TelevisGo

Data Download Procedure

User Protocol

EN

CONTENTS

T OVERVIEW ...ttt ettt sttt sttt sttt sttt sttt ettt sttt sttt ettt ettt bbbt b et et ettt st ebesesnsnsnten 3
1.11 Consumer Initiative 3
1.1.2 Service Initiative 3
113 Mixed Mode 5
2 GENERAL FRAME FORMAT ...ttt ettt se et sae e e et st sss e et s e e e et ssesasasessesesasasssssesessnsnsssesanensns 7
3 IMIESSAGES. ..t a bbb bbbk b bbb e s e s e e s e s s e aesasenene 8
3.1 AULhentiCation REGUESE (HAT) ...ttt ettt b s bbb ettt 8
3.2 Authentication ChalleNge (HA2) ...ttt ettt eb s bbbttt 8
3.3 AUuthentiCation RESPONSE (HA3) ..ottt tses st eb st b st b sttt sttt st bbbt s bbb sesetacs
3.4 Positive Acknowledge or ACK (H11).c.cccveurecrennee.
3.5 Negative Acknowledge or NACK (H12)
3.6 Data Chunk Transmission (H21).....cccccoceverrenrunenee.
3.7 Data ChUNK ADOIT (H22) ...ttt ettt ettt et st e et ae ettt e s s e st et ens
3.8 Configuration REQUEST (H20)ovocueiiririeecieicerisesieiesisisesstssssessssssssssssasssssssesssssssssssssesssssssssssesssssessssssessssssessssssessssssassnsssessssns 9
3.9 HistOriCal Data REQUEST (H23) ...ttt ssss st ssssssssss s s sssssssssessssssssssesssssssssssssessssssnssssssesnssssassssssns 10
3.10 Real TimMe Data REQUESE (H24) ...t sssss s sssssssssssssssssssssssssssssssssssssesssssssssssssessssssessssesessssssassssssns 10
3.11 Real Time CoNfiGUIe REQUEST (H25) ...ttt ssss s sssssss s sssssssssssesssssssssssssessssssssssssesssssssssssssns 1
3.12 Parameters REad REQUEST (H26) ...ttt ssssassssss s s sssssss s sssssssessssesssssessssssessssssessssesessssssassnsssns 1
3.13 Parameters WIit€ REQUESE (H27).....u ettt sssss st ssss s ssssssessssessssssessssssessssssassssssessssssassnsssnns 12
3.14 Execute Device COMMANA REQUESE (H28)ouviiruriiririeeieeceieese s ssesstsssstssessssssnns 12
3.15 Get System INTO REQUEST (H29) ..ottt sss s sss s s st s s st a s s ssssessssssessssssessssnsnssnsnsnes 13
3.16 Update ClOCK REQUEST (H30).....c.ooieeieereeiririeieeiriresieessssssssseessssssssssssssssssssssssssssssssssssssessssssessssessssssessssssessssssesessssessssssesssssens 13
3.17 Open Connection (H50)
318 KEEP ALIVE (H5T) oottt es e ee st e s bbb bbb s s s e s s s en s e s et
4 DATA FORMATS ...ttt e ettt st et st et sa et st s e e et ssebe s ase st st esesasasasesesasasesanenensesesasanensens
4.1 THMIE FOTIMAT .ttt ettt ettt es sttt st es st s e s st e st s e s et et s s st s b se st b et s b b et assaesenanen
.2 SEEING FOIMMAL .ottt st s ss s b s st b et s bbb ss s b ss b b ee s e b s s s et b ss s e b et sseebebsssebabs s e s b sssebbsseesensnsessssnsasanes
5 AN AUTHENTICATION EXAMPLEooooeieeerereirtr sttt sttt sttt a e enes 16
