

Televis Drivers for Third Party Devices
Guide to the Creation of Drivers

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 2 of 30

CONTENTS

1 Introduction..3
2 General notes..3
3 Driver Televis Wizard..4

3.1 Instructions for the compilation of the Excel sheet containing the MODBUS controllers
features. ..4
3.2 Instructions for the use of Tool MakeDriverWizard..8

4 Advanced programming...9
4.1 General ...9
4.2 Communication driver ...10
4.3 Management of MODBUS/RTU device parameters ...13
4.4 Script language...14
4.5 Structure of the MODBUS drivers for DTM...15
4.6 Definition of the parameters of MODBUS devices ...26
4.7 Example of MODBUS driver ..27
4.8 Appendix..28

5 Observations and limitations..29
6 Notes on the use of the driver with TelevisNet..29

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 3 of 30

1 Introduction
This technical note details the procedures for the creation of a communication driver
for third party devices that use the MODBUS/RTU serial protocol on Televis
networks.

To be able to use the created driver, you will need a system with the following
characteristics:

• Eliwell software application compatible with third party devices or application
that uses the SoftGate driver

• RS232/RS485 PC Interface converter
• A license for the applications specified above, enabled for the use of third

party protocols
• One or more SmartAdapter devices connected to one or more MODBUS

devices

For information on wiring specifications and on the limits of SmartAdapter devices,
see the applicable technical sheet.

2 General notes
The driver for third party controllers is a single file, i.e. a module developed with VB
Script, which contains all the items required to monitor analog inputs, digital inputs,
statuses and alarms, and to manage the parameters of a specific MODBUS unit.

�Base� MODBUS drivers can be created using the tool that enables to use a pre-
compiled Excel file to automatically build a driver with the basic features required for
a correct operation.

The resulting driver can then be enhanced by any programmer familiar with Visual
Basic Script through the integration of the advanced Softgate features for the
Televis protocol (for example global commands and advanced detection of the unit
resources).
For information on the advanced programming features for the drivers, see the
chapter Advanced Programming.

 The name of the driver file has a specific format:
 EXTPRT_XXXX_YYYY.edr

 EXTPRT: External Protocol (that differs from the Telvis code)

XXXX: First identification code of the unit:
This code must always be set to 7FFC (dec. 32764)

YYYY: Second identification code of the unit:
 Progressive code or code selected by the driver�s author, which has

no effect on the driver itself. This must be an hex number <= 7FFF
(32767 decimal). If the unit is an Eliwell unit, it is advisable to use the

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 4 of 30

following format for this code: low byte for the firmware mask, high and
progressive byte to identify the model that corresponds to the mask
(for example 01D6 stands for: mask D6 (214 decimal), model 1.

 .edr: Driver extension: eliwell driver

 This file is saved in the user-specified folder that contains all the *edr drivers that
the user intends using.
The path of this folder must be inserted in the DtmCgf.ini configuration file, under
<Windows>\System32, in the following location:

EXTERNAL DRIVER

[EXTPRT]
PATH="C:\Eliwell\EwScript" (sample path !!!)

For additional information, see also the Add_DtmCfg.ini file.

3 Driver Televis Wizard
This charter explains how to create a driver using a simplified procedure.
Excel is required both to compile the information sheet and to run the compilation with the
MakeDriverWizard.exe software tool.

3.1 Instructions for the compilation of the Excel sheet containing the
MODBUS controllers features.

 The installation CD and the MODBUS support documentation contain the Excel file
called ModbusTlvTemplate.xls.
This file must be renamed by the user with a more significant name. It is generally
advisable to use a name that refers to the unit for which the driver is being created.
This sheet already contains a compilation sample, which will have to be edited by
the user accordingly.

 The Excel sheet has 4 sections that need to be correctly completed:

 1. General section
 2. Identify section
 3. Resources section
 4. Parameters section

3.1.1 General section

 The required values are the following:

• User Name: Name of the driver author
 (Used for descriptive purposes only)

• Date: Date of creation of the driver

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 5 of 30

 (Used for descriptive purposes only)
• Driver file name: Important; see format in paragraph

General notes of this document
• RS485: Two values are required for RS485

communications between the SmartAdapter
and the MODBUS unit.

• Baud rate: (one of the following numbers)
o 1200
o 2400
o 4800
o 9600
o 19200

• Parity: (one of the following letters)
o N = None
o E = Even
o = Odd

• Address for scan Two values to limit the scan range

for the unit (max. from 0 to 255).

3.1.2 Identify section

 The required data is the following:

- Number of Commands: Number of commands required to identify
the unit.

Complete, for each command, one line of the table
as follows:

o Command: Byte array of the MODBUS frame
in hex format, separated by �;�
Example: &H2B;&HE;&H4;&H2

o Condition number: Number of conditions that must be
true for the unit to be identified

o #° Condition: Condition expressed by a formula
similar to the following: BYTE(12)=&H44
Where BYTE() is the byte array of the reply
frame, starting from the address byte that
coincides with BYTE(0).

