either way filled only partially
(many elements, those unused, will count as �-1�).

For the �i-th� coil (with 0 <= i <= (MAX_FANGROUPS � 1)), the pertinent starting index will be obtained from the
expression:

i * (MAX_CIR4FANGROUP) (representing an offset in the vector)

where �MAX_CIR4FANGROUP� is the constant that defines the maximum number of circuits per fan coil; the valid
elements for this coil will therefore be MAX_CIR4FANGROUP.
The vector CIR_FANS is scanned in the initialisation phase, and for each index element �k� with a value other than zero
sets the FansCir element to �k� with the index

(value – 1) * MAX_CIR4FANGROUP + offset

 ADD Chiller/Heat Pump Applications
Energy XT PRO

33/64

Note that this vector will be used in the mode �0..(n � 1)� in the applications, i.e. using the index 0 (index for first circuit of
the first coil)

FansCir
Index

in
vector

Fan Coil Contents
(BASELINE APPLICATION)

Notes

0 1 0 The first circuit belongs to the first fan coil
1 1 1 The second circuit belongs to the first fan coil
2 1 -1 (not used) (not used)
3 1 -1 (not used) (not used)
4 1 -1 (not used) (not used)
5 1 -1 (not used) (not used)
6 1 -1 (not used) (not used)
7 1 -1 (not used) (not used)
8 2 2 The third circuit belongs to the second fan coil
9 2 3 The fourth circuit belongs to the second fan coil
10 2 -1 (not used) (not used)
11 2 -1 (not used) (not used)
12 2 -1 (not used) (not used)
13 2 -1 (not used) (not used)
14 2 -1 (not used) (not used)
15 2 -1 (not used) (not used)
16 3 -1 (not used) (not used)
17 3 -1 (not used) (not used)
18 3 -1 (not used) (not used)
19 3 -1 (not used) (not used)
20 3 -1 (not used) (not used)
21 3 -1 (not used) (not used)
22 3 -1 (not used) (not used)
23 3 -1 (not used) (not used)
24 4 -1 (not used) (not used)
25 4 -1 (not used) (not used)
26 4 -1 (not used) (not used)
27 4 -1 (not used) (not used)
28 4 -1 (not used) (not used)
29 4 -1 (not used) (not used)
30 4 -1 (not used) (not used)
31 4 -1 (not used) (not used)
32 5 -1 (not used) (not used)
33 5 -1 (not used) (not used)
34 5 -1 (not used) (not used)
35 5 -1 (not used) (not used)
36 5 -1 (not used) (not used)
37 5 -1 (not used) (not used)
38 5 -1 (not used) (not used)
39 5 -1 (not used) (not used)
40 6 -1 (not used) (not used)
41 6 -1 (not used) (not used)
42 6 -1 (not used) (not used)
43 6 -1 (not used) (not used)
44 6 -1 (not used) (not used)
45 6 -1 (not used) (not used)
46 6 -1 (not used) (not used)
47 6 -1 (not used) (not used)
48 7 -1 (not used) (not used)
49 7 -1 (not used) (not used)
50 7 -1 (not used) (not used)
51 7 -1 (not used) (not used)
52 7 -1 (not used) (not used)
53 7 -1 (not used) (not used)
54 7 -1 (not used) (not used)
55 7 -1 (not used) (not used)
56 8 -1 (not used) (not used)
57 8 -1 (not used) (not used)
58 8 -1 (not used) (not used)
59 8 -1 (not used) (not used)
60 8 -1 (not used) (not used)
61 8 -1 (not used) (not used)
62 8 -1 (not used) (not used)
63 8 -1 (not used) (not used)

 ADD Chiller/Heat Pump Applications
Energy XT PRO

34/64

4.3.15 1.3.15 FansNo (Part of IV_Fans)
This variable is not considered mandatory as the �look up tables� defined in the previous chapters (with the values �stage�
�-1�) are (and must be) in reality sufficient to guarantee correct access to all vectorised objects.
The decision whether to implement parameter/variable types �XxxNo� basically depends on the type of consistency checks
to be implemented, to then be executed in �one shot� mode during initialisation.
This parameter defines the total number of fan coils to be controlled (FansNo, with 0 < FansNo <= MAX_FANGROUPS)
and can in any event be calculated by CIR_FANS[].
The vector CIR_FANS is scanned in the initialisation phase, and for each index element �k� with a value other than zero it
increases the number of coils (FansNo) if, and only if, the coil �<value>� has not already been taken into consideration.

In the Baseline application FansNo=2.

4.3.16 Parameter PUMP_NO
This parameter is used to set the number of pumps to be managed by the plant.
The range of this parameter must be 0..MAX_PUMP, where MAX_PUMP is the constant that defines the maximum number
of pumps manageable by the application.
For the BASELINE APPLICATION, the maximum number of pumps, equivalent to the number of pumps to be managed, is
two,
The code for management for all that related to the pumps depends on the fact that the number of pumps is �greater
than zero�, as shown in the example below in �ST� code :

if PUMP_NO > 0 then
 (* pump management *)
 end_if;

Obviously cycles operating on vector types PumpsXxx[MAX_PUMP] will also be possible. These cycles will have the logic
condition of termination �index < (PUMP_NO � 1) :

for pump_idx := 0 to (PUMP_NO � 1) do
 (* management of pumps of i-th (with the index “pump_idx) *)
 …
 end_for;

4.4 Constants (Defined words)
Even though it may seem excessive go this far on a definition level in an architecture document, this section provides a
preliminary list of the main constants.
Obviously the list is not totally comprehensive but serves to identify the areas for which constants are deemed necessary.

Name Equivalenc

e
Comment

MAX_CIR 8 Maximum number of machine circuits
MAX_EV 4 Maximum number of machine evaporators (2 CVM)
MAX_KOMP 8 Maximum number of machine compressors
MAX_PUMP 2 Maximum number of machine pumps
MAX_FANGROUPS 8 Maximum number of machine fan coils (2 CVM)
MAX_FANS 16 Maximum number of machine fans (8 CVM)
MAX_KOMP4CIR 8 Maximum number of compressors per circuit (1 CVM)
MAX_CIR4EV 4 Maximum number of circuits per evaporator
MAX_FANS4FANGROUP 8 Maximum number of fans per fan unit (4 CVM)
MAX_CIR4FANGROUP 8 Maximum number of circuits per fan unit (4 CVM)
KIM_STANDARD 0 Standard compressor start-up
KIM_PARTWINDING 1 Part winding compressor start-up
KIM_STARDELTA 2 Star-delta compressor start-up
SENS_ERROR -32768 Probe error code
P_KOMP 0 compressor sub-system
P_CIR 1 circuit sub-system
P_EV 2 evaporator sub-system
P_PLAN 3 Plant sub-system
P_DEF 4 Defroster sub-system
SATURATION false definition for saturation policy
BALANCING true definition for balancing policy
KOMP_OFF 0 OFF status of i-th compressor
KOMP_ON_NR 1 ON Not Ready status of i-th compressor
KOMP_ON 2 ON status of i-th compressor
KOMP_OFF_NR 3 OFF Not Ready status of i-th compressor
ENTRY_SENS 0 definition for water inlet sensor
EXIT_SENS 1 definition for water outlet sensor
TREG_PI 2 Thermoregulation P.I.
TREG_TIMEPROP 1 Time-proportional thermoregulation
TREG_PROPORTIONAL 0 Proportional thermoregulation
SEMIERMETICO 0 semi-hermetic type compressor
VITE 1 screw type compressor
PLAN_OFF 0 OFF status of plant
PLAN_SHUTDOWN 1 SHUTDOWN status of plant
PLAN_ON 2 ON status of plant

