

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 1 of 27

P0435 Rules

Revision History
Version Date Author Description
0.01 31-08-2009 V. Russo First draft. Built on the previous P0435Rules.
0.02 01-12-2009 V. Russo Added enough core information to make it “usable”.
0.03 22-02-2010 V. Russo Added description of cross reference for high and low limit

of parameters.
Forgotten occurrences of “ParamManager” string were
changed into “Params”.
Added description of the usage of an empty cell in the
EXCLUSION colum of the Client page.

0.04 14-04-2010 V. Russo The TYPE_CODE column is now optional (content is
computed according to DESCRIPTION_CODE and
PROGRESSIVE).
Added detailed description of the DESCRIPTION_CODE
item and added CUS40000 special code.
Added description about the meaning of a type code.
Added support for IEEE754 values.
Added support for address filtering and baud rate/parity
enforcement

0.05 18-05-2010 V. Russo Changed “MODBUS_COMMAND” definition for H04/H16
commands.
Added a remark about the use of “PH” category for devices
with vector tables.
Added description of SEND and CREATEVALUE operators

0.06 07-06-2010 V. Russo Added flow management to expressions.
Added ON_ACQUISITION_START and
ON_ACQUISTION_END events to the DataAcquisitionInit
page.

0.07 04-07-2010 V. Russo Added protocol enforcement feature for 3rd party devices.
Added file name enforcement feature for 3rd party devices.
Added support for SIGN+MANTISSA values.
Changed letter for the H04 modbus command

0.08 24-08-2010 V. Russo Added VIS() operator to ease management of RVD with
different keyboards.

0.09 22-10-2010 V. Russo Updated the rules about parameters. It’s now explained how
to encode table of vectors.

0.10 15-11-2010 V. Russo Added description of “raw” commands to Chapter 2.

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 2 of 27

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 3 of 27

P0435 Rules ... 1

1 Contents ... 4

1.1 Acronyms and Glossary .. 4
2 P04354 Structure .. 5

2.1 Common columns.. 5
2.1.1 Access Coordinates .. 5
2.1.2 Naming ... 8
2.1.3 Representation .. 10

2.2 The Legenda page (LPa) ... 10
2.2.1 Extended Legenda Page (for third party or programmable devices only) 11

2.3 The Models page (MPa) .. 11
2.4 The Params page (PPa).. 11

2.4.1 About the uniqueness of the label .. 13
2.5 The Client page (CPa) ... 13
2.6 The Write page (WPa) ... 14
2.8 The RTC page (RTCPa) .. 14
2.10 The ParamsDefaults page(PDPa) .. 15
2.12 DataAcquisitionInit (DAIPa) ... 16

2.12.1 An Alternate identification example, extension of micronet commands. 17

2.12.2 An Alternate identification example, third party devices. ... 17

3 Expressions .. 19

3.1 Concept of program and workspace .. 19
3.2 List of Operators .. 19

3.2.1 Reference field access operators .. 19
3.2.2 Explicit Field access operators ... 21
3.2.3 Access Modifiers.. 22
3.2.4 Value operators .. 23
3.2.5 Complex operators ... 25
3.2.6 Logical operators.. 25
3.2.7 Arithmetical operators.. 26
3.2.8 Arithmetical Cosiderations .. 26
3.2.9 Sub expression operator ... 27

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 4 of 27

1 Contents
This document defines a model for the P04354 document (simply called “P04354” in the resto f the
document). The P04354 holds the information needed to acquire data from and interact with a given
device using a communication channel (ModBus or Micronet).

1.1 Acronyms and Glossary

CPa Client Page

DAIPa DataAcquisitionInit Page

description code

An 8 digit (3 roman capital letters followed by 5 decimal numbers) that is used to
identify an untranslated string. See 2.1.2.1.

LPa Legenda Page

Micronet Proprietary protocol used by Eliwell devices

Modbus Standard protocol used by Eliwell and third parties devices

MPa Models Page

NTLVC New Televis Compact

P04354 Latest release of the P0435 document

PDPa ParamsDefaults Page

PPa Params Page

PPPa ParamsPermission Page

RTCPa RTC Page

RVDPa RVD Page

TLV Televis

WPa Write Page

WAPa WriteArgs Page

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 5 of 27

2 P04354 Structure
The P04354 holds the information needed to acquire data from and interact with a given device
using a communication channel.

Information is organized in pages. Each page contains definitions about a given aspect of the
monitoring software (e.g. the parameters or the resources).

2.1 Common columns
Some type of data are required by various pages (e.g. the memory address to poll to retrieved a
given parameter or resource). To make the P04354 user friendly (at least a little bit), the columns
used for the same purpose share the same name and syntax across the whole document.

2.1.1 Access Coordinates
Access coordinates are references to a memory location of a device and they are widely used within
the P04354 document.

Access coordinates are kept into 7 columns:

Column Allowed Values Description

COMPLEMENTED

TRUE The value is fixed point and signed
FALSE or -empty cell- The value is fixed point and unsigned
IEEE754 The value is floating point according to IEEE754. The precision (single,

double or quadruple) is given by the size of the binary data according to the
content of the FILTER cell. Size of the data MUST be compatible with the
desired precision (32 bits for single, 64 for double, 128 for quadruple).

SIGN+MANTISSA The value is representation is sign + mantissa, the MSb will be used as sign,
the rest of the value as mantissa.

MICRONET_COMMAND

L Logical reading/writing (H52/57). The value in MICRONET_ADDRESS is
the logical area, the value in MICRONET_SIZE_SUBADDRESS is the
index within the area.