3.1.3 Resources section

Monitored resources are of four types:

• Analog Input

For this type of resource, it is necessary to specify:

- Number of analog inputs

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 6 of 30

- Number of commands required to read the analog inputs
- Enter the unit of measurement code for each analog

input
(see Table 2 of Appendix)

- Enter the Dec.Pos. code for each analog input
(see Table 1 of Appendix)

• Digital Input

- Number of digital inputs
- Number of commands required to read the digital inputs

• Statuses
- Number of statuses
- Number of commands required to read the statuses
- Enter the appropriate status code for each status

For information on the status codes, see document
�TelevisResourceCoding�.

• Alarms

- Number of alarms
- Number of commands required to read the alarms
- Enter the appropriate alarm code for each alarm

For information on the alarm codes, see document
�TelevisResourceCoding�.

It is then necessary to complete the table with the commands required to
read the resources and decode the read values.
It is necessary to complete a line for each command.

Example: if a single command is sufficient to read analog inputs,
digital inputs and statuses, but two commands are required for alarms, it is
necessary to specify a total of 5 commands and therefore complete 5 lines of
the table.

The fields that have to be inserted below each line are:

Type: Resource type code:
! 1: Analog Input
! 2: Digital Input
! 3: Statuses
! 4: Alarms

Command: Byte array of the MODBUS frame in hex
format, separated by �;�
Example: &H3;&H20;&H75;&H0;&H4

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 7 of 30

Value #: Formula used to decode the reply frame and attain
the value related to the read resource:

- The formula for analog inputs is:
BYTE(3)*256+BYTE(4);SIGNED
where BYTE() is the array of bytes of the reply
frame, starting from the address byte that coincides
with BYTE(0), whereas the keyword SIGNED is
added when the expected value has a sign.

- The formula for other resources is:
 (BYTE(4) AND &H10) <> 0

 If this condition is true, the resource value is
= 1, otherwise = 0.

3.1.4 Parameters section

 - Enter the number of expected parameters (cell D52)
 - Complete, for each parameter, the lines (starting from 55) as follows:

 Code: Numerical ID of the parameter
 Label: Parameter label
 Unit Code: Unit of measurement code (see Table 3 of Appendix)
 Min Type: 1 = The minimum limit is absolute

2 = The minimum limit refers to another parameter
 Min Value Minimum value of parameter

Or, index of the parameter that defines it
 Max Type: 1 = The maximum limit is absolute

2 = The maximum limit refers to another parameter
 Max Value Maximum value of parameter

Or, index of the parameter that defines it
 Default Value: Default value of parameter
 Type: Parameter type code (see Table 4 of Appendix)
 Resolution Resolution code (see Table 5 of Appendix)

 Command Read Byte list (in hex format) of frames separated by �;�
 Example: &H3;&H18;&H0;&H0;&H1

Command Write Byte list of frames separated by �;� , with ,
keywords �HBYTE�, �LBYTE� if the value to write has the same
size of a word, or �BYTE� if the value corresponds to a byte.

 Example: &H10;&H18;&H0;&H0;&H1;&H2;HBYTE;LBYTE

Decode Read Read decoding formula, where BYTE() is the array of bytes of

the reply frame, starting from the address byte that coincides
with BYTE(0).

 Example: BYTE(3)*256+BYTE(4) is the formula that returns
the value read by the parameter.

Start Bit: This is used only if the parameter type is equal to 9 (bit

parameter). In this case, it identifies the first byte of the mask,
starting from the least significant bit. This value ranges from 0
to 7.
The default setting is 0.

Number of Bits: It is related to the previous parameter and is used only if the
parameter type is equal to 9 (bit parameter). In this case it
returns the number of contiguous bits (1 - 8) used to represent
the parameter.

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 8 of 30

3.2 Instructions for the use of Tool MakeDriverWizard

After completing the Excel file with the MakeDriverWizard utility, the application
generates an .edr driver file that has to be moved to the correct location by the user
as specified above.
This program must be installed by the user by means of the Setup.
The program is easy to use: it is sufficient to select the Excel file with the driver that
has to be loaded and press �Make� to convert it into an .edr file.
The .edr file is created in the installation folder of MakeDriverWizard, but can be
moved by the user to the folder that contains the MODBUS drivers (see General
notes paragraph).

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 9 of 30

4 Advanced programming
To fully understand the information provided below it is necessary to be familiar with
programming techniques and with the Visual Basic Scripting programming language.

4.1 General
This specification explains how to create the application that enables you to connect the
DAM/DTM communication system to a SmartAdapter� device, using a version compatible
with the MODBUS/RTU protocol.
A SmartAdapter is a device generally installed in a standard network of Televis compatible
devices. This device is used to support communications with devices that use the
MODBUS/RTU protocol, but not the Televis protocol. In this sense, it acts as a "bridge",
i.e. to establish a connection between two networks with different physical, electrical and
logical characteristics.
The DAM/DTM communication system is designed to manage communications with
devices that implement the Televis protocol. Communication with devices is always
indirect. The DTM system communicates with an �interface" that manages the physical
communications with the devices.
The Televis communication protocol is asymmetrical in terms of interface usage. To be
able to send a message to a device connected to the physical network, it is necessary to
encapsulate it in a message that can be sent to the interface. The device reply is returned
to the DTM in its original format.
However, to be able to connect the SmartAdapter devices to the Televis network you
necessarily have to use a double aggregation level.