 ADD Chiller/Heat Pump Applications
Energy XT PRO

35/64

PLAN_MODE_CHILLER FALSE Plant in CHILLER mode via keyboard
PLAN_MODE_POMPA TRUE Plant in PUMP mode via keyboard
PUMPGROUP_OFF 0 OFF status of pump unit
PUMPGROUP_GOING_UP 1 ON status of pump unit from plant ON
PUMPGROUP_ON 2 ON status of pump unit
PUMPGROUP_GOING_DOWN 3 ON status of pump unit from plant OFF
PUMPGROUP_ON4HEATERS 4
AAH_NOMINAL 0 AAH nominal status
AAH_ALARM 1 AAH alarm status
MAH_NOMINAL 0 MAH nominal status
MAH_ALARM 1 MAH alarm status
MAH_WAIT_RESET 2 MAH resettable status
GB_OFF 0 Generic bypass status off
GB_ON 2 Generic Bypass status on
GB_BYPASS_OFF_ON 1 Generic Bypass status off-on
GB_BYPASS_ON_OFF 3 Generic Bypass status on-off
B_OFF 0 Bypass status off
B_BYPASS 1 Bypass status bypass
B_ON 2 Bypass status on
DTSET_NONE 0 Dynamic Set point not enabled
DTSET_TEMP 1 Dynamic Set point enabled in temperature
DTSET_CURR 2 Dynamic Set point enabled in current
HY_OFF 0 Low value status of hysteresis
HY_ON 1 High value status of hysteresis
BAH_NOMINAL 0 BAH alarm nominal status
BAH_AUTO_RES 1 BAH automatically resettable status
BAH_MAN_RES 3 BAH active auto -> manual status
BAH_WAIT_RES 2 BAH manually resettable status
ASYMMETRICAL true Asymmetrical fans
SYMMETRICAL false Fans of the same power
PDA_START 0 start pump-down on start-up
PDA_HANDLE 1 management of pump-down on start-up
PDS_START 2 start pump-down on shutdown
PDS_HANDLE 3 management of pump-down on shutdown
PD_RESET 4 pump-down management reset
solenoid_open false solenoid valve open
solenoid_close true solenoid valve closed
PD_NONE 0 pump-down not supported
PD_ONSTART 1 pump-down on start-up
PD_FULL 2 pump-down on start-up and shutdown
pd_max_press_reached false pump-down pressure switch indicates max. pressure

reached
pd_min_press_reached true pump-down pressure switch indicates min. pressure

reached
NOT_IN_PD 0 not in pump-down
PDA1 1 pump-down on start-up phase 1
PDA2 2 pump-down on start-up phase 2
PDS 3 pump-down on shutdown
FINISH_PDA 4 pump-down on start-up terminated
FINISH_PDS 5 pump-down on shutdown terminated
TMR_IDLE 0 idle command to timer
TMR_RESET 1 reset command to timer
TMR_START 2 start command of timer
TMR_SUSPEND 3 timer count suspension command
TMR_OFF 0 OFF status of timer
TMR_RUNNING 1 timer in active count status
TMR_SUSPENDED 2 timer suspended in count status
TMR_EXPIRED 3 expired timer status
DEF_IDLE 0 defrost not active status
DEF_ENTER_DOWN 1 circuit shutdown status on defrost input
DEF_PRE_INV_VALVE 2 inversion valve standby status
DEF_POST_INV_VALVE 3 circuit in defrost activation standby status
DEF_GOING_UP 4 circuit in defrost activation status
DEF_STABLE 5 stable defrost status
DEF_GOING_DOWN 6 circuit in defrost shutdown status
DEF_WAIT_DRIP 7 circuit off on standby for drip status
DRIP_PRE_INV_VALVE 8 drip on standby for inversion valve status
DRIP_POST_INV_VALVE 9 drip on standby for drip end status
inversion_valve_in_chiller false Inversion valve in chiller mode status
inversion_valve_in_heatpump true Inversion valve in heat pump mode status
MAX_VALUE false requests maximum
MIN_VALUE true requests minimum
SKIP true Skips statuses OFF_NR and ON_NR of compressors
NOT_SKIP false Does not skip statuses OFF_NR and ON_NR of

compressors
DEF_STANDARD 4 Standard defrosting

 ADD Chiller/Heat Pump Applications
Energy XT PRO

36/64

DEF_NONE 5 Defrosting not enabled
COMPE_IDLE false compensation not active status
COMPE_GOING_ON true compensation active status
FANS_DIGI 1 Fan control in digital mode
FANS_CONT 0 Fan control in continuous mode
MAX_HISTORY_ELEMENTS 50 Maximum number of alarms in alarm history
HISTORY_WRITE false element writing in alarm history
HISTORY_READ true element reading in alarm history
HISTORY_LOCKED_TIME t#60s Alarm history download timeout
PLANTEMPINWATERSENSERR_COD 0 Water inlet temperature sensor error code
PLANTEMPOUTWATERSENSERR_COD 1 Water outlet temperature sensor error code
PLANCURRDTSETSENSERR_COD 2 Sensor in current for dynamic set point error code
PLANHTEMPA_COD 3 Plant high temperature alarm code
PLANLTEMPA_COD 4 Plant low temperature alarm code
CIRPRESMAXSENSERR_COD 5 Maximum circuit pressure sensor error code
CIRHPRA_COD 6 Maximum circuit pressure alarm code
CIRLPRA_COD 7 Minimum circuit pressure alarm code
KOMPTEMPDISCHARGESENSERR_COD 8 Compressor discharge temperature sensor error code
KOMPTHERA_COD 9 Compressor thermal cut-out alarm code
KOMPDISA_COD 10 Compressor discharge temperature alarm code
PUMPTHERA_COD 11 Pump thermal cut-out alarm code
FLOWA_COD 12 Automatic and/or blocking flow switch alarm code
FANSTHERA_COD 13 Fan set thermal cut-out alarm code
EVTEMPOUTWATERSENSERR_COD 14 Evaporator water outlet temperature sensor error code
EVAFA_COD 15 Evaporator anti-freeze alarm code
MAX_BBX_ELEMENTS 20 Maximum number of elements for collection from

black box
MAX_BBX_FILES_NUM 3 Maximum number of memorisable collections
BBX_STEP_0 0 Init MSF of black box
BBX_STEP_1 1 Black box header memorisation in FLASH
BBX_STEP_2 2 Black box sample memorisation in FLASH
BBX_STEP_3 3 End of writing collection of black box in FLASH
BBX_STEP_4 4 Entry of samples of collection in RAM
BBX_LOCKED_TIME t#180s Black box download timeout

Note that the constants have been divided into groups
The first group contains the constant types �MAX_XXX�, in other words the constants that "limit" the physical dimensions
of the plant and take on values according to which the arrays have been dimensioned.
The other groups contain the definition of Boolean logic variables referable therefore only to �true� and �false� values6 or
the numbering of internal states of the machine.
The use of Defined Words makes the application mode legible and less ambiguous. For example, the fact that for a
solenoid valve open, the status of the output line that controls it must be 1/on/active, i.e. �true� could be disputed and
may be a source of incomprehension, while the use of a construct similar to the one below clarifies and specifies the
required behaviour of the algorithm.