F Physical reading/writing (H12/H13). The value in MICRONET_ADDRESS
is the physical address, the value in MICRONET_SIZE_SUBADDRESS is
the size of the memory area.

E RFU
D Record reading/writing (H16). The value in MICRONET_ADDRESS is the

record row, the value in MICRONET_SIZE_SUBADDRESS is the index of
the record within its row.

M DRV_OS or SC2 reading/writing (H7F,H52,H02/H7F,H52,H03). The value
in MICRONET_ADDRESS is built using the macro-area id as MSB and the
area id as LSB, the value in MICRONET_SIZE_SUBADDRESS is the
index within the logical area.

C Custom command. (see next section)
MICRONET_ADDRESS a number The meaning changes according to the MICRONET_COMMAND value.

MICRONET_SIZE_SUBADDRESS a number The meaning changes according to the MICRONET_COMMAND value.

MODBUS_COMMAND

S Modbus H03 is used for reading, H06 for writing.
P Modbus H03 is used for reading, H10 for writing.
A Modbus H04 is used for reading, nothing for writing.
R Modbus H01 is used for reading, H05 for writing.
O Modbus H01 is used for reading, H0F for writing.
N Modbus H02 is used for reading, nothing for writing.
W Modbus H04 is used for reading, H16 for writing.
C Custom command (see next section)

MODBUS_ADDRESS a number The modbus address.

FILTER
an hexadecimal number The mask to be applied to the value (max 4 bytes).
REV(hexadecimal
number)

The bytes are reversed before applying the mask to the value

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 6 of 27

S[n] The value is an array of n bytes. The mask applied to the bytes is by default
HFF. This must be used for string values and the RVD buffer display.

The columns marked in green are mandatory.
The columns marked in yellow are mandatory but a default will be taken if left empty.
The columns marked in orange are mandatory for a micronet instrument.
The columns marked in blue are mandatory for a MODBUS instrument.

2.1.1.1 Use of Custom Commands
The MICRONET_COMMAND and MODBUS_COMMAND are used to state which is the
command to use to read a given memory address.

Most of the commands are related to a memory address of registers. These commands have a well
know format and it’s enough to provide the value of the address in order to allow the supervisor
software to gather the data. Moreover, many of these commands have aggregation rules (e.g. the
H03 MODBUS command allows to read sequences of registers with just one memory access), so
the supervisor software can optimize the number of required field accesses.

Some other times the commands have no standard structure and a custom request/reply sequence
must be provided. It possible to handle these cases as “raw” commands. The structure of the
request/reply sequence must be modelled using a simple script language that will be described in
the following section.

To manage a field access as a RAW access:

• use the “C” letter in the MICRONET_COMMAND or MODBUS_COMMAND.
• Provide the scripts that model the request/reply in the MICRONET_ADDRESS or the

MODBUS_ADDRESS cell. Up to two scripts can be provided and they must be separated
by a semicolon. The first one is used for reading the value and the other one for writing it.
It’s also possible to provide just the reading sequence (which is the most common situation).
The next table explains all the allowed cases:
Syntax Description
Script1;Script2 Script1 is used for reading the value, Script2

for writing it
NONE;Script2 This states that there is no script for reading

the value but there is a script for writing it.
This is the typical case of a write operation.

Script1 If there’s just one script, it is assumed that
this is used for reading the value

• The binary size of the data passed/retrieved to/from the stream is computed evaluating the

content of the “FILTER” column.

2.1.1.2 Raw Commands script details
The syntax of a single field access is the following

RAW({s(0),s(1),…,s(n)},{r(0),r(1),…,r(m)})

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 7 of 27

Where
s(i) is a series of descriptors for the stream to be sent.
r(i) is a series of descriptors for the stream to be received. If the received stream does not match this
description it must be discarded.

Allowed descriptors are summarized in the following table.

Descriptor Description Send Receive Function
Hxx constant number Y Y A constant byte.

“xx” is a number
in hexadecimal
notation

MTA modbus target

address
Y Y A byte containing

the device
address in
modbus format

MCRC2 Modbus CRC Y Y The CRC16

computed
according to the
modbus
algorithm. This
item spreads over
2 bytes.

XI(x) ignore bytes N Y A series of
contiguous bytes
that may be
ignore while
decoding the
received bytes.
“x” is the number
of bytes.

IL ignore length N Y This means that
all the bytes until
the next
descriptor are
ignored while
decoding the
received bytes,
whatever is their
number. This can
be used just once
per stream and

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 8 of 27

only if a
beginning and an
end of stream is
described.

XD(x) data
extraction/injection

Y(write) Y(read) Extraction or
injection of a
byte of data. Byte
is taken/placed
from/to the byte
in position “x” of
the value.

2.1.1.3 About the optimization of Raw Commands
Even if it would be possible to write every micronet or modbus field access using a RAW field
access, its use should be avoided when not necessary that is when there’s a standard protocol
description available.

When using RAW field access, the system is not able to organize streams to be sent in order to
minimize the network traffic. Indeed, the RAW scripts states how a stream must be encoded and
decoded, but it does not say anything about how to merge different streams in order to retrieve the
same information with a smaller number of network accesses.

Usage of standard protocol descriptions grants an higher level of optimization, because there are
rules to optimize them.

2.1.2 Naming
This the information about the naming of the resource.

Naming is kept into 5 columns:

Column Allowed Values Description

INDEX
A number An numeric index for the item. Indexes should start by one “1” and then

incremented by one “1” each row.