• The first level encapsulates the MODBUS/RTU message in a Televis message.
• The second level encapsulates the Televis message in a message that can be

read by the interface.

For the reasons explained above, reception uses one level of reception only because the
operation of the interface is very transparent.
As the MODBUS/RTU protocol is not a native protocol of the DAM/DTM system and the
devices usually connected to this network are not traditionally used in Televis
environments, it has been necessary to develop a generic configurable driver, which
enables the communication with the devices of the MODBUS/RTU network to be
implemented by specific definition files. This allows end users of the DAM/DTM system to
flexibly interface new MODBUS/RTU devices as needed without having to upgrade the
versions of the applications they are using.
The addition of a new device to the DAM/DTM system (or of a class of devices like
MODBUS/RTU) requires analyzing the following two aspects:

• The communication driver, i.e. the set of the methods that each driver should
integrate for each device that has to be integrated in the Televis system.

• The management of parameters, i.e. the possibility of acquiring and/or editing the
operating settings of the device.

The former activity applies mainly to the DTM component that hosts all the drivers of the
devices and determines the actual integration of the new class of devices in the Televis
system.

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 10 of 30

The latter activity applies both to the DAM and the DTM components, and controls the
access to the internal parameters of the devices of the new class of MODBUS/RTU
devices using a method that is similar to the one used for native Televis devices.

4.2 Communication driver
A device can be integrated in a Televis system only if the related communication driver
implements a set of methods. Some of these methods may be "blank" (unavailable), i.e.
may not be implemented if they are not considered relevant for the basic operation of the
Televis system.
The section below lists the methods available for each driver:

• StartRvd The method must return an unavailable command condition.
• StopRvd The method must return an unavailable command condition.
• ReadDisplay The method must return an unavailable command condition.
• PressButton The method must return an unavailable command condition.
• ReleaseButton The method must return an unavailable command condition.
• KeyboardLock Local keyboard block request. If this mode is not available, the

method must return an unavailable command condition.
• KeyboardUnLock Local keyboard unlock request. If this mode is not available, the

method must return an unavailable command condition.
• Power Device start or shutdown request. If this mode is not available, the method

must return an unavailable command condition.
• Light Lights On/Off request (for devices that control the lighting of equipment or

plant areas). Device start or shutdown request. If this mode is not available, the
method must return an unavailable command condition.

• DeFrost Defrost start request. If this mode is not available, the method must return
an unavailable command condition.

• SyncClock Internal clock synchronization request. If this mode is not available, the
method must return an unavailable command condition.

• GetInfo ID information request. On compatible Televis devices, this command is
implemented in the base class of all devices. In this case (MODBUS/RTU) this
command must be implemented.

• GetIoConfiguration Specifies the resources (digital inputs, analog inputs, digital
outputs, analog outputs, statues and alarms) available on the device. This
command must be implemented.

• ReadDigitalInputs Digital inputs read request. This command must be
implemented if the device makes at least one digital input
(GetIoConfiguration) available.

• ReadAnalogInputs Analog inputs read request. This command must be
implemented if the devices makes tat least one analog input
(GetIoConfiguration) available.

• ReadStatus Device status read request. This method must be implemented if the
device makes at least one status code available. Status codes also include the
statutes of digital outputs.

• ReadAlarms Alarms read request. This method must be implemented if the
device makes at least one error code available.

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 11 of 30

• WriteDigitalOutputs Digital outputs read request. This method must be
implemented if the device makes at least one programmable digital output
available.

• ReadParameter Internal parameter read request. This method must be
implemented if internal parameters are not accessed through the standard
read command of the Televis protocol. In this case (MODBUS/RTU) this
method must be implemented.

• WriteParameter Internal parameter write request. This method must be
implemented if internal parameters are not accessed through the standard
write command of the Televis protocol. In this case (MODBUS/RTU) the
method must be implemented.

In the DTM component, each driver is implemented as special C++ class that inherits
methods and properties from a base class (generic device) or from a special class (if there
are limited differences as compared to other devices).
Each class is uniquely identified by means of a series of properties, generically called
�identification data�, which contain the following information:

• Address Address of the device on the network.
• Firmware family or mask Reference class of the device. This information is

generally sufficient to identify the type of instrument.
• Firmware version This information determines the behavior of the driver, depending

on the level of firmware implemented in the device. In extreme cases, it may require
the development of a new specific driver.

• Model Model of the device within the class (firmware family or mask). This
information is required for the RVD and Table features (management of
parameters).