 IF (PD_FUNCTION <> PD_NONE) THEN

 IF ((PdStatus[i] = PDA1) OR (PdStatus[i] = FINISH_PDA)) THEN
 CirSolenoidValve[i] := solenoid_open;
 ELSE
 CirSolenoidValve[i] := solenoid_close;
 END_IF;

 IF boo(CirLPrA[i]) THEN
 CirSolenoidValve[i] := solenoid_open;
 END_IF;

 ELSE

 CirSolenoidValve[i] := solenoid_open;

 END_IF;

6 These aliases are currently indicated in the document using lower case letters, but as they are constants, they may follow
the nomenclature envisaged for constants (all upper case)

 ADD Chiller/Heat Pump Applications
Energy XT PRO

37/64

5 DESCRIPTION OF THE BASELINE REVERSIBLE HEAT PUMP APPLICATION
For each of the program units outlined in the previous chapter
details are provided of the main data structures and the control algorithm section.

5.1 IniVar
In this first section of the initial block all data structures describing the machine structure are initialised as described in
chapter 3, as well as management of all functions that are normally present in each AppMaker project as inputs in
configuration mode. Initialisation also �expands� any other �compressed� parameters set by the configurator/MMI , in the
relative vectors used by the PLC applications. In this case we are talking of single parameters settable by the
configurator/MMI valid for all elements to which they refer (a single threshold for all circuit alarms, a single flag to enable
a specific type of sensor for all compressors etc.). When the configurator/MMI initially enables the entry of a single
parameter, valid for all system elements (compressor, circuit, evaporator) although the PLC applications still need to be
developed to enable inhomogeneous management (element by element) of this parameter, this program unit will provide
for relative expansion with the code type:

for cir_idx := 0 to (MAX_KOMP � 1) do
 CirHPresADelta[cir_idx] := A_MAX_DELTA_PRES;
 end_for;

Once the configurator/MMI is updated, this expansion will no longer be necessary and may be removed. In this way the
user can decide whether and which parameters will be differentiated for the various elements of the same type and if a
single parameter will be implemented. The choice will be made on the basis of functional requirements (for example to
have compressors with different numbers of capacity steps) within the limits set by the platform both in terms of memory
dimensions and execution time.

It is important to note that since the reversible heat pump structure is asymmetrical and potentially unbalanced,
the data vectors describing the machine structure must enable the �reconstruction�, and therefore traceability of
the entire hierarchical tree both in top-down mode (from the root to leaves) and down-top mode, i.e. from the
leaves to the roots. This explains the presence of data structures that describe which are the �children� of each
element , and structures that indicate the �father� (or fathers) of each node.

5.1.1 CheckCon
For this program unit no special support structures are envisaged, apart from the variable/parameter that enables one-shot
execution and the result of consistency checks which inhibit any PLC operation.

In the BASELINE APPLICATION this function is �dummy� type, i.e. always returns a �true� value (CheckCon := true;). In fact
it has been decided to leave the option to the application developer whether to personalise this function, depending on
which are the �sensitive� points of its application.

It is extremely important to note that the order of execution of the single Program Units that are �daughters� of
another Program Unit does NOT follow the order with which these are entered in the AppMaker project, but the
order in which they are invoked within the father Program Unit.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

38/64

In the example shown in the figure, the two orders coincide, but should IV_Plan() and IV_Ev() change places in the ST
program contained in InitVar, the effect would be that the Evaporator variables would first be initialised, followed by
initialisation of the Plant variables.

5.1.2 IV_Plan
The �InitVar� of �Plant� has the main function of copying the I/O support variables onto the relative single dimension array
structures, to then be involved in the architecture computation. This means first �filling� the vector KOMP_CIR_EV[] which
as seen in chapter 3 represents the �family� relations between circuit compressors and evaporators. As this is a high level
configuration, this will also acquire the vector that describes the relation between fan coils and circuits, in other words
CIR_FANS[].All Plant alarms and timers are then reset.

5.1.3 IV_Ev
The initialisation of the Evaporator variables has the task of filling the structures of EvPresence[] and of EvCir[], i.e. the
structures that define the presence (or not) of the evaporator (enable) and therefore the family relations with the circuits.
It is these data structures that enable the specification of which circuit hierarchically belongs to which evaporator. All
Evaporator alarms and timers are then reset.

5.1.4 IV_Cir
This describes all compressors present (enabled) to calculate the hierarchical links between circuits and upper structures
(evaporators) and lower structures (compressors) . As already seen in chapter 3 the vectors CirPresence[], CirEv[] ,
CirKomp[] represent these links.
Also in this case all circuit alarms and timers are reset.

5.1.5 IV_Komp
As the architecture supports different types of compressor, the structure KOMP_STEP[MAX_KOMP] will need to be filled,
which describes the characteristics (in terms of capacity steps) of each compressor. Subsequently the filling of the
structure KompCir[] will describe the hierarchical relation between each compressor and its relative dependent circuit. All
compressor alarms and timers are then reset.

5.1.6 IV_Fans
In this program unit the structure FANS_NO[MAX_FANGROUPS] is initialised, which as seen above describes the link
between fans and circuits. All additional data structures to the fans are also initialised, i.e. FANS_CSTART_SET_PRES[] and
FANS_CSTOP_DELTA_PRES[]. FansCir[] is calculated and then all fan set alarms and timers are reset.

5.1.7 IV_Pump
The two pumps do not require special initialisations, apart from the re-alignment of the use timers (in PumpHours[]) and
reset of the relative alarm variables.

5.1.8 IV_Def
The two pumps do not require special initialisations, apart from the re-alignment of the use timers, reset of the relative
alarm variables and the creation of the vector CirMaxPowerCir[] used for the algorithm of compensation in defrosting.

5.2 Phy2Log

5.2.1 P2L_xxx
The task of this group of program units is to copy all physical dimensions of the system onto the same number of �logical�
variables. As defined in the chapter on nomenclature of variables and parameters, all variables referring to a physical
dimension have names terminating with the suffix _PHY. In the same way �HOT� type parameters are named with the
suffix �HOT�.

Therefore there are the following program units, one per structural element of the reversible heat pump:

 ADD Chiller/Heat Pump Applications
Energy XT PRO

39/64

• Phy2Log (Main Program unit)
• P2L_Plan (Conversion from physical IN to logical IN on system level)
• P2L_Ev (Conversion from physical IN to logical IN on evaporator level)
• P2L_Cir (Conversion from physical IN to logical IN on circuit level)
• P2L_Komp (Conversion from physical IN to logical IN on compressor level)
• P2L_Fans (Conversion from physical IN to logical IN on fan unit level)
• P2L_Pump (Conversion from physical IN to logical IN on pump unit level)

This type of operation (i.e. copying of physical variables to logical variables) is necessary as the controller terminals can
only be assigned with specific variables of I/O which CANNOT be vectors. Therefore if it becomes necessary to use I/O
variables defined on arrays; this has to be via the support variables which are then copied into the vectors used for
algorithm computation.

In order to maintain the code �clean� and �rational� , physical to logical conversions are performed on all subsystems of
the reversible heat pump, even in situations where this would not be necessary, as in AppMaker that which is not
�updated� is not �refreshed�.

5.3 AlHnd
For the elements of the system, plant, evaporator, circuit etc., but also for some functions (free cooling, recovery, anti
freeze etc) there is a nominal behaviour, and also one or more anomalous conditions (alarms) which influence the
behaviour to be implemented by the logics.