6 DATA TRANSFER XML FORMATS ...ttt ss s se s ss e s e s e sasesasasssasesasasasssasesans 17
6.1 Data Transfer CONFIGUIAtION ...ttt ettt sss bbb es b ss e bs s b b ss s b ebss s sessssssessssesessssasasantns 17
6.2 REQUESE QUETY IMESSAZE ...ttt etesesesses sttt esessssssssss st ssessssssssssssssssssssssssssssssssesssssssnsnsnsnssssssesssesssesssnsnsnssnssssssssess 18
6.3 RetrieVEd HIiSTOICAl DAta.....ccvueeeerereeeicireieicireieiees sttt sttt sttt sttt et ee st bensnens 18
6.4 SyStem INTOrMAtiON REGQUEST.....c.vieeieeeeeecc ettt ettt et s st b e sas b ss b s b b s es s b s ss s nasensebsnsnsaes 19
6.5 SyStem INTOrMAtiON RESPONSE ...ttt et bbbt b s bbb st b s b b s b bssss s bssassesassssabsnsnsaes 20
6.6 CUrrent CONFIGUIAtioON REQUESTcoviveiicciccteee ettt ettt as bbb s b b ss s bbb s bbb ss b e s sessebsssssabsssasessssnsassnsnsass 20
6.7 CUrrent CONFIGUIAtioON RESPONSE.......cciueiieieiieieiee e ics ettt sss b sassess s s s ssbesssse s sssse s ssssessssssessssssassstesessssnsassnsnsans
6.8 SEt REAL TIME FIlLer REQUESTcveeeeeieeeteietcet sttt sttt st sss e ses b s bbb bbb e bbb s b b s st b ssebebsssesebessssesssensassnsnsans
6.9 Device Command Request........cccocceeuvrcererrerererennnnns
6.10 Device Command Response
6.11 Parameter REAA REQUEST.......cccceveieeeieiieeietc ettt ses s ss e sss e sas s ses b b s s b b s ss s s s sesesssbe b ssssessssssebsssssabssessasessssessssnsassnsnsans
6.12 Parameter REAA RESPONSEceveieeeieerieieeiceisstetse st ses st sss s sss s sss b s s s b essssssessssesessssesssstessssssessssssesssessasssssessssnsassnsnsans
6.13 PArameEter WIILE REQUESTc.cveeveieeeieeeieistieteisste sttt sss b sss s sss b s sssbessssssessssesessssesssssessssssassssnsesssessasssssessssnsassnsnsass
6.14 PArameter WIILE RESPONSEccuvveeeieeeeereeeietssiesssestesssesssssssssessssesessssessssssessssssassssssssssesassssessssssessssssessssssassssssesessssessssssassssesns
6.15 OPEN CONNECLIONcuivieteieeetetcetetsee e tsste sttt s s b s sesssbsssebesssse s ssssessseste s ssssassssesassssesessssesassntesassseesassssassssssasssssassssnsassnsnsans
7 ADAPTIVE FILTERS BEHAVIOR ...ttt ettt st eae et es e sa s s s se st e s ssasassesesesanas 27
7.1 AdAPTIVE FILLEr EVALUATION ..cceieieiieetreieectreitcrcttctste ettt sttt sttt sttt bbb seaen 27
7.2 Adaplive SElECOr EVALULION ...ttt sttt sttt bbb stieen 27
7.3 HIErarChICal EVALUATION ...ttt ettt sttt sttt ettt e s s e st etsssessnanans 27
7.3.1 Adaptive Interface Selector Evaluation 28
7.3.2 Adaptive Device Selector Evaluation 28
7.3.3 Adaptive Resource Selector Evaluation 28
7.4 XML STrUCUIE @nNd EXQMPLEScvveeeieierieieecietcete ettt s b sas b ses b s e b s s s st b b et b s st b sesbesssasbebesestebenssbesasentesanensans 28