• PCH code Optional information linked to the parameters map.
• Release date Optional information that indicates the date of release of the firmware

implemented in the device.

DTM creates for each device that is physically part of the network an instance of the
special class of the device. The class is determined using the "identification data" provided
by the program that uses the DTM. A network may comprise several devices of the same
type and model. DTM creates, for each of these, a special class.
In ordinary operating conditions, DTM uses a vector of special instances to access all the
devices needed for the external program.
The DTM has a specific command (network scan) that enables to locate all the Televis
compatible devices that are part of the network. The device can be identified only if it
implements the VER command of he Televis protocol. This command enables to integrally
rebuild the identification data of the device and therefore to identify the driver class that
needs to be used for communication purposes.
After the implementation of the MODBUS/RTU driver, the scan command is modified so
that it is able to search both Televis compatible devices and MODBUS/RTU devices if:

• The enabling commands of the DAM/DTM acknowledges the use of the
MODBUS/RTU protocol.

• At least one MODBUS/RTU configuration file is present.

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 12 of 30

The identification of these devices leads to the creation of a specific instance of the
MODBUS/RTU driver for each specified configuration file (i.e. for each file present in a
directory know to DAM/DTM). The DTM uses the GetInfo method of this instance to locate
the identification data of the device and fully identify it.
As explained in the previous chapter, the MODBUS/RTU messages transmitted to the
device must be encapsulated in Televis messages. The MODBUS/RTU creates the correct
format for the command transmitted to the SmartAdapter, which extracts the
MODBUS/RTU message and forwards it to the network.
To guarantee safety and uniqueness, it is essential to observe the following limitations.

• The SmartAdapter address within the Televis network must be fixed and always
equivalent to 236 (ECh); there are no limitations as to the number of devices that
can be simultaneously connected to a Televis network.

• The addresses of the devices in the MOBUS/RTU subnet should not overlap the
addresses of the Televis network. This condition is essential to prevent collisions
during transmission, which could occur if several SmartAdapter devices are
present. The range used to search the address is specified in the configuration file
of the MODBUS/RTU device and is generally limited to the addresses that have
already been assigned to Televis devices. This search is performed by DTM.

The class related to the MODBUS devices may receive the file name as parameter of a
specific method (if the network scan command is run during the creation of a generic
instance) or search for the file starting from the identification data (when a specific
instance based on known identification data is created). If the file doesn�t exist or is
incorrect, all the driver methods are managed by the DTM component and will return
the non implemented command condition.
The name of the configuration file of the MODBUS/RTU protocol should follow this
standard:

EXTPRT_7FFC_<model code>.EDR

Where:

EXTPRT (EXTernal PRoTocol: protocol other than Televis) fixed string that

enables to immediately identify the files required for the MODBUS/RTU protocol.
7FFC First identification code of the device.

This code, which should always be set to the hex value of 7FFC, represents the
firmware family or mask of the device in the DAM/DTM configuration. For further
information, see the section on the identification data of devices. This implies
assuming that all the devices of the MODBUS/RTU class belong to the same family
or firmware mask (hex 7FFC).

<model code>: Second identification code of the device.
This code identifies the type of MODBUS/RTU device.
This code, which can be a progressive number or a code chosen by the author of
the driver, has no impact on the driver. This must be an hex number <= 7FFF
(32767 decimal). If the Modbus unit is an Eliwell unit, it is advisable to use the
following format for this code: low byte for the firmware mask, high and progressive
byte to identify the model that corresponds to the mask (for example 01D6 stands
for: D6 mask (214 decimal), model 1. This value is inserted in the Firmware

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 13 of 30

Version field of the identification data section; field Model and all the remaining
fields are set to zero.

The Model Code is not regarded a unique code for the MODBUS/RTU
devices at a DTM architecture level. This means that the same device may have
different model codes if it is used in different installations.

EDR identifies the unique extension assigned to all the configuration files of the
external protocols managed by the DTM system.

DTM searches for the configuration files of the ModBus protocol using the following
information that is usually contained in the DTMCFG.INI file:

 [EXTPRT]
PATH="<dir-path>"

Where <dir-path> is the full name of the directory that contains the configuration
files for the MODBUS protocol.

When you create a new instance of the MODBUS/RTU class for a specific device, you
need to pre-process the definitions file associated to the device in order to create in the
memory components able to accelerate the interpretation of the commands during the
ordinary use of the driver.

The introduction of the MODBUS/RTU driver requires the insertion of two new
methods in the DTM component for the management of extended commands.
These two methods are:

• GetExtCommands This method enables to determine the number and description of
the extended commands available for the device.

• ExecuteExtCommand This method enables to run one of the extended commands
made available by the device.

Extended commands allow the definition of a parameter (DWORD), which is used for the
execution of the command. Although these commands are generally dichotomous (i.e.
they enable or disable a function), it is also possible to use the content of a command for
more complex applications.
The addition of these two commands does not cause compatibility problems with existing
drivers. It is in fact sufficient to define these commands as non implemented in the base
class of all the devices.