Given this fact, this program unit therefore has the task of verifying the alarm conditions of any type, and of generating
possible block conditions which have a direct consequence on the control calculation and therefore on the outputs.

As already explained, the process proceeds according to the order with which the various functions are invoked by the
�father� Program Unit. In this case the first to be computed is the management of fan alarms (AHFans()).

It is extremely important to note that the alarm of a component can have a domino effect on the alarm status of
other components. Due to this fact, it is fundamental to identify an alarm �hierarchy�, and to evaluate the
machine alarm status in a �cumulative� manner, from the least important element to the most important one in
the hierarchy of the alarms itself.

The section below shows the order in which the various Alarm Handling program units are considered, according to this
principle: the alarm status of the function AH_componente considered will depend on the alarm status of the component
itself and the alarm status of all that examined up to that time.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

40/64

5.3.1 AHFans
After evaluating the presence of a thermal cut-out alarm of the fan set, it is sufficient to analyse the status of each single
fan, after which an �or� logic is implemented on all possible alarms.
Note that AHFans is executed first as the possible alarm status of the fan group depends exclusively on the fans
themselves, and therefore the computation of the alarms does not need a check of whether other parts of the system are
in alarm status or not.

5.3.1.1 AHFansTh
In this program unit a check is made for the presence of a fan coil thermal cut-out alarm on the coils present..

5.3.2 AHKomp
A check on the alarm status of the compressors depends on the status of the compressors themselves and possible fan
alarm status.

As can be seen in the part selected within the red frame, the alarm status of each compressor is the sum of all potential
alarm conditions as well as the alarm status of the fans, which therefore must have already been computed and thus be
available.

5.3.2.2 AHKompEr
In this program unit a check is made for the presence of any discharge temperature probe errors. Note the presence of
the function AAHHandl(), i.e. the function of managing the alarm �discharge temperature probe error� with automatic
reset.

5.3.2.3 AHKompTh
In this program unit a check is made for the presence of a compressor thermal cut-out alarm only on the compressors
present.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

41/64

5.3.2.4 AHKompDis
In this program unit a check is made for the presence of any compressor discharge temperature errors.

Note in the calculation of the i-th compressor discharge alarm, the presence of the function MAHHandl() is used for
management of alarms with manual reset.

5.3.3 AHCir
Circuit alarm management is in hierarchical order immediately after that of compressor management. Its logic is the same
as that of the compressors.

5.3.3.5 AHCirEr
The aim of this program unit is to calculate any probe errors of the i-th compressor. The logic is the same as that of the
compressors, but note also the presence of the function AAHHandl(), i.e. the function for managing �probe maximum
pressure error� alarms with automatic reset.

5.3.3.6 AHCirHPr and AHCirLPr
The aim of these two functions is to compute the presence of high pressure (AHCirHPr) or low pressure (AHCirLPr) alarms.
Computation is particularly complex with respect to previous procedure, and the need to use �bounded� alarms,
preventing the use of vectors, forces the use of artifices in code writing, replicating the same code for the maximum
number of circuits. Note that if the user wishes to extend the DOMAIN of the BASELINE APPLICATION, increasing the
number of possible circuits, this Program Unit will also have to be extended, modifying it accordingly to enable work on an
extended domain. An immediate example is that which, given that the circuit index variable (cir_idx) can take on values
greater than 8 (assuming an increase in the maximum number of circuits) the number of �cases� considered will have to
be increased, adding code similar to that shown below:

 ADD Chiller/Heat Pump Applications
Energy XT PRO

42/64

5.3.3.7 AHCirPD
The aim of this function is to calculate the pumpdown alarm timeout.

5.3.4 AHEv
Management of the logic alarms of the evaporator do not have other features with respect to the ones described until
now, and in fact involves managing potential errors due to the breakage of one or more probes (computed in AHEvEr),
and the evaporator anti-freeze alarm (computed in AHEvAf).

5.3.4.8 AHEvEr
The function manages the probe error in the evaporator module.
Note the presence of the function AAHHandl(), i.e. the function of managing the �water outlet temperature probe error�
alarm with automatic reset.

5.3.4.9 AHEvAf
In this Program Unit the evaporator anti-freeze alarm is managed.

5.3.5 AHPumpG
Management of the logic alarms of the pumps/�pump unit� integrating pump swap with the option of a flowswitch alarm.

5.3.5.10 AHPumpTh
The aim of this program unit is to evaluate the possible presence of a pump thermal cut-out.

5.3.6 AHDef
Management of the defrosting system alarms (defroster) must enable the combination of alarms related to all elements
involved in defrosting. Therefore all compressor alarms must be checked, subordinate to each fan coil, and the latter for
each circuit.

5.3.7 AHPlan
Management of the plant alarms must enable the combination of the plant alarms and the lower level alarms suitably
combined to reach the �brain � of the machine for use in the subsequent control phases.

5.3.7.11 AHPlanEr
The local plant errors are usually those tied to the breakage of probes, and in particular to the probes for regulation of
water inlet, water outlet and that for set point management.

5.3.7.12 AHPlantHT
In this case the aim of the Program Unit is to evaluate computation of the plant high temperature alarm.

5.3.7.13 AHPlantLT
In this case the aim of the Program Unit is to evaluate computation of the plant low temperature alarm.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

43/64

5.4 AvaCalc
After executing the alarm section management, a fundamental point in the thermoregulation process is to compute the of
refrigeration resources (machine) �available�.

In conceptual terms the calculation of availability is a process that starts from the less important machine elements which
each inform their own �father element� of which and how many resources (cooling and physical) they are able to supply in
the event of need.
Therefore each compressor should inform the circuit to which it belongs of how many capacity �steps � it is able to supply
on request. In turn the circuit, after collecting data on all the availability of all compressors belonging to it, must inform
the evaporator to which it is subordinate on how many resources it can supply on request. It is evident that this power will
be the sum of the resources of each compressor which belongs to it. In the same way the power that each evaporator can
supply as data available to the �plant� will be the sum of the powers available from each circuit that belongs to it.

It must be noted that the calculation of the resources available is not limited to a simple mathematical sum of the
availability of the compressors, but must take into account any situations/states in which the system may find itself, which,
although the compressors may be �available� to provide cooling power, one or more upper hierarchical components may
not be able to do so.

5.4.1 Status variables
The data structures on which this program unit acts are mainly used to maintain data of static and dynamic availability, the
level requested effectively by the evaporator, circuit and compressor. For a more detailed description, refer to the
paragraph on the compressor logic.

KompMinLevDin[8] Minimum compressor dynamic availability
KompMaxLevDin[8] Maximum compressor dynamic availability

CirMinLevDin[8] Minimum circuit dynamic availability
CirMaxLevDin[8] Maximum circuit dynamic availability

EvMinLevDin[4] Minimum evaporator dynamic availability
EvMaxLevDin[4] Maximum evaporator dynamic availability

PlanMinLevDin Minimum plant dynamic availability
PlanMaxLevDin Maximum plant dynamic availability

FansActivable[8] Fan unit availability

PumpGMinLevDin Minimum pump unit dynamic availability
PumpGMaxLevDin Maximum pump unit dynamic availability

PlanPumpGMinLevDin Min. dyn. pump unit availability on plant level
PlanPumpGMaxLevDin Max. dyn. pump unit availability on plant level

DefMinLevDin[8] Minimum fan coil (defroster) dynamic availability
DefMaxLevDin[8] Maximum fan coil (defroster) dynamic availability

All vectors are allocated for the maximum number of elements of each type. This, where not rendered problematic by
memory limitations, enables the development of a code in unvaried mode with respect to the number of evaporators,
circuits and compressors.
In this case, on variation of the number of elements, the code would need to be modified. In the case of code developed
in the language ST the modification is limited to changing the numerical value of a parameter, while in the case of
encoding with a graphic language (FBD / QLD) blocks need to be added or removed from the relative program units.