User Protocol
2/32

1 OVERVIEW

Data transfer communication protocol is a feature that allows a client program (hereafter called the consumer)
to query for data stored on the supervisor/monitoring server application (hereafter called the service).

Data exchange is performed through a series of TCP messages and responses over a connection established
between the consumer and the service.

1.1.1 Consumer Initiative

Connection can be opened by the consumer (client-side initiative) who takes responsibility into calling the
services IP and port in order to establishing the connection.

This modality is hereafter called pull mode and comes handy when the service’s IP and TCP port are easily
reachable and don’t change over time, while the consumer’s ones may vary a lot.

More than a consumer may contact the service in this way, minding that the more consumers simultaneously
ask for data, the more work is loaded onto the service (and its performance will be affected).

1.1.2 Service Initiative

Otherwise, the service can take responsibility into calling the consumer’s IP and port (server-side initiative) thus
establishing the connection. Service exposes settings that the user may configure in order to define:

e the consumer’s IP (or URL) and TCP port,

e abackup consumer’s IP (or URL) and TCP port (in case the first one is down),

e the frequency with which the service calls the consumer

e the number of attempts (and their frequency) in establishing the connection

e a timeout after which an established connection is closed (unless a keep-alive is periodically being
sent by the consumer)

This modality is hereafter called push mode and come handy when the service’s IP and/or port are
unreachable (e.g.: local IT regulations), or change frequently (dynamic IP).

In push mode the service periodically attempts to establish a connection to the consumer. Connection is
established when the consumer (which should be listening to the set port) accepts the incoming connection.
Once the connection is established, the service will drop it if it doesn’t receive messages from the consumer
for a set period of time. In order to keep the connection alive, the consumer may send any request. If it does
not need any data, the consumer may send a keep-alive message.

Connection attempts work as follows:

User Protocol
3/32

\ 4

period
A 4 A
Contact consumer Wait for attempt No, bt attempts
< delay D — remain
Responds?
No, and number of
attempts reached
Wait for attempt
delay
A 4
Contact backup Wait for attempt
No, but attempts
consumer delay D — remain "
v
Yes Responds?
-~ No, and number of
e attempts reached
Connection Requests and r 0Nses Connection timeout
> established N T dopsad?

Wait for retry

User Protocol
4/32

1.1.3 Mixed Mode

Push mode and pull mode may coexist as long as there is only one consumer reached through push mode whilst
all the others use the pull mode.

sd On-Demand Data Transfer /
% @ e Q
_-
-
Constjmer Ser\lnce cryptedPassword is computed from the Datak‘Jase
1 H SHA1-processed user's original '
)
! [H41] authenticationRequest 1 password and the token provided with \
the previous H42 command. E
4 Original password never travels !
[H42] authenticationChallenge(token) Pt BAEL] . . \
. s through the connection nor it is saved \
PPt on the database. E
[H43] authenticationResponse(userNgme,crypreHPassword) ! T !
=)
! |
authenticatiunCheck(userNiame, cryptedPassword) '
alt authenticationResult) — wrongPassword
[H12] negativeAcknowledge | [~ T TTTTTTTTTTTTTTTTTTTTTTTTTTTT
[failed] ez] :
n T :
""""""""""""""" 155 A
[succeded] ! ! correctPassword \
)
' I Sttt |
H [H11] positiveAcknowledge T
I__..'< __ !
: = :
ref
Data Transfer
H | 1
N ! 1
! i |
: : :
! ' \
(from Actors)

An overview of the authentication challenge between Consumer and

System in pull mode

User Protocol
5/32

sd Data Transfer)

Until
*all requested data has been transferred, or
*a data chunk abort command [H22]is sent.

X

Consumer

O

Service

\
\ opt transferMode)
\

\ [push]

——qmmm e |- -

[H23] dataRequest(query)

dataCollection(query)

[see note]

loop transfer)

[H21]
dataChunkTransmission(chunk)

historicalDataChunk(chunk)

[abort]
The service willre-send the | | | (/€]
last sent chunk, whenever a
[H12]is recieved. -—-_-_—;—_—_—:—_—
To abortthe transmission, a frue]
data chunk abort[H22]

should be sent.

alt chunkReception)

[H22] dataChunkAbort
o =
________ T
1
Eg}_ [H12] negativeAcknowledge 1
—_——e———=T T :

retrievelNextChunk

(from Actors)

Historical data transfer between System and Consumer

User Protocol
6/32

2 GENERAL FRAME FORMAT

The following table describes the general frame format for all the messages sent from e to the service. All the
values are considered big endian.