LABEL

A string A short description for the item. For items that should be displayed by a
supervisor the length of the string should be kept as short as possible because
a long string could lead to display issues.
The label is also used to build cross references between items. Because of
this, the label must be unique and it’s not allowed to share the same label
between multiple items (e.g. it’s not allowed to use the same label for a
parameter and its visibility, a different label must be used).

DESCRIPTION
A string A friendly description for the item. The purpose of this value is to provide an

easy way to identify the item for an human reader. This value should not be
used by any supervisor.

DESCRIPTION_CODE
A description code This value must be used by the supervisor to display the translated

description of the item. See 2.1.2.1,2.1.2.2,2.1.2.3,2.1.2.4.

PROGRESSIVE

A number The number will replace any {0} in the translated description of the item.
A description code The string code will be translated and its translation will replace any {0} in

the translated description of the item.
A string The string will replace any {0} in the translated description of the item. Please

note that this string won’t be translated so avoid string in Italian language
(like “SU”,”GIU”,”ACCESO”) or using Italian notations (like “1°”). If the
string must be translated use a string code instead.

GROUPS String codes separated If the item is member of a parameter/resource group add its string code to this

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 9 of 27

by semicolon a “;” cell. Multiple groups membership is supported by adding the group string
codes separated by a semicolon “;”. By default each item is added to the
“ALL” (PGR00000) group, so there’s no need to mark this membership.

EMPTY The item will be added to the “ALL” (PGR00000) group only.

2.1.2.1 Description codes
A description code is an unique code in the format

xxxyyyyy

composed by 3 ASCII characters (xxx) and 5 numeric characters (yyyyy). Descriptions of items in
the P04354 must be provided as descritpion codes instead of explicit description.

The monitoring/supervisor software must keep a lookup table between the description codes and
their translations in the desired languages. This allows to display the monitoring/supervisor pages in
a given language simply adding the desired lookup table (also known as dictionary file).

E.g. the description code STA00001 will be translated into “Ingresso digitale” if the language is
Italian, “Digital Input” if the language is English, “Entrée numérique” if the language is French.

2.1.2.2 Parametric Description Codes
Some description codes are related to strings that contain a variable part, e.g. the analog inputs of a
device may be indexed with 1,2,… and their translation may change only for the index. These
strings may be handled with a parametric description code which is a still an unique description
code in the format

xxx4yyyy

composed by 3 ASCII characters (xxx), the “4” character and 4 numeric characters (yyyy).

The translated items linked with the parametric description code contains the so called placeholder,
a “{0}” sequence which must be replaced with the parameter by the monitoring/supervisor
software. While the description code is usually provided in the “DESCRIPTION CODE” cell, the
parameter is provided in the “PROGRESSIVE” cell.

The parameter may be a number, a string or a (non parametric) description code itself.

E.g. It’s possible to add a description for the 4 analog inputs of a device by using the INP40000
description code and the indexes 1,2,3,4. INP40000 in the English dictionary is translated into
“Analog input {0}” and then the placeholder is replaced with 1,2,3,4.

Usage of strings and description codes as parameter must be done with care, because it can easily
lead to translation errors. So it’s recommended to use just numbers as parameter.

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 10 of 27

2.1.2.3 Reserved Description Codes
Some description codes are reserved and should not be used for descriptions. Those codes are
summarized in the following table.

Description Code Meaning
ALM00300 No Link
ALM00301 Instrument mismatch

2.1.2.4 The custom description code CUS40000
The custom description code CUS40000 is a special description code that is translated in any
language with the string “{0}”.

This allows to the user to provide language dependent translation for an item without updating the
dictionary file. When this code is used in the “DESCRIPTION_CODE” cell, the desired string must
be placed in the “PROGRESSIVE” cell.

Those items won’t be translated if the monitoring/supervisor software language and the displayed
string will be always the one provided in the “PROGRESSIVE” cell. Because of this it’s
recommended to use this special description code for custom or third parties drivers only and don’t
use them for standard Eliwell devices.

2.1.3 Representation
This is the information about the representation (how is it displayed by the supervisor) of an item.

Representation is kept into 2 columns:

Column Allowed Values Description

FORMAT

An expression This expression should return a number x. If the item is not a floating point
one, the numeric value of this item will be multiplied by 10x before being
displayed. If the item is a floating point one, this value affects the position of
the decimal point only.

EMPTY If the item is not a floating point one, the value of this item will be displayed
“as is”. If the item is a floating point one, the value will be displayed with no
fractional part.

MEASUREMENT UNIT
An expression This expression should return a string code.
EMPTY By default the measurement unit “number” (VMU00020) will be taken.

2.2 The Legenda page (LPa)
This page holds information about the identification of the instrument and the P04354 document.

Row Allowed Values Description

Device Timeout A number The device communication timeout in milliseconds
Device buffer RX (bytes) A number The size of the device RX buffer.
Device buffer TX (bytes) A number The size of the device RX buffer.

Author A string The name of the P04354 author.

Date last update
A date in the
(DD/MM/YYYY)
format.

The date of the last update of the P04354 document.

Firmware Mask

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 11 of 27

CUSTOM(number) If this is the P04354 of a 3rd party device (e.g. an energy meter) or a not
standard device (an Eliwell device that for some reason does not reply to the
standard Eliwell identification command, e.g. a programmable device like the
XT Pro) a fictitious mask number must be assigned. Fictitious mask number
must be unique, they will start from 20000 if they are developed outside
Eliwell. The keyword CUSTOM(…) must be used and the fictitious mask
number must be placed between the round brackets. The supervisor should not
use the standard Eliwell detection rules with this device, custom detection
rules for this kind of device must be provided in the DataAcquisitionInit page
(DAIPa).