5.4.2 AC_Plan
The aim of this program unit is to compute the availability of cooling resources for the entire plant, acquiring the
availability of each and all system elements.

5.4.3 AC_Ev
To calculate the availability of the evaporator, after obtaining the availability of all circuits, it is sufficient to check for the
presence of any alarms. The effective calculation is made by the function PolicyCD() located in the functions area of the
AppMaker project.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

44/64

5.4.4 AC_Cir
Also for the circuits, the availability is calculated only after computing the effective availability of the compressors, and
therefore after checking for possible block or alarm conditions.

5.4.5 AC_Komp
The calculation of the compressor availability involves more complex algorithms that take into account both the time that
a compressor remains in operation and the number of times it has been started up and shut down. It is obvious that
starting from the BASELINE APPLICATION the resource calculation management algorithms can be personalised, and in
particular in the choice of compressor availability calculation. For example, if wishing to use compressors of different
capacities, it will be in this part of the program that modifications are to be implemented, to inform the plant (via circuits
and evaporators) of the effective total of resources available.

5.4.6 AC_Def
The calculation of the defrosting availability (of the defrosters) follows the logic of the devices not tied to other plant
elements and which therefore can be positioned hierarchically immediately below the plant.

5.4.7 AC_Fans
Although the fans are an element of the Plant, from a point of view of availability they are completely independent from
other plant elements. This explains why the program unit AC_Fans, though hierarchically dependent on AC_Plant is not
correlated with other program units.

5.4.8 AC_PumpG
The calculation of the pump unit availability is the expression of the sum of availability of the individual pumps.

5.4.8.1 AC_Pump
The availability of the individual pumps is checked by examining for the presence (or not) of pump alarms and thus setting
"no availability" accordingly.

5.5 DefReg
This program unit has the task of managing variations in power of the compressors of each fan coil during defrosting.

5.5.1 Status variables
DefReqLev[i] Power required by i-th defroster

5.6 CompeReg
This program unit has the task of managing the defrost compensation algorithm. It requires the maximum cooling power
from the compressors in the circuits alternative to those in defrosting.
The alternative circuits are those that belong to the same evaporator block that the defrosting circuit belongs to, but
which do not have links with the fan coil involved in defrosting.

5.6.1 Status variables
CompeReqLev[i] Power required by i-th compensator

5.7 IntReg
This program unit has the task of managing the algorithm for heat integration via the resistances positioned on the
evaporator level.

5.7.1 Status variables
InthReqLev Power required by the integration regulator

5.8 ThermReg
This program unit has the task of calculating cooling power requests according to the deviation between a measured
temperature (feedback variable) and a set temperature (set point). The measured temperature may be that of the water
on inlet to the evaporator or on outlet from the latter.
In the case of plants with multiple evaporators, the temperature on outlet can be obtained as an average of the
temperatures on outlet from the various evaporators or from a single common sensor.

5.8.1 ThermReg
In this program unit, after checking for the possible presence of a dynamic set point (see next program unit), the value of
the thermoregulation variable is calculated via an algorithm PI (or possibly P only) .

5.8.1.1 DynSet
This function modifies the set point of the operator on the basis of an analogue input signal.
The function calculates a delta which must be added to the regulation set-point, and as such must be performed by the
thermoregulator, where the effective set point is modified, on the basis of which it is then decided to start up or shut
down evaporators/circuits/compressors.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

45/64

The function has a linear trend, with the selection of the type of dynamic set point to apply according to the type of
sensor that influences the calculation, which must be made for the delta (available both in temperature and pressure).

5.8.2 Status variables
TregReqLev Power required by the thermoregulator

5.9 CtrlCalc
After making the calculation of the availability and requirement of the thermoregulator, a fundamental point in the
thermoregulation process is the computation of the control of cooling resources.

In conceptual terms the calculation of availability is a process that starts from the most important machine elements which
each inform their own �child element� of which and how many resources (cooling and physical) require implementation.
The plant must then inform all evaporators on the basis of the resource selection policy, of how much power it requires.
In turn each evaporator, after defining the resources assigned to it, must inform all circuits on the basis of the resource
selection policy, of how much power it requires.
In the same way, each circuit, after defining the resources assigned to it, must inform all compressors on the basis of the
resource selection policy, of how much power it requires.

5.9.1 Status variables
The data structures on which this program unit acts are mainly used to maintain data of power requirements and power
effectively implemented respectively by the evaporator, circuit and compressor.

PlanReqLev Power required by plant
PlanOutLev Power implemented by plant

EvReqLev[4] Power required by each evaporator
EvOutLev[4] Power implemented by each evaporator

CirReqLev[8] Power required by each circuit
CirOutLev[8] Power implemented by each circuit

KompReqLev[8] Power required by each compressor
KompOutLev[8] Power implemented by each compressor

DefReqLev[8] Power required by each defroster
DefOutLev[8] Power implemented by each defroster

PumpGReqLev Power required by pump unit
PumpOutLev[2] Power implemented by each pump

All vectors are allocated for the maximum number of elements of each type. This, where not rendered problematic by
memory limitations, enables the development of a code in unvaried mode with respect to the number of evaporators,
circuits and compressors.
In this case, on variation of the number of elements, the code would need to be modified. In the case of code developed
in the language ST the modification is limited to changing the numerical value of a parameter, while in the case of
encoding with a graphic language (FBD / QLD) blocks need to be added or removed from the relative program units.

5.9.2 CC_Plan
The aim of this program unit is to compute the power required by the plant on the basis of thermoregulator requirements
and plant availability.
This data is then used to implement the policy for assignment of resources to the evaporators.
The effective calculation is made by the function PolicyCC() located in the functions area of the AppMaker project. The
power effectively implemented PlanOutLev coincides with PlanReqLev.
It also transfers the plant alarm to its subsystems.

5.9.3 CC_Ev
The aim of this program unit is to implement the resource assignment policy on the circuits that belong to each
evaporator. The power effectively implemented EvOutLev coincides with EvReqLev.
It also transfers the alarm of each evaporator to its subsystems.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

46/64

5.9.3.1 CC_Def
The aim of this program unit is to implement the resource assignment policy on the compressors that belong to each
circuit also in relation to the management of all defrosting phases.

5.9.3.2 CC_Cir
The aim of this program unit is to implement the resource assignment policy on the compressors that belong to each
circuit also in relation to the activation status of the pumpdown function. The power effectively implemented CirOutLev
coincides with CirReqLev.
It also transfers the alarm of each circuit to its subsystems.

5.9.4 CC_Pump
The aim of this program unit is to manage evolution of the machine in stages of the pump unit and implement the pump
selected accordingly.

5.9.5 Komp: control
Compressor control can be generally comparable to a state machine. The program for management of the single
compressor acts on a set of local variables and a set of global variables by means of which it interacts with the other parts
of the control.