Header Command Data CRC32
ServiceType Version SendingTime Length Command Data CRC32
1 Byte 1 Byte 7 Bytes 4 bytes 1 Byte n Bytes | 4 Bytes
Where
Field Name Description
ServiceType The id of the specific service. For data transfer use H44
Version Protocol version. This version is HO1.

SendingTime The sending time of the message on the sender’s side. It must be formatted according to
the time format (see Real Time Data Request (H24) (below).

Length The length of the message, including the header.

Command The command byte.

Data The data field. It is optional and its content changes according to the command byte.
CRC32 The CRC32. The polynomial is the same used by CCITT-32 (HEDB88320).

User Protocol
7132

3 MESSAGES

3.1 Authentication Request (H41)

The authentication request message must be sent by the consumer as first message after the establishment of
the connection. No data field must be provided

ServiceType Version SendingTime Length Command CRC32
H44 HO1 time value H00000012 H41 CCITT-32

The service may reply to this message with an authentication challenge or with a negative acknowledge. If a
negative acknowledge is provided the service will disconnect the consumer.

3.2 Authentication Challenge (H42)

The authentication challenge provides a set of random data that must be used by the consumer to compute the
expected cryptographic reply that is needed to authenticate the user.

ServiceTypeVersionSendingTimeLengthCommand| Data CRC32
Random | CCITT-
bytes 32

The consumer must reply with an authentication response message. Any other reply will be discarded and
the connection terminated by the service.

Ha44 HO1 time value |Length| H42

3.3 Authentication Response (H43)
With the authentication response the consumer provides the cryptographic reply requested to authenticate it.

Header Command Data User CRC32
13 bytes H43 20 bytes Cryptographic reply username CCITT-32

The username provided is the UTF8 representation of the username.

The 20 bytes cryptographic reply is computed with the following algorithm:

e Compute the output (PW-SHAT) of the SHA1 algorithm using the UTF8 representation of the user
password as input.

e Append the output (PW-SHA1) of the previous step to the random bytes provided by the
authentication challenge to form a single array (PRE-SHA1).

e Compute the output of the SHAT algorithm using the output (PRE-SHAT1) of the previous step as
input. Use this output as the “20 bytes cryptographic reply”.

e If the authentication is successful the service will reply to this message with a positive acknowledge
and after that the consumer may issue further commands.

e If the authentication is not successful, then the service will reply with a negative acknowledge and
the connection will be terminated.

34 Positive Acknowledge or ACK (H11)

The positive acknowledge is used as general positive reply to a request. See the documentation of the single
request to know if this is supported.

ServiceType |Version | SendingTime Length Command | CRC32
H44 HO1 time value | H00000012 H11 CCITT-32

3.5 Negative Acknowledge or NACK (H12)

The negative acknowledge is used as general negative reply to a request. It may or may not contain an optional
series of n status bytes. See the documentation of the single request to know if the H12 command is supported.

Header Command| Statuses [optional] CRC32
13 bytes| H12 [optional] n-bytes statuses|CCITT-32

Here is a table of the status bytes in use.

Status Returned by| Meaning
1 H24 Real time request is too close to the previous one.
2 H20 The submitted filter does not match any resource.
17 Any Internal error, report it to Eliwell.
Any other value None Reserved for future use.
User Protocol

8/32

3.6 Data Chunk Transmission (H21)
The data chunk transmission is used by the service to the consumer.
Header | Command | Chunkld | Flags | StartTime | EndTime Data CRC32
13 bytes H21 2 bytes |1 byte | time value | time value n-bytes data chunk CCITT-32
Where

Field Name Description

Chunkld Is a progressive index of the chunk.

Flags Is a set of flags used to inform about the compression of the data or the last data chunk
(see next table).

StartTime Starting time of the data (timestamp of the oldest datum present in the chunk).

EndTime Ending time of the data (timestamp of the newest datum present in the chunk).