4.3 Management of MODBUS/RTU device parameters
The DAM component manages the read and write requests related to the parameters
made available by the models linked to each Televis device. The structure used by the
DAM component to manage the parameters is automatically created, for each new device,
by a special program that takes into account the specifications of the device and the
parameters maps provided in Excel files.
These templates contain a class that defines the model parameters and that links the
model to the device class (using the identification data). The class contains a list of all the

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 14 of 30

parameters available for the device. The following elements are defined for each
parameter:

• ID Index that uniquely identifies the parameter within the mode.
• Tag (name) String that identifies the standard name of the parameter.
• Um Code that uniquely identifies the unit of measurement associated to the

parameters using the DAM/DTM conventions.
• Minimum value interpretation mode Specifies if the minimum value is defined

directly or if it has to be acquired from the current value of another parameter.
• Minimum value Specifies the minimum value of the parameter or the index of

another parameter with a current value that should be considered equivalent to a
minimum value.

• Maximum value interpretation mode Specifies if the maximum value is defined
directly or must be acquired from the current value of another parameter.

• Maximum value Specifies the maximum value of the parameter or the index of
another parameter with a current value that should be considered equivalent to a
maximum value.

• Default value Reference value for the parameter.
• Access mode Mode used to access the parameter for read and write operations.

Current modes are equivalent to the typical commands of the Televis protocol.

The model definition, the list of parameters and the characteristics of parameters must
be generated using the information in the definitions files for MODBUS/RTU. This
operation is possible only if the enabling system used by DAM/DTM supports the
MODBUS/RTU protocol. If this is not possible, there is no reason to generate
information on the models of device parameters that cannot be managed.
At an operating level, when the DAM system identifies all the interfaces that can be
used for communications (i.e. the existing physical networks), it determines also if the
MODBUS/RTU support is enabled. If the support is enabled, it creates the parameter
templates for the MODBUS/RTU devices that have a definitions file.
As explained above, the method used to access the parameters for read and write
operations is managed centrally for Televis devices. In other words, the base class of
all the devices contains generic methods that implement the standard read and write
methods in the internal areas of the device memories (physical read/write operations,
logical operations, etc.). As these methods cannot be used for MODBUS/RTU, it is
necessary to use the parameter access methods defined in the special MODBUS/RTU
class (ReadParameter / WriteParameter).

4.4 Script language
Windows Script Engine has been selected as environment for the script sections used to
define and implement the drivers for MODBUS/RTU devices. WSE is supplied as standard
in all Windows systems, starting from Windows 2000. For previous versions (Windows
98/Me, Nt4), it shall be necessary to install Internet Explorer 6.0 that includes WSE.
The WSE environment offers several different formal languages:

• VBScript (native)
• Jscript (native)

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 15 of 30

• Perl (external)
• Rexx (external)
• Lisp (external)

At present the MODBUS drivers will be implemented using the VBSCRIPT language,
which enables single derivers to be preventively tested with Visual Basic 6.0. There are
several differences between Visual Basic 6.0 and VBSCRIPT. However, for the purpose of
the implementation of MODBUS drivers, the main difference lies in the unification of the
type of variable that has to be implemented: VBSCRIPT offers one type of variable only,
VARIANT, while Visual Basic 6.0 enables variables to be defined also for other types (int,
single, double, etc.).

4.5 Structure of the MODBUS drivers for DTM
The DTM system requires that the file with the MODBUS driver contains a specific
number of functions. As these functions are analyzed with the WSE engines, their
syntax must be coherent with the specifications of the VBSCRIPT language.
The required functions are the following:

4.5.1 Function gProtocolType().

This function enables to identify the type of logical protocol that must be
selected for the SmartAdapter.
The code returned by the function must correspond to the values specified in
the following table:
Code Protocol
01h MODBUS

4.5.2 Function gAsyncInfo()

This function enables to identify the formatting parameters of the MODBUS
network communications.
The code returned by the function must be built using the parameters
specified in the following table:

Bit Description Acceptable values

bit 0-3 Baud rate

0 = 1200 baud
1 = 2400 baud
2 = 4800 baud
3 = 9600 baud
4 = 19200 baud
5 = 38400 baud (if present)
6 = 57600 baud (if present)
7 = 115200 baud (if present)
n = Not admitted

bit 4 Disable 0 = Enable
1= Disable

bit 5-6 Parity 0 = STX odd and Even for the rest
1 = None
2 = Even
3 = Odd

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 16 of 30

4.5.3 Function gGetNextAddress(ByVal first)
This function enables to identify the next address of the MODBUS network
that can be used to locate the device. If the first parameter is 1, the function
must return the first useful address, otherwise the next address in the
sequence.

4.5.4 Sub gSetNextStep(step)

This procedure enables to define the next step in the sequence of low level
messages of the MODBUS network required to complete a macro message
of the DTM protocol.