The objective laid down is to have a single code able to be cloned for the management of multiple compressors. For this
purpose, the global variables are allocated on vectors with the same dimensions as the number NC of compressors present
on the plant. The different copies of the compressor management program operate on a series of global variables with the
index n with n variable from 0 to NC-1; this therefore results in a local variable of the compressor management program
which identifies the series of global variables on which the n-th copy of the program will operate.

The automata of the single compressors are �independent� entities. The aim of the Komp program unit will be to invoke
all the automata of the NC compressors.

Note that the order with which the calls to automata KompX(S) are entered in the program unit Komp has NO relevance,
in fact all automata are independent and are executed SIMULTANEOUSLY. Therefore a situation of this type:

would be IDENTICAL to the previous one.

The SFC implementation of the compressor state machine is dealt with in detail below:

 ADD Chiller/Heat Pump Applications
Energy XT PRO

47/64

5.9.5.3 Initial state
In this state, all variables of the single compressor are initialised; in particular the index of the data set of global variables
and the global variables are initialised. The base program initialises all local variables at the default value.

Analysing the structure of the block Komp1 it can be noted that its �KompId� (dataset) is initialised at �1�.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

48/64

5.9.5.4 OFF Status
In this state the work variables are initialised in relation to the state and power delivered of the single compressor; given
that to be able to define these variables in indexed mode, the index of the compressor must already be defined, for
cleaning of the code writing, the index is defined in the previous block. Also in this way all OFF blocks are identical in all
various compressors.

5.9.5.5 GT2 transition
The transition from OFF to the subsequent status of ON_NR (ON NOT Ready) occurs in the event of a power request from
the compressor.

5.9.5.6 ON Not Ready
In this phase all timers related to compressor management are initialised and any capacity steps are managed if relevant.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

49/64

If these times are configured (with management enabled) the compressor, activated at partial power for a time equal to
the maximum time at reduced power, is brought to maximum power in observance of the minimum step up times, outside
the control of the thermoregulator.
Once the maximum power is reached, the status is maintained, remaining outside thermoregulator control, for an interval
equal to the minimum time at maximum power.
When this interval elapses, the compressor returns under control of the thermoregulator.
Special care must be taken regarding the possibility of assigning, and therefore managing, the value 0 for certain time
intervals.
In principle the problem should not be envisaged due to the fact that a compressor can be restarted immediately after
being shut down (min toff = 0) even when time 0 is treated as the cycle time of the PLC. If this simplification should lead
to undesired reactions, then double transitions will have to be envisaged for t <> 0 and t = 0.

5.9.5.7 GS3 step
In this point the active compressor timer is reset and restarted and a check is then made whether an intermediate step
situation needs to be managed or not.

Once this point is overcome, two potential transitions have to be managed:

5.9.5.8 GT3 transition
When the compressor protection time elapses and no alarm situations are active, the system is ready to change to the ON
status.

5.9.5.9 GT6 transition
This transition serves to manage any alarm situations of the specific compressor. If an alarm situation of the compressor
KompId occurs (that managed by the specific automata) the system skips immediately to OFF_NR.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

50/64

5.9.5.10 ON status
The ON status corresponds to the state in which the compressor operates normally. A check is therefore made to ensure
that the power delivered corresponds to that requested, and if this is not so, after updating all timers the power delivered
is updated.

5.9.5.11 GT4 transition
This transition is performed when the request for regulation is equal to zero, in other words the request is made to shut
down the compressor.

5.9.5.12 OFF Not Ready
The compressor is shut down bringing its power to zero and setting its status to �off not ready�. In fact it will be necessary
to observe all protection time intervals before restart is enabled.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

51/64

5.10 Fans (Single condensation)
This program unit is used for the management of condensation and fan control.

Management of single condensation can be considered a high level functions that acts on the computation of the
behaviour of the fans.

5.11 Liquid injection
This function enables the regulation of cooling on the compressor discharge temperature:

To all effects it is a function that can be called during regulation and as such can be considered an independent program
unit.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

52/64

5.12 Log2Phy
This program unit has the task of converting the logical variables calculated by the control into physical output variables.
Once again the hypothesis has been made to divide these program units into sub-program units, each related to a specific
area of control machines or type of component. This choice responds to a need for modularity and legibility of the
program units rather than a functional requirement.
An important point is the level of abstraction and generalisation that is to be encapsulated in the program units, which
needs to achieve a balance between the need to have program units and Function Blocks for general use (and therefore
more complex) and at the same time simplicity and efficiency in terms of execution.
For example, consider the compressor implementation program unit: this could be sized for the maximum number of
compressors manageable by the maximum application or resized according to the effective number (in the case of the
BASELINE APPLICATION). The general program unit could have the implementation parts of the 4 compressors not present
disabled by the relative presence flags of the compressors, but this nevertheless implicates an increased dimension of the
application and longer execution times. On the other hand the re-sized program unit to 4 compressors should be modified
to manage a different number of compressors.

The second point regards the library Function Blocks which consolidate the outputs. Also in this case we could decide to
have the �maximum� FB able to manage all types of compressor (on/off, capacity step implementation at 1, 2, 3, step,
analogue) or different FB each specialised for a different type of compressor. In the same way it is possible to manage the
problems of start-up (simple, star/delta, part-winding) in an FB for general use or specialise the FBs with respect to the
different management modes). The general FB has the advantage of not requiring modification of the application to
manage different compressors and/or compressors with different start-up modes. However it is more complex and less
efficient in terms of execution. The solution with specialised blocks inverts the pros and cons, meaning that the FBs are
simpler and more efficient but require modifications to the applications if the user wants to change type of compressor.

In the case of the BASELINE APPLICATION it has been decided to opt for the solution implementing �maximum� FBs able
to manage multiple types of physical device (compressors, fans etc) leaving the possible alternative solutions as hypotheses
for development.

5.12.1 L2P_Plan
In the implementation of the BASELINE APPLICATION of a reversible heat pump, the only physical output related
exclusively to the plant is the general plant alarm, which activates a control relay of a luminous or acoustic indicator. From
this viewpoint, the physical output will coincide with the logical OR of the plant alarms

 ADD Chiller/Heat Pump Applications
Energy XT PRO

53/64

 ADD Chiller/Heat Pump Applications
Energy XT PRO

54/64

5.12.2 L2P_Ev
The only two evaporator variables which must be converted on a physical level are the two anti-freeze resistances, which
in the AppMaker program are two elements of a vector. Therefore it will be necessary to assign each element of the vector
(which note can only be internal variables) to two static I/O variables:

5.12.3 L2P_Cir
The circuit also has physical elements that belong to it and these are the solenoid valves. Also as these are managed as
internal vector elements they must be assigned to static I/O variables to enable connection to the I/O rack that determines
physical allocation of the inputs and outputs.

5.12.4 L2P_Komp
Management of the compressors has been developed using the language FBD. This code will have to be replicated the
same number of times as the maximum number of compressors physically present on the plant.
As can be seen in the image describing the logical/physical conversion of a compressor, the function KompDrv is used,
which as seen in the next chapter represents the compressor device driver. As already mentioned at the start of this

 ADD Chiller/Heat Pump Applications
Energy XT PRO

55/64

document, the fact of having a programmable device enables the availability of inhomogeneous components such as
compressors within the same plant. This means that the same plant can host compressors not only of different outputs but
with different start-up/control modes.
When the �physicity� of compressor start-up remains unchanged (in other words n relays are always required for start-up),
but the sequence in which to act on the relays changes, intervention is required on the functions of the device driver as
described later on in this document. On the other hand, if the use of a new compressor requires a different number of I/O
for control, a new device driver will need to be implemented in the functions area, as well as modification of the program
unit L2P_KOMP, as a different number of I/O will be used.