Firmware Version A number The number of the firmware version.
Document version A number The number of the current P04354 revision.

2.2.1 Extended Legenda Page (for third party or programmable devices only)
The Legenda page may be extended with 3 additional fields when the P04354 is used to generate a
driver for a third party or non standard Eliwell device (e.g. a programmable device).

These fields are optional and a processing tool should not generate an error if they are absent or is
they are blank.

Row Allowed Values Description

Network Address Filter

A range in the format
“Low-High”

The device will be detected only if its address falls within this range.

Comma separated
specific addresses.

The device will be detected only if its address is one of the provided
addresses.

EMPTY or cell absent Device will be detected whatever is its address. This is the default condition.

Baud Rate

A number The baud rate to be used. This applies MODBUS instruments only and only
when using a SmartAdapter.

EMPTY or cell absent The baud rate it’s inherited by the default settings of the monitorig/supervisor
software. This is the default condition.

Parity

E, O or N The parity to be used. This applies MODBUS instruments only and only when
using a SmartAdapter.

EMPTY or cell absent The parity it’s inherited by the default settings of the monitorig/supervisor
software. This is the default condition.

Protocol

MODBUS or
MICRONET

The driver protocol will be set to MODBUS or MICRONET.

EMPTY or cell absent The driver protocol is selected by the compiling software. For a third party
driver the default protocol is MODBUS.

Filename
A string ending with
the “.bin” extension.

A custom filename for the driver. It must end with the “bin”.

2.3 The Models page (MPa)
This page holds information about the device naming. A row must be filled for each model.

Column Allowed Values Description

POLI A number The Polycarbonate number for this model

MODEL_NAME
A string The name of this model. This is the string that will be displayed by the

supervisor as device name.
PARAM_MANAGER_NAME A string The name used by the param manager map when the protocol is Micronet

PARAM_MANAGER_NAME_MODBUS A string The name used by the param manager map when the protocol is Modbus.

2.4 The Params page (PPa)
This page holds information about the parameters of the device. The page is structured in rows,
each rows containing the data about a given parameter.

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 12 of 27

For the

• Access Coordinates (see 2.1.1).
• Naming (see 2.1.2).
• Representation (see 2.1.3).

See the previous sections.

There is a restriction, valid only in the PPa, about the FORMAT field.

FORMAT

An expression This expression should return a number x. The meaning is the same described
in section 2.1.3. For the PPa page only there is a restriction about the variety
of the expression that can be placed in this cell. Expression must be FIX(x)
where x is a number.

EMPTY The value of this item will be displayed “as is”.

Besides this information, the PPa requires the following columns.

Column Allowed Values Description

 •

 •
 •

LOW_LIMIT

A number The raw low limit. Information about the position of the decimal
multiplieris not applied to the value (e.g. a -3.2C for a low limit of a set
point, which tipically is a parameter with FORMAT equals to FIX(-1),
will result in a -32 value in the LOW_LIMIT cell).

Params(x) A reference to a parameter that express the low limit.

HIGH_LIMIT

A number The raw high limit. Information about the position of the decimal
multiplieris not applied to the value (e.g. a 18.2C for an high limit of a set
point, which tipically is a parameter with FORMAT equals to FIX(-1),
will result in a 182 value in the LOW_LIMIT cell).

Params(x) A reference to a parameter that express the high limit.

R_W_RW
R The parameter is read only
W The parameter is write only
RW It is possible to read and write the parameter

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 13 of 27

2.4.1 About the uniqueness of the label
Labels in the P04354 must be unique. This need arises from the fact that the label is used as key to
make cross references to parameters from wherever in the P04354, using the Params keyword and
the label of the parameter.

2.5 The Client page (CPa)
This page holds information about the resources and the network commands of a device. The page
is structured in rows, each rows containing the data about a given resource/network command.

For the

• Access Coordinates (applies to Resources only, see 2.1.1).
• Naming (applies to all , see 2.1.2).
• Representation (OPTIONS applies to resources only , see 2.1.3).

See the previous sections.

As you will read in the following table, access coordinates are not mandatory here. They are used
for resources only and they are mandatory only if no value condition is provided. They are
mandatory if there is no value condition or if a reference to them is made somewhere in the P04354
document.

Besides this information, the CPa requires the following columns.

Column Applies To Allowed Values Description

EXISTENCE
All An expression If the give expression returns a value > 0, then the resource

is visible.

TYPE

All AI An analog input resource
DI A digital input resource.
Alarm Am alarm. The resource value will be cast to e Boolean by

the supervisor, true if the value is > 0, false if = 0. It’s a
good practice to make the resource value 1 if a true is
desired, 0 if a false is desired.

Status A status
Net Command A Network Command.
RTCCommand The RTC command (this command follows special rules).
Support A support resource. This kind of resource will not be

displayed by the supervisor but it’s needed because
somewhere there’s a reference to it.

VALUE_CONDITION

Resources An expression If an expression is provided, the supervisor will use the
value of the expression instead of the access coordinates
when the resource value is computed. Access coordinates
can be provided anyway, because they may be used as a
reference.

TEST_CONDITION

Resources An expression or a
reference

It tells if the current resource is in error state or not. The
supervisor will flag the resource as “error” if the output of
the expression/reference is different from 0.
This may contain:

• A reference to another resource. If a resource Y
is the error condition for the resource X, the
TEST_CONDITION cell of the X row must
contain Client(Y). This means that the resource
value is used, so if a value condition is provided
for Y, its output is considered and format
information is applied.

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 14 of 27

• An expression. The most common one is
UNSIG(THIS())=FIX(H8000) that can be used
for analog resources when the error condition is
stated by the (non) value H8000.