4.5.5 Function gGetTxMessage(index)
This function enables to recover the single bytes of the message that has to
be transmitted through the MODBUS network. index is the index of the
message in the [0..n-1] range, where (n-1) is the maximum length of the
message that has to be transmitted.

4.5.6 Sub gPutRxMessage(index, value)
This procedure enables to transfer to VBSCRIPT the content of a message
received as reply from the MODBUS network. index is the message index in
the [0..n-1] range; value is the byte value received in the index position.

4.5.7 Sub gPutAddress(address)
This procedure enables to define the address (address) of the device that
will be used to interact with the MODBUS network. All commands generated
by the MODBUS driver refer to this address.

4.5.8 Function gGetAddress()
This function enables to recover the current address of the MODBUS device.

4.5.9 Function gEncodeStartRvd()

This function enables to generate the messages required to configure the
RVD mode of the device. The function must return one of the following
values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.10 Function gDecodeStartRvd()

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 17 of 30

This function enables to analyze the reply of the device to the previous
message created by function gEncodeStartRvd(). The function must return
one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.11 Function gEncodeStopRvd()

This function enables to generate the messages required to disable the RVD
mode of the device. The function must return one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.12 Function gDecodeStopRvd()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeStopRvd(). The function must return
one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.13 Function gEncodeReadDisplay()

This function enables to generate the messages required to read the display
of the currently selected MODBUS device. The function must return one of
the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.14 Function gDecodeReadDisplay()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeReadDisplay (). The function must
return one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.15 Function gEncodePressButton(key)

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 18 of 30

This function enables to generate the messages required to simulate the
selection of a key on the local keyboard of the currently selected MODBUS
device. The code of the key used for the simulation (key) is specified in the
standard commands of Televis devices.
 The function must return one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.16 Function gDecodePressButton()

This function enables to analyze the reply of the device to the previous
message created by function gEncodePressButton (). The function must
return one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.17 Function gEncodeReleaseButton(key)

This function enables to generate the messages required to simulate the
release of a key on the local keyboard of the currently selected MODBUS
device. The code of the key used for the simulation (key) is specified in the
standard commands of Televis devices.
 The function must return one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.18 Function gDecodeReleaseButton()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeReleaseButton (). The function must
return one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.19 Function gEncodeKeyboardLock()

This function enables to generate the messages required to lock the local
keyboard of the currently selected MODBUS device. The function must
return one of the following values:

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 19 of 30

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.20 Function gDecodeKeyboardLock()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeKeyboardLock (). The function must
return one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.21 Function gEncodeKeyboardUnLock()

 This function enables to generate the messages required to unlock the local
keyboard of the currently selected MODBUS device. The function must
return one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.22 Function gDecodeKeyboardUnLock()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeKeyboardUnLock (). The function must
return one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.23 Function gEncodePower(active)

This function enables to generate the messages required to start (active = 1)
or stop (active = 0) the currently selected MODBUS device. The function
must return one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 20 of 30

• >0 : Specifies the length of the next message that has to be
transmitted to the MODBUS device.

4.5.24 Function gDecodePower()

This function enables to analyze the reply of the device to the previous
message created by function gEncodePower (). The function must return one
of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.25 Function gEncodeLight(active)

 This function enables to generate the messages required to start (active = 1)
or stop (active = 0) the lights (generally of linked cells) of the current selected
MODBUS device. The function must return one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.26 Function gDecodeLight()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeLight(). The function must return one
of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.27 Function gEncodeDeFrost()

This function enables to generate the message required to run the defrost
cycle on the currently selected MODBUS device. The function must return
one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.28 Function gDecodeDeFrost()

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 21 of 30

This function enables to analyze the reply of the device to the previous
message created by function gEncodeDeFrost (). The function must return
one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.29 Function gEncodeSyncClock(sync_date)

This function enables to generate the messages required to configure the
date/time on the currently selected MODBUS device; sync_date is the date
in the DateTime format (format with floating point, in which the integer
section represents the days while the fractional section represents the
fractions of the day, starting from 31/12/1899). The function must return one
of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.30 Function gEncodeSyncClock ()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeSyncClock (). The function must return
one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.31 Function gEncodeGetInfo()

This function enables to generate the messages required to identify the
device. The function must return one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.32 Function gDecodeGetInfo()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeGetInfo (). The function must return
one of the following values:

• -1 : The returned reply contains a CRC error.

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 22 of 30

• 0 : The reply has been correctly managed.

4.5.33 Function gEncodeGetIoConfiguration()

This function enables to generate the messages required to define the
resources of the device. The function must return one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.34 Function gDecodeGetIoConfiguration()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeGetIoConfiguration (). The function
must return one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.35 Function gEncodeReadDigitalInputs()

This function enables to generate the messages required to read the digital
inputs of the device. The function must return one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.36 Function gEncodeReadDigitalInputs()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeGetIoConfiguration (). The function
must return one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.37 Function gEncodeReadAnalogInputs()

This function enables to generate the messages required to read the analog
inputs of the device. The function must return one of the following values:

• -2 : Internal driver error

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 23 of 30

• -1 : Indicates that the command has not been implemented for the
driver.