5.12.5 L2P_Fans
In the same way as described for the compressors, the management of conversion from logical to physical for the fans is
implemented by means of a program unit in FBD. Also in this case inhomogeneous fans can be used, and different types of
device driver may be present. Following this the same considerations as made for the compressors apply also in this case.
The image shown here highlights the fact that the DB code must be replicated the same number of times as the maximum
number of fan units present on the plant.

5.12.6 L2P_Pump
In implementation of the BASELINE APPLICATION, two pumps have been installed, the control signal of which is in the
vectors PumpOutLev[]. This therefore means that the values of this vector should be copied into two static I/O variables.

5.13 BbxDrv
This program unit has the task of managing an example of a �black box�. The �black box�, when enabled, is used in the
event of an alarm or critical event to memorise all data related to the plant, useful for understanding the reasons leading
to the malfunction or critical event. In the case of XT-PRO the black box memorises the data in the mass memory
managed by means of the file system commands. As the quantity of memory is not unlimited, in the event of modifications
to the black box or personalisation of operation, great care must be taken with regard to the physical limits of the
memory.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

56/64

5.14 KbdDrv
This program unit has the task of producing the information that the XTK Pro keyboard must display regarding the
Baseline Application. In fact, although management of browsing is programmed and managed with the program
MenuMaker PRO, management of the red led (commonly used to indicate an alarm), and the production of data for
display is performed in this part of the code.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

57/64

6 SPECIFICATION OF THE FUNCTION BLOCKS OF THE REVERSIBLE HEAT PUMP
The last part of the project A0005300 deals with the library of the function blocks of the project. Among these are those
commonly used as Bypass Handlers (general or not) and the Bounded Alarm Handler. It is evident that when a new driver
of any type is to be implemented (for compressors or fans) this must be inserted in this part of the project.
1.1 Function GBYPHdl
This is a function developed to implement a General Bypass able to manage the transactions off <---> bypass_offon --->
on <---> bypass_onoff ---> off regulated by means of a timer. This function is widely used in alarm management. In
particular the use of a general bypass (parameterised on a time interval T) means that the alarm becomes active after it
has been present without interruptions for at least time T. (Transaction off->on). For the alarm to disappear, the condition
that generated the alarm must no longer have been present for at least time �T��.
1.2 Function BYPHdl
This Bypass Function differs from the general bypass in that the transaction on/off, unlike the off/on transaction, is
instantaneous. This type of bypass will therefore be used if the alarm should appear after the alarm condition has persisted
for at least time T (set by parameter), but as soon as the alarm condition disappears, the bypass will immediately switch to
off.

1.3 Function BAHHand
This function, as useful as the previous two in alarm management, enables an �active� output after at least the quantity Q
of alarm �events� have been present in a time-based window definable by a parameter.
The return of the output to �not active� conditions has to be by operator intervention (manual reset).

1.4 Function BENHandl
Also this Function has the additional aim of managing the alarm system. In this case the activation of the output is when at
least a certain quantity of events are present in a time-based window.

1.5 TMRHandl
This innovative Function enables management of the TIMERs, and in particular enables not only the start-up and
termination of the timers but also the suspension d and relative restart of a timer. In the baseline application the timers
are used in defrost management as this function can be suspended in particular circumstances to then be resumed at a
later time.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

58/64

7 SPECIFICATION OF THE REVERSIBLE HEAT PUMP FUNCTIONS
The Functions section of the baseline project contain the functions commonly used in the program.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

59/64

8 SPECIFICATION OF THE LIBRARY FUNCTION BLOCKS OF THE REVERSIBLE HEAT PUMP

8.1.1 KompDrv
Represents the driver for control of capacity step implementation (stage) of a SEMI-HERMETIC or SCREW compressor with
"step control" according to the specifications below:
As described in the technical notes of the program unit, the parameters on which it operates are the compressor type,
maximum number of capacity steps and the number of steps to implement.
The output corresponds to the activation status (or not) and to that of the capacity step �relays� .
The fact that in this program unit two types of compressors are implemented and the fact that among the input variables
there is one that identifies the actual type of compressor, enables the use of machines with inhomogeneous compressor
types. Computation of the cooling output in fact is not influenced by the type of compressor used (even though this
impacts calculations of resources). It therefore means that the right driver has to be invoked for each compressor
(provided that it is a compressor with capacity step implementation).

1.2 FansDrv

Driver for control of fans according to SYMMETRICAL or ASYMMETRICAL mode. The device driver of the fans follows the
same logic as that of the compressors. It is a function that receives in the form of an input the quantity of fan power to be
delivered and the mode, and then commands the suitable outputs to activate the correct number of fans.
For example, to activate the fans not according to a sequential logic but according to a special combinatorial logic, the
modifications to the code would be located at this point.

8.1.2 PI
Implements a PI type regulator in which, after supplying the set point values, of proportional band of maximum integral
time, and sampling time as inputs (together with other parameters) these are able to independently compute the
quantities Ki and Kp and to execute a PI control, producing an output (control) expressed as a whole number varying from
0 to 1000.

Note that this program unit is protected by passwords reserved for each user. This password is indispensable for the
compilation of the program unit and for display of the interface/parameters. Also remember that this program unit must
always be compiled on initial import in AppMaker to enable it to be recalled in any project.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

60/64

9 USE OF THE DEVICE

9.1 Permitted Use
For safety purposes, it is important to make sure that the control device is installed and used in accordance with the
instructions supplied and that no parts subject to dangerous voltage are accessible to users during ordinary operation.
The unit must be resistant to water and dust, depending on the application, and only be accessible using special tools. This
unit can be fitted on domestic appliances and/or similar units used for air conditioning.
The use of the unit for applications other than those described is forbidden.

9.2 Responsibility and residual riscks
Eliwell shall not be liable for any damages deriving from:
installation/use other than that prescribed which does not comply with the safety standards specified in the regulations
and/or herein;
use on equipment that does not guarantee adequate protection against electric shock, water or dust when assembled.
use on equipment that allows dangerous parts to be accessed without the use of tools;
Installation/use on equipment that is not compliant with the standards and regulations in force.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

61/64

10 DISCLAIMER
This document is exclusive property of Eliwell Controls srl. and cannot be reproduced and circulated unless expressly
authorized by Eliwell Controls srl
Although all possible measures have been taken by Eliwell Controls srl l. to guarantee the accuracy of this document, it
does not accept any responsibility arising out of its use.