WRITE_SEQUENCE

Net Command A sequence of items
defined in the WPa
separated by a
semicolon “;”

A sequence of items defined in the WPa. When the network
command is executed, the write items are excuted in the
same sequence reported here.
Note that this does not apply to the RTCCommand that
follows special rules. In this case the cell must be left
empty.

 •

2.6 The Write page (WPa)
This page holds information about the atomic write operations used by network commands and the
RTC synchronization command. These items are used as bricks to build a complete a Net Command
or a RTC WRITE_SEQUENCE sequence.

For the

• Access Coordinates (see 2.1.1).
• Naming (only INDEX and name applies to this, see 2.1.2).

See the previous sections.

Note that the value in the NAME column is used as an identifier for the write item, so the rule is
stricter here, NAME value must be unique within the WPa.

Besides this information, the WPa requires the following columns.

Column Allowed Values Description

VALUE
A value or e
reference to a
WriteArg.

The value to be written at the given access coordinate. Values in this page are
always unsigned and integer.

2.8 The RTC page (RTCPa)
This page holds the information about the atomic writing operations used by the RTC
synchronization command.

For the

• Access Coordinates (see 2.1.1).
• Naming (only INDEX applies to this, for the NAME column see below, see 2.1.2).

See the previous sections.

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 15 of 27

Besides this information, the RTCPa requires the following columns.

Column Allowed Values Description

NAME

InitSequence This is the sequence of WPa items needed to start the RTC synchronization.
Sequence must be provided in the WRITE_SEQUENCE cell. No access
coordinates are required fo this row.

EndSequence This is the sequence of WPa items needed to start the RTC synchronization.
Sequence must be provided in the WRITE_SEQUENCE cell. No access
coordinates are required fo this row.

Second The coordinate of the second value.
Minute The coordinate of the minute value.
Hour The coordinate of the hour value.
DayOfWeek The coordinate of the day of week value.
Day The coordinate of the day of month value.
Month The coordinate of the month value.
Year The coordinate of the year value (in the two digit notation, e.g. 07 for 2007)

WRITE_SEQUENCE

A sequence of items
defined in the WPa
separated by a
semicolon “;”

A sequence of items defined in the WPa. When the init/end is executed, the
write items are executed in the same sequence reported here.

2.10 The ParamsDefaults page(PDPa)
This page holds the information about the default values of parameters for each model. This page is
mandatory for new designs, the data stored here are used by the supervisor to handle the parameters
of a given instrument (to handle the default values and to compute the visibilities).

The PDPa will be built with the following columns:

Column Allowed Values Description

INDEX A number Index of parameter
LABEL A string Label of parameter (for debug purpose only)

Model code + Protocol identifier

Number or Strings After the first two columns there are as many columns as the number of
different combination of supported model code/policarbonates and protocols.
Column header has the following syntax

XXXX

Where XXXX is the model code/polycarbonate. In the cell below the model
code/polycarbonate the identifier of the protocol must be provided and it
should be:

MICRONET or MODBUS

The rest of the column must be filled with the default values of the parameters
in the old param manager format, so values are

• If numeric: always integers (if the parameter value could have a
fractional part it must be multiplied by the proper power of ten.
This is true even if the value itself has no fractional part, e.g. 2.0
han no fractional part but it must be written as 20) and signed.

• If string: they are simply strings.

Here’s an example of PDPa (an extract from the P0435 sheet for mask 140).

INDEX LABEL 1025 1026 1027 1028 1029 1030

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 16 of 27

 MICRONET MICRONET MICRONET MICRONET MICRONET MICRONET
1 Set 320 0 0 -24 0 0

2 diF 60 2 2 3 2 2

3 HSE 400 99 99 -10 99 99

4 LSE 320 -50 -50 -24 -50 -50
5 OSP 0 0 0 0 0 0

6 HC 1 0 0 0 0 0

7 Cit 0 0 0 0 0 0

8 CAt 0 0 0 0 0 0

9 dOd 0 0 0 0 0 0

10 dAd 0 0 0 0 0 0

2.12 DataAcquisitionInit (DAIPa)
This page can be used to enable special of future features of a acquisition module. As default this
page should be left blank.

Each row of the page contains information about a special/future feature.

Column Allowed Values Description

FUNCTION

IDENTIFICATION An alternate identification method. Use this when the standard
micronet mask and poly command are not supported (e.g. a
third party device) or are not enough to identify the device (e.g.
an XTPro application).

PRE_AUTOACQUISITION_DISCOVERY An optional sequence of operations that may be executed before
than retrieving the resources list from an instrument. Global
variables may be computed here and then used in the CPa to get
simplier expressions (e.g. mask 004)

PRE_RVD_DISCOVERY An optional sequence of operations that may be executed before
retrieving the information about the RVD. As for the CPa,
global variables may be computed here and then used in the
RVDPa to get simplier expressions (e.g. mask 004).

PRE_PARAM_WRITE A sequence of commands that is executed before each
parameter/parameter group writing (e.g. unlock cold
parameters)

POST_PARAM_WRITE A sequence of commands that is executed after each
parameter/parameter group writing (e.g. lock cold parameters).

ON_AUTOACQUISITION_START A program that is executed each time the auto acquisition
process is started (e.g. turn on the EWTV280).

ON_AUTOACQUISITION_STOP A program that is executed each time the auto acquisition
process is stopped (e.g. turn off the EWTV280).

PROTOCOL
MICRONET This feature is valid only if the protocol is micronet.
MODBUS This feature is valid only if the protocol is modbus.
ANY This feature is valid for both protocols.