• 0 : Indicates that the generation of all the messages required to run
the command has been completed.

• >0 : Specifies the length of the next message that has to be
transmitted to the MODBUS device.

4.5.38 Function gDecodeReadAnalogInputs()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeReadAnalogInputs (). The function
must return one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.39 Function gEncodeReadAlarms()

This function enables to generate the messages required to read the alarms
of the device. The function must return one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.40 Function gDecodeReadAlarms()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeReadAlarms (). The function must
return one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.41 Function gEncodeReadStates()

This function enables to generate the messages required to read the
statuses of the device. The function must return one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.42 Function gDecodeReadStates()

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 24 of 30

This function enables to analyze the reply of the device to the previous
message created by function gEncodeReadStates (). The function must
return one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.43 Function gEncodeWriteDigitalOutputs(index, value)

This function enables to generate the messages required to write the index
digital output (in the [0..n-1]) range with the value (0/1) value of the
MODBUS device. The function must return one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.44 Function gDecodeWriteDigitalOutputs()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeReadStates (). The function must
return one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.45 Function gEncodeReadParameter(index, ByRef value)

This function enables to generate the messages required to read the index
parameter of the device. If the operation is successfully completed, the value
variable acquires the value of the read parameter. The function must return
one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.46 Function gDecodeReadParameter()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeReadParameter (). The function must
return one of the following values:

• -1 : The returned reply contains a CRC error.

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 25 of 30

• 0 : The reply has been correctly managed.

4.5.47 Function gEncodeWriteParameter(index, value)

This function enables to generate the message required to write the index
parameter of the device; value is the value that has to be written. The
function must return one of the following values:

• -2 : Internal driver error
• -1 : Indicates that the command has not been implemented for the

driver.
• 0 : Indicates that the generation of all the messages required to run

the command has been completed.
• >0 : Specifies the length of the next message that has to be

transmitted to the MODBUS device.

4.5.48 Function gDecodeWriteParameter()

This function enables to analyze the reply of the device to the previous
message created by function gEncodeWriteParameter (). The function must
return one of the following values:

• -1 : The returned reply contains a CRC error.
• 0 : The reply has been correctly managed.

4.5.49 Function gIdentified()

This function returns 0 if the MODBUS driver has not been identified by the
driver; otherwise it returns 1.

4.5.50 Sub gGetNumOfResources(ByRef n_di, ByRef n_ai, ByRef n_al, ByRef n_st)
This procedure enables to recover the configuration of the device in terms of
available resources (number of digital and analog inputs, number of alarms
and number of statuses).

4.5.51 Sub gGetAiInfo(index, ByRef um, ByRef mul)
This procedure enables to recover the information related to the index
analog input of the device; um is the ode of the unit of measurement defined
in the DTM system; mul is the code of the multiplier that has to be used to
standardize the read value in accordance with the definitions of the DTM
system.

4.5.52 Function gGetDi(index)
This function enables to recover the value of the index digital input. The
driver must save the value of digital inputs every time the device is explicitly
read.

4.5.53 Function gGetAi(index)
This function enables to recover the value of the index analog input. The
driver must save the value of analog inputs every time the device is explicitly
read.

4.5.54 Function gGetAlarmCode(index)
This function enables to recover the index alarm code.

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 26 of 30

4.5.55 gGetAlarm
This function enables to recover the index alarm value. The driver must save
the alarms value every time the device is explicitly read.

4.5.56 gGetStateCode
This function enables to recover the index status code.

4.5.57 gGetState
This function enables to recover the index status value. The driver must
save the value of statuses every time the device is explicitly read.

4.5.58 gGetDisplayBuffer
This function enables to recover the content of the buffer that represents the
device display map. The driver must save the buffer every time the device is
explicitly read.

A MODBUS driver may contain utilities, which should preferably not be public (i.e. should
not be accessible through the DTM Manager).
If one of the base functions of the driver is not present or the MODBUS driver contains a
syntax error, this driver is not used for communication purposes.

4.6 Definition of the parameters of MODBUS devices
The parameters used for MODBUS devices are defined in the final area of the driver. The
parameter manager of the DAM, for MODBUS devices, searches for specific keywords in
the driver to be able to dynamically build matrices of parameters that are equivalent to
those normally used by Televis devices.
The driver area used to define the parameters must meet the following requirements:

• The model name should be on a separate line with initial pattern:
 �DAMDTM_MODEL:
Ex:

'DAMDTM_MODEL:FC_BASICOM_MODBUS
 Where FC_BASICOM_MODBUS is the model name.

• The lines that define the parameters should start with:

 'DAMDTM_PAR
This pattern should not be present in any
part of the driver.