 ADD Chiller/Heat Pump Applications
Energy XT PRO

62/64

11 INALITIC INDEX

1
1.3.14FansCir (Part of IV_Fans)30
1.3.15FansNo(Part of IV_Fans)32
1.3.6 Vector EvCir ...22
A
AC_Cir ..42
AC_Def ...42
AC_Ev..41
AC_Fans ...42
AC_Komp...42
AC_Plan ...41
AC_Pump...42
AC_PumpG ..42
AHCir...39
AHCirEr ...39
AHCirHPr and AHCirLPr..39
AHCirPD ...40
AHDef..40
AHEv ..40
AHEvAf ..40
AHEvEr ..40
AHFans ...38
AHFansTh...38
AHKomp ...38
AHKompDis ...39
AHKompEr ...38
AHKompTh ..38
AHPlan..40
AHPlanEr ..40
AHPlantHT ...40
AHPlantLT ..40
AHPumpG ..40
AHPumpTh ..40
AlHnd .. 37
AppMaker application implementation possibilities5
AppMaker potential and constraints4
AvaCalc .. 41
B
BbxDrv .. 53
Begin Section ..11
C
Call-outs...3
CC_Cir...44
CC_Def ...44
CC_Ev..43
CC_Plan ...43
CC_Pump ...44
CheckCon ...35
Checks of consistency and cycles on objects25
CIR_FANS (Part of IV_Plant)30
CompeReg.. 42

Constants (Defined words) ...32
Control structure definition ...16
Cross references..3
CtrlCalc ...43
D
DATA DICTIONARY OF THE REVERSIBLE HEAT PUMP

APPLICATION ..15
DefReg ...42
DESCRIPTION OF THE BASELINE REVERSIBLE HEAT

PUMP APPLICATION..35
Design criteria and system optimisation..................... 6
DISCLAIMER ...59
DynSet ...42
E
End section ...13
F
Fans (Single condensation) ..49
Functions and Function Blocks13
G
GENERAL ARCHITECTURE OF THE REVERSIBLE

HEAT PUMP APPLICATION 8
GENERAL ARCHITECTURE OF THE REVERSIBLE HEAT

PUMP APPLICATION:Introduction8
General structure ..11
Global and support variables18
GS3 step ..47
GT2 transition..46
GT3 transition..47
GT4 transition..48
GT6 transition..47
H
Highlighted icons..3
I
Initial state ...45
IniVar ...35
IntReg ..42
Introduction ... 8
INTRODUCTION TO APPMAKER 4
IV_Cir ..36
IV_Def ...36
IV_Ev..36
IV_Fans ...36
IV_Komp...36
IV_Plan ...36
IV_Pump ...36
K
KbdDrv ..54
Komp: control..44
KompDrv...57
KompFans (Part of IV_Komp)24
L
L2P_Cir..52

 ADD Chiller/Heat Pump Applications
Energy XT PRO

64/64

L2P_Ev ..52
L2P_Fans ..53
L2P_Komp..52
L2P_Plan ..50
L2P_Pump..53
Libraries and function blocks ...4
Limit of development philosophy of the Applications

..4
Liquid injection ... 49
Log2Phy .. 50
M
Main principles of architecture................................... 10
N
Nomenclature ... 15
O
OFF Not Ready..48
OFF Status..46
ON Not Ready...46
ON status ...48
P
P2L_xxx ..36
Parameter FANS_NO (Part of IV_Fans)29
Parameter PUMP_NO...32
Permitted Use.. 58
Phy2Log .. 36
PI 57
Possibilities of application parameterisation4
Procedure for modifying the baseline procedure....14

R
Responsibility and residual riscks58
S
Sequential section ..12
SPECIFICATION OF THE FUNCTION BLOCKS OF THE

REVERSIBLE HEAT PUMP ..55
SPECIFICATION OF THE LIBRARY FUNCTION BLOCKS

OF THE REVERSIBLE HEAT PUMP............................57
SPECIFICATION OF THE REVERSIBLE HEAT PUMP

FUNCTIONS ...56
SPECIFICATION OF THE REVERSIBLE HEAT PUMP

FUNCTIONS:..56
Status variables.. 41; 42; 43
T
ThermReg ...42
U
Use of languages IEC-61131-3 4
USE OF THE DEVICE ...58
USE OF THE MANUAL.. 3
Using the Arrays.. 6
V
Variables EvNo, CirNo, KompNo.................................24
Vector CirEv..20
Vector CirKomp...20
Vector CirPresence..19
Vector EvPresence...22
Vector KOMP_CIR_EV ...18
Vector KOMP_STEP..23
Vector KompCir...24

ADD Chiller/Heat Pump Applications Energy XT
PRO

2006/5/
Cod: 8MA10083

	USE OF THE MANUAL
	INTRODUCTION TO APPMAKER
	AppMaker potential and constraints
	Limit of development philosophy of the Applications

	Use of languages IEC-61131-3
	Libraries and function blocks
	Possibilities of application parameterisation
	AppMaker application implementation possibilities
	Using the Arrays
	Design criteria and system optimisation

	GENERAL ARCHITECTURE OF THE REVERSIBLE HEAT PUMP APPLICATIO
	Introduction
	Main principles of architecture
	General structure
	Begin Section
	Sequential section
	End section
	Functions and Function Blocks
	Procedure for modifying the baseline procedure

	DATA DICTIONARY OF THE REVERSIBLE HEAT PUMP APPLICATION
	Nomenclature
	Control structure definition
	Global and support variables
	Vector KOMP_CIR_EV
	Vector CirPresence
	Vector CirEv
	Vector CirKomp
	Vector EvPresence
	1.3.6 Vector EvCir
	Vector KOMP_STEP
	Vector KompCir
	KompFans (Part of IV_Komp)
	Variables EvNo, CirNo, KompNo
	Checks of consistency and cycles on objects
	Parameter FANS_NO (Part of IV_Fans)
	CIR_FANS (Part of IV_Plant)
	1.3.14 FansCir (Part of IV_Fans)
	1.3.15 FansNo (Part of IV_Fans)
	Parameter PUMP_NO

	Constants (Defined words)

	DESCRIPTION OF THE BASELINE REVERSIBLE HEAT PUMP APPLICATIO
	IniVar
	CheckCon
	IV_Plan
	IV_Ev
	IV_Cir
	IV_Komp
	IV_Fans
	IV_Pump
	IV_Def

	Phy2Log
	P2L_xxx

	AlHnd
	AHFans
	AHFansTh

	AHKomp
	AHKompEr
	AHKompTh
	AHKompDis

	AHCir
	AHCirEr
	AHCirHPr and AHCirLPr
	AHCirPD

	AHEv
	AHEvEr
	AHEvAf

	AHPumpG
	AHPumpTh

	AHDef
	AHPlan
	AHPlanEr
	AHPlantHT
	AHPlantLT

	AvaCalc
	Status variables
	AC_Plan
	AC_Ev
	AC_Cir
	AC_Komp
	AC_Def
	AC_Fans
	AC_PumpG
	AC_Pump

	DefReg
	Status variables

	CompeReg
	Status variables

	IntReg
	Status variables

	ThermReg
	ThermReg
	DynSet

	Status variables

	CtrlCalc
	Status variables
	CC_Plan
	CC_Ev
	CC_Def
	CC_Cir

	CC_Pump
	Komp: control
	Initial state
	OFF Status
	GT2 transition
	ON Not Ready
	GS3 step
	GT3 transition
	GT6 transition
	ON status
	GT4 transition
	OFF Not Ready

	Fans (Single condensation)
	Liquid injection
	Log2Phy
	L2P_Plan
	L2P_Ev
	L2P_Cir
	L2P_Komp
	L2P_Fans
	L2P_Pump

	BbxDrv
	KbdDrv

	SPECIFICATION OF THE FUNCTION BLOCKS OF THE REVERSIBLE HEAT
	SPECIFICATION OF THE REVERSIBLE HEAT PUMP FUNCTIONS
	SPECIFICATION OF THE LIBRARY FUNCTION BLOCKS OF THE REVERSIB
	KompDrv
	PI

	USE OF THE DEVICE
	Permitted Use
	Responsibility and residual riscks

	DISCLAIMER
	INALITIC INDEX
	1
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