0,1,2,3,...,n

An expression A sequence of expressions, one for each cell, starting from the
cell 0 and lasting as many cells are needed. The default page
has a maximum of 11 steps, but this limit can be exceeded, the
parser of the cells will/must stop at the first empty cell.
Expression must can be built using the explicit field access
operators (see 3.2.2) if a PROTOCOL is given (should not be
any), even if it’s not mandatory and not recommended.

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 17 of 27

2.12.1 An Alternate identification example, extension of micronet
commands.

The Energy XT Pro is a programmable device. This means that its resources and parameters are not
known a priori, because they depend on the application that is uploaded.

As a common practice, the application builder stores a value in a MODBUS (or micronet) register
to identify the application. So the device and application couple can be identified without shadow of
doubt reading the firmware version (provided by the standard Eliwell detection rule) and this value.

Thus, standard identification rules must be integrated with this additional register reading. This can
be accomplished using the DAIPa.

In the following table there is an example about the DAIPa of an Energy XT Pro application.

FUNCTION PROTOCOL 0 1
IDENTIFICATION MODBUS SET(MODELCODE)=T(H0311,2,HFFFF) INT(0,{1150=1},GET(MODELCODE))

This application may be identified by reading the MODBUS register H0311 (se cell 0). If the value
in the register is 1150 (cell 1) then the application is the desired application.

When using the IDENTIFICATION function, the return value of the last item of the sequence is
used as “existence” condition, so if a 0 is returned the identification is not successful, and it is
successful otherwise.

The result of this identification step is then merged with the standard micronet mask identification,
that it is still active because a “Firmware mask” number was provided in the LPa, so both
conditions must be true to get a successful identification. To completely disable the default
micronet mask identification see the next example about the identification of a third party device.

Notice the use of the MODELCODE keyword. This means that the stored value will be used in
computation where the model code is required (e.g. the lookup table in the MPa or each time a
MOD() is used in an expression).

If required, mask (FAMILYCODE), revision (REVISIONCODE), model (MODELCODE) and
polycarbonate (POLYCODE) codes can be overridden in computations using the proper keyword
(see the keyword between brackets).

2.12.2 An Alternate identification example, third party devices.
The PM710 is a third party energy meter, that supports the modbus protocol on a RS485 bus. It
does not support the standard micronet mask and poly identification, so in the LPa, where the mask
number is expected the following must be written:

Firmware Mask CUSTOM(10000) Mskxx

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 18 of 27

This means that this devices features a custom/third party identification method. The number
between brackets is a fictional mask number assigned to this 3rd party device. Fictional mask
numbers created outside Eliwell should start from 20000 and must be unique.

The identification method is expected to be in the DAIPa and if successful, the fictional mask
number will be assigned to the device.

FUNCTION PROTOCOL 0 1
IDENTIFICATION MODBUS SET(MODELCODE)=T(7003,2,HFFFF) INT(0,{1=15165},GET(MODELCODE))

This application may be identified by reading the MODBUS register 7003 (se cell 0). If the value in
the register is 15165 (cell 1) then the application is the desired application.

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 19 of 27

3 Expressions
Expressions are the core of a script language used to describe the dynamic behaviour of a device
driver. This allows to:

• Make the number of resources, their measurement unit and their format dynamic in function
of parameters or other resources.

• Create virtual resources by combination of other resources.

• Set up a custom detection rule.

3.1 Concept of program and workspace
The main usage of an expressions is as “one-shot” expression, it is evaluated and its value returned
as the requested value.

In some parts of the P04354 (DAIPa, RVDPa) the concept of program may be used. Expressions
can be chained together making a program.

A workspace with the variables used is associated to the program.

Some variables are defined by default such as the model code (accessed by the MOD() operator) or
the XD (data extraction variable). The default variables are always accessible, even if the
expression is outside a program.

To write a program, expression can be written in sequence and divided by a semicolon “;”.

3.2 List of Operators
Operators can be divided into the following categories:

• Reference access operators.
• Explicit Field access operators.
• Value operators.
• Complex operators.
• Logical operators.
• Sub expression operators.

3.2.1 Reference field access operators
The field access operators concerns receiving and sending data to the devices.

Reference field access operators have been introduced with the release of P04354. With the
adoption of these operators, expressions are placed at an higher abstraction level and are purged by
explicit field access details.

When a reference field access operator is encountered within an expression, the expression solver
will use the field access coordinates of the referred even. Field access coordinates of an item for the
micronet protocol are the values defined in the following columns:

• MICRONET_COMMAND

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 20 of 27

• MICRONET_ADDRESS
• MICRONET_SIZE_SUBADDRESS
• FILTER

While for the Modbus protocol are the values defined in the following columns:

• MODBUS_COMMAND
• MODBUS_ADDRESS
• FILTER

Supported operators are:

• THIS Self reference
• Params Reference to Parameter Access Coordinates
• Client Reference to Client Access Coordinates

3.2.1.1 Self Reference – THIS
This is the self reference operator. When this operator is encountered, the access coordinates of the
item are used. The syntax is the following:

THIS()

3.2.1.2 Reference to Parameter Access Coordinates – Params
This is the operator for the reference to a parameter. When this operator is encountered, the access
coordinates of the referenced parameter are used. The syntax is the following:

Params(label)

Where:
• label is the label identifier of the parameter.

3.2.1.3 Reference to Client Access Coordinates – Client
This is the operator for the reference to a client. When this operator is encountered, the access
coordinates of the referenced client are used. The syntax is the following:

Client(label)

Where:
• label is the label identifier of the Client.