• The pattern should be followed by this information:

o Numerical ID codes of the parameter
o Parameter label
o Code of the parameter unit of measurement (see Appendix, Table 3)
o Indication of whether the lower limit is absolute (=1) or refers to another

parameter (=2)
o Minimum value of the parameter (or index of the parameter that defines it)
o Indication of whether the upper limit is absolute (=1) or refers to another

parameter (=2)
o Maximum value of the parameter (or index of the parameter that defines it)
o Default value of parameter

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 27 of 30

o Type of parameter (see Appendix, Table 4)
o Value multiplier (see Appendix, Table 5)
o Start bits This is used only if the parameter type is 9 (bit parameter). In

this case, it identifies the first byte of the mask, starting from the least
significant bit. Values can range from 0 to 7. The default value is 0.

o Bit number It is linked to the previous parameter and used only if the
parameter type is 9 (bit parameter). In this case it returns the number of
contiguous bits (1 - 8) used to represent the parameter.

Ex:
'DAMDTM_PAR:001,SP_C,0,1,100,1,500,150,2,-1,0,0
'DAMDTM_PAR:002,SP_H,0,1,100,1,500,150,2,-1,0,0

4.7 Example of MODBUS driver

The EXTPRT_7FFC_01D6.EDR file, available on the setup CD, contains an example of
base driver, which can be used to communicate with Eliwell Fan Coil Basicom devices in
MODBUS mode.

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 28 of 30

4.8 Appendix

Table 1: Multiplier codes for analog inputs

Warning: the read value is divided by 10^DECPOS_#

DECPOS_1 = 0
DECPOS_10 = 1
DECPOS_100 = 2
DECPOS_1000 = 3
DECPOS_10000 = 4
DECPOS_INVALID = -1

Table 2: Codes of units of measurement for analog inputs

CELS = 0
FAR = 1
BAR = 2
RH = 3
VOID = 4
PA = 5
BIN = 6
PSI = 7
VOLT = 8
AMP = 9
HZ = 10
HOURS = 11
KWA = 12
KWR = 13
COS = 14
KWHA = 15
KWHR = 16
MINUTES = 17
SECONDS = 18
INVALID = -1

Table 3: Codes of units of measurement for parameters

CELS = 0
FAR = 1
BAR = 2
RH = 3
VOID = 4
PA = 5
BIN = 6
PSI = 7
VOLT = 8
AMP = 9
HZ = 10
PERC (%) = 11
SECONDS = 12
MINUTES = 13
HOURS = 14
CELS10 = 15
SECONDS10 = 16
BAR10 = 17
NVALID = -1
Table 4: Acceptable types for parameters

CHAR = 0

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 29 of 30

BYTE = 1
SHORT = 2
WORD = 3
NOT IMPLEMENTED LONG = 4
NOT IMPLEMENTED DWORD = 5
NOT IMPLEMENTED FLOAT = 6
NOT IMPLEMENTED DOUBLE = 7
NOT IMPLEMENTED STRING = 8
BITS = 9

Table 5: Resolution codes for parameters

Warning: the read value is divided by 10^(-#)

READ VALUE = 0
READ VALUE DIVIDED BY 10 = -1
READ VALUE DIVIDED BY 10 0 = -2
READ VALUE DIVIDED BY 10000 = -3

5 Observations and limitations

 A � Analog inputs are signed sorted (-32768, +32767):

Larger values are not managed

B �The simplified driver does not implement:
o Global commands
o RVD
o Automatic detection of the configuration of the unit�s resources

C �If the installation comprises one or more SmartAdapter modules, it is not
possible to use the 14.12 Televis address for devices.

D �The addresses of MODBUS devices of subnets connected to SmartAdapter
modules cannot overlap those used for devices with Televis protocol. This includes
also reserved addresses.

6 Notes on the use of the driver with TelevisNet

A � The InstrumentDictionary table contains only one record for the external
driver units. This record refers to the generic units family, i.e. MicroFamily =
7FFC (32764 decimal) and ModelCode = 0.

B - The specific name of the unit is displayed in the Driver Description field of the

Excel file. However, as this is the unit description referred to the table view,
the driver must contain at least one parameter.

 C - Custom codes for alarms and statuses.

Users may create custom codes for alarms and statuses by entering the
codes and related descriptions in the following files, which are located in the
Database subfolder under the TelevisNet installation folder.

03-2005
cod. RDL00X0100

Technical note: Televis Driver for Third Party Controllers -
English � page 30 of 30

- File UserStateCodes.ini - Codes from 1501 to 2000
- File UserAlarmCodes.ini - Codes from 501 to 999

 Descriptions have to be entered in the language selected by the user.

From the Control Panel � Program page of TelvisNet, users can transfer
these codes and descriptions to the database of the program.

Eliwell & Controlli s.r.l.
Via dell�Industria, 15 Zona Industriale Paludi
32010 Pieve d�Alpago (BL) ITALY
Telephone +39 0437 986111
Facsimile +39 0437 989066
Internet http://www.eliwell.it

Technical Customer Support:
Email: techsuppeliwell@invensys.com
Telephone +39 0437 986300

Invensys Controls Europe
Part of the Invensys Group