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 21 of 27

3.2.2 Explicit Field access operators
The field access operators concerns receiving and sending datas to the devices. They differ from the
reference field operators because the access coordinates are explicitly declared as arguments of the
operator.

Due to this reason, they are deprecated in P04354. They are reported in this document as an help
to extract information from older documents and for special uses in the P04354, such as the 2.12
DataAcquisitionInit (DAIPa).

The following operators are supported:

• F Physical read
• L Logical read
• D Logical DRV_OS read
• T Modbus 0x03 read

3.2.2.1 Physical read – F
The physical read operator has the following syntax:

F(addressHx,byteCount,bitmask)
Where:

• addressHx is the hexadecimal memory address.
• byteCount is the decimal number of bytes to be read.
• Bitmask is the hexadecimal data mask.

An example of physical read is F(H0012,2,HFFFF).

3.2.2.2 Logical Read
The logical read operator has the following syntax:

L(area,offset,bitmask)
Where:

• Area is the hexadecimal index of the area.
• Offset is the hexadecimal offset in the area.
• Bitmask is the hexadecimal data mask.

An example of logical read is L(H12,H00,HFFFF).

3.2.2.3 Logical DRV_OS read
The logical DRV_OS read operator has the following syntax:

D(address,byteCount,bitmask)
Where:

• Address is a six digit hexadecimal number, built by the concatenation of area, multiarea and
element index.

• byteCount is the length of the data, which is by default 2 (string reading is not supported).

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 22 of 27

• Bitmask is the hexadecimal data mask.

3.2.2.4 Modbus 0x03 read – T
The modbus 0x03 read operator has the following syntax:

T(addressHx,byteCount,bitmask)
Where:

• addressHx is the hexadecimal address of the register.
• byteCount is the size of the read data in bytes (since modbus registers are 16 bits words, this

is an even number).
• Bitmask is the hexadecimal data mask.

An example of modbus read is T(H0012,2,HFFFF).

3.2.2.8 About the data format
Here are explained additional rules used in the interpretation of the data within the operators:

• An hexadecimal number must be written in the format Hx, where x is an hexadecimal
number written using upper cases only.

• A mask value must be an hexadecimal number and contain only contiguous bits. Mask with
“holes” (a zero bit between two one bits) are not allowed.

3.2.3 Access Modifiers
These operators may be applied to an access coordinate (both reference or explicit) to modify how a
value is managed by the expressions solver. Supported operators are:

• SIG Force sign modifier.
• UNSIG Force unsign modifier.
• REV Little endiand/Big endian modifier.

For these operators the syntax is

SIG(A) or UNSIG(A) or REV(A)

Where A is an access coordinate. The resulting expression is still an access coordinate (so another
access modifier may be applied to it, creating a chain of access modifiers).

3.2.3.1 Force Sign – SIG
The value obtained from the given access coordinate is considered as a signed value (even if the
original access coordinate is unsigned).

3.2.3.2 Force Unsign – UNSIG
The value obtained from the given access coordinate is considered as unsigned (even if the original
access coordinate is signed).

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 23 of 27

3.2.3.3 Reverse endianness – REV
The bytes obtained from the given access coordinate will be reversed. It can be used to change a
value from big endian to little endian or vice versa.

3.2.3.4 Chains of SIG and REV
SIG and REV are modifiers that can be applied together to a reading operator. SIG(REV(…)) states
that the bytes must be reversed and the value is signed.

An example of access modifier use is SIG(REV(THIS())).

NOTE: To avoid misunderstanding about the correct evaluation of the SIG and REV operands (it
makes difference if they are applied before or after the mask operation), they can be used only with
a “full mask”, that is a mask with all bits set to one. It’s not possible to modify the SIG and REV
syntax to a much clear version since it’s widely used in actual P0435 documents.

3.2.4 Value operators
Value operators are used to put a value inside an expression. The following operators are supported:

• FIX Constant value.
• CONST Constant value (alias).
• SET Sets a variable in the workspace.
• GET Retrieve a variable from the workspace.
• CREATEVALUE Creates a value merging a set of access coordinates
• MOD Retrieve the model code from the workspace.

3.2.4.1 Constant Value – FIX
FIX puts a constant value inside an expression. The correct syntax is

FIX(value)
Where:

• Value can be a number or a string.

An example of fix usage are FIX(31) and FIX(VMU00001).

NOTE: Use of a string as a constant value is allowed only during the evaluation of a measurement
unit. Use of constant strings within a complex expression leads to impredictable results and must be
avoided.

3.2.4.2 Constant Value – CONST
This is an alias for the FIX operand. CONST puts a constant value inside an expression. The
correct syntax is

CONST(value)

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 24 of 27

3.2.4.3 Set variable – SET
Sets a variable with the given name in the workspace. The syntax is

SET(variable_name)=expression

Where:

• Variable_name is the name of a variable in the workspace.

When “expression” is evaluated, its value is stored in the workspace memory as a variable with the
“variable_name” identifier. If no variable with this name exist it is created, otherwise the existing
variable is overwritten. After that, the value may be retrieved with the GET operator.

An example of Set usage is SET(MEASUREMENT_UNIT)=Params(dro).

3.2.4.4 Retrieve variable – GET
Gets the variable with the given name from the workspace. The syntax is

GET(variable_name)
Where:

• Variable_name is the name of a variable in the workspace.

When the GET is executed the value of “variable_name” is retrieved from the workspace. If no
value with the given identifier exists then the expression is considered faulty an it’s not evaluated.

An example of Get usage is
INT(VMU00000,{0=VMU00000,1=VMU00001},GET(MEASUREMENT_UNIT)).

3.2.4.5 Create Value – CREATEVALUE
Builds a value extracting bits from the device using a set of access coordinates and appending the
result together. The syntax is

CREATEVALUE(coords1, coords2,…,coordsn)

Where
• Coordsx is an access coordinate.

Bits are appended in a little endian way, where the bits extracted using coords1 are the less
significant bits, while the bits extracted using coordsn are the most significant bits.

3.2.4.6 Model code – MOD
Retrieves information about the instrument model from the workspace. The value is retrieved a
stored during the identification step. If no custom identification rule is provided the standard Eliwell
model code is returned, otherwise the value set as MODEL_CODE in the custom detection rule is
returned.

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 25 of 27

The syntax is
MOD()

NOTE: The data stored in the workspace are evaluated at the instrument identification step, no
field access in involved when using these operators.

3.2.5 Complex operators
Complex operators perform complex operations on the operand. Complex operators are

• INT The lookup operator
• LOOKUP The lookup operator (alias)
•
•

3.2.5.1 Look-up operator – INT
The look-up operator performs a look-up operation. The syntax is

INT(defaultValue,{key1=value1,…,keyn=valuen},expression)

3.2.5.1.1.1.1 Where

• defaultValue is the default value to be returned if no one of the keys matches with the
evaluated expression. Please note that the expression must have a value anyway. If the
expression has no value (e.g. a communication error), no value is returned.

• Keyx=valuex is a set of look-up values. If the evaluate expression is equal to one of the key
values, then the associated value is returned as result of the lookup operation.

• Expression is an expression with a return value.

An example of INT usage are INT(0,{17=1},MOD()) and !INT({0,-4,4,-5,5} ,
SIG(REV(F(H101C, 2, HFFFF)))).

3.2.5.2 Look-up operator – LOOKUP
This is an alias for the INT operand. The LOOKUP operator performs a look-up operation. The
syntax is

LOOKUP(defaultValue,{key1=value1,…,keyn=valuen},expression)

3.2.6 Logical operators
These are logical operation on operands. Supported operators are:

• And “&”
• Or “|”
• Xor “^”
• Equals “=”
• Greater than “>”

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 26 of 27

• Less than “<”
• Not “!”
• Negate “~”

3.2.7 Arithmetical operators
These are the simplest arithmetical operators. Supported operators are:

• Addition “+”
• Subtraction “-“
• Multiplication “*”
• Division “/”

3.2.8 Arithmetical Cosiderations
A few words must be spent on how the values are handled when evaluating an expression.

3.2.8.1 About the representation of numbers
Numbers within expressions are always integers (signed or unsigned). Size may vary, but only
numbers up to 32 bits are allowed, expressions handling numbers with size bigger than 32 bits may
lead to unpredictable results.

Unless otherwise specified, a number is a 32 bits signed integer.

Wherever it is needed, numbers will be extended to 32 bits.

Fractional numbers are not allowed. It’s still possible to represent a fractional number to an user, by
handling its FORMAT (see 2.1.3), but all the calculations involving this number before being
shown to the user are done on integers.

This choice was done to prevent misunderstandings and ambiguity with the use of expressions, such
as misplacement of the fractional point or wrong assumptions about the size of the operands.

3.2.8.2 About the output of an arithmetical or a logical operation
The output of an arithmetical or logical operation is always a 32 bits signed integer.

For a logical operator the output will be a 32 bits signed one if the operation is TRUE and a 32 bits
signed zero if the operation is FALSE.

3.2.8.3 About the “Equals” operator
The equals operator will work only of operands of the same type (numbers with number, booleans
with booleans, strings with strings and time with time). Comparison between items of different
nature will always return a FALSE.

Comparisons are done by value, regardless of the binary representation of the value. So:

• Size does not matter when comparing numbers. E.g. H00000001 (size is 32 bits) is equal to
H01 (size is 32 bits).

COMPANY CONFIDENTIAL © 2001-2010 - Eliwell Controls s.r.l
Document Title: P04354 Rules
Document Subject: Description of rules for P04354 Update Date 15/11/2010
Document File Name: P04354Rules.doc Page 27 of 27

• Sign does matter when comparing numbers, so HFFFF signed is NOT equal to HFFFF
unsigned.

• Binary representation does not matter when comparing Booleans. H02 is equal to H01 if the
oprands are Boolean.

• String representation does not matter. Strings will be converted to UNICODE (according to
the proper conversion rule) and then compared.

• String codes won’t be translated.
• Times will be converted to a full time object before being compared. This means that when

evaluating times the missing data (e.g the year) will be filled with the current time data.

With very few exceptions, comparisons in expressions are about comparisons between numbers, so
keep well in mind the first two points.

3.2.8.4 About the “Greater Than” and “Lesser Than” operators
As the Equals operator (see 3.2.8.3) the Greater Than and Lesser Than operators works only on
operands of the same type. Comparison between items of different nature will always return a
FALSE and in this case they have a less intuitive meaning.

Comparison between values is done by value and does not apply to strings.

3.2.8.5 About the division by zero
A division by zero is managed as an expression error. If a division by zero occurs, then the whole
expression is judged as “not evaluable”. This can lead to malfunctioning such as undetectable
instruments or no link errors. So division operator must be use with care.

3.2.9 Sub expression operator
It’s possible to define a sub expression writing it within round brackets “(“ and “)”. Sub expression
usage has some limitations. A sub expression can’t be used

• As argument of a field access operator.
• As default value of a lookup operation.
• As member of a key,value pair in a lookup operator.