Data Data block. Data within it may be compressed (zip algorithm) or plain, according to the
compression flag. The plain data depends upon the request that generated the data
chunk transmission. For detailed explanation of the various plain data see Errore.
L'origine riferimento non é stata trovata. (Errore. L'origine riferimento non é stata
trovata.).

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU areAcquisitionsStopped RFU isCompressed isLastChunk

Where

Bit Name Position| Description

isLastChunk 0 It is set if this is the last chunk.

isCompressed 1 It is set if the data field is compressed

RFU 2 Reserved for future use.

areAcquisitionsStopped| 3 It is used when the request is a Real Time Data Request Command (H25)

only. It is set if the acquisitions are stopped.
RFU 4-7 Reserved for future use.

The consumer may reply to a Data Chunk Transmission in three ways:

e Positive Acknowledge or ACK (H11) (see above). The consumer states that the transmission is

successful. If this is not the last chunk the next chunk will be transmitted, otherwise both the
service and the consumer are allowed to disconnect.
e Negative Acknowledge or NACK (H12) (see above). The consumer states that an error occurred

during the transmission. The service will retry the transmission of the same chunk. The consumer
must not provide any status byte if NACK is used in this way.
e Data Chunk Abort (H22), (see below). The consumer states that the transmission will be aborted.

3.7 Data Chunk Abort (H22)
The data chunk abort message is sent by the consumer to abort a data chunk transmission.
ServiceType |Version | SendingTime Length Command | CRC32
H44 HO1 time value H00000012 H22 CCITT-32
3.8 Configuration Request (H20)
The configuration request is sent by the consumer to request data.
Header Command Flags Request CRC32
13 bytes H20 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,
according to the isRequestCompressed flag. For detailed explanation of the plain data see
Current Configuration Request (below).

User Protocol
9/32

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed isReplyCompressed RFU
Where
Bit Name Position | Description
RFU 0 Reserved for future use.
isReplyCompressed 1 The data contained in the reply will be compressed
isRequestCompressed 2 The request block is compressed.
RFU 3-7 Reserved for future use.

The service may reply in the following ways:

e Negative Acknowledge or NACK (H12) (see above). The service states that an error occurred while
decoding the packet or parsing the XML request.

e Data Chunk Transmission (H21) (see above). The service sends data about the current configuration,
according to Current Configuration Response. When the request is submitted without
authentication, the server disconnects the consumer after the completion of the sending of data.

3.9 Historical Data Request (H23)

The historical data request is sent by the consumer to request historical data of specific resources over a span of
time.

Header Command Flags Request CRC32
13 bytes H23 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,
according to the isRequestCompressed flag. For detailed explanation of the plain data see
Errore. L'origine riferimento non é stata trovata. — Request Query Message (below).

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed isReplyCompressed RFU
Where
Bit Name Position | Description
RFU 0 Reserved for future use.
isReplyCompressed 1 The data contained in the reply will be compressed
isRequestCompressed 2 The request block is compressed.
RFU 3-7 Reserved for future use.

3.10 Real Time Data Request (H24)

The configuration request is sent by the consumer to request current configuration’s real time data.

Header Command Flags CRC32
13 bytes H24 1 byte CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
The following table explains the meaning of the flags byte.
7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU RFU RFU RFU RFU isReplyCompressed RFU
Where
Bit Name Position Description
RFU 0 Reserved for future use.
isReplyCompressed 1 The data contained in the reply will be compressed
RFU 2-7 Reserved for future use.
User Protocol

10/32

The service may reply in the following ways:

e No reply message and sudden disconnection. This happens when a NACK reply should be sent and
the request was submitted without authentication.

e Negative Acknowledge or NACK (H12) (see above) with no status bytes. The service states that an
error occurred while decoding the packet.

e Negative Acknowledge or NACK (H12) (see above) with status code HO1. The service states that the
current real time request is too close to the previous one.

e Data Chunk Transmission (H21) (see above). The service sends data about the real time data,
according to

e Real Time Response. When the request is submitted without authentication, the server disconnects
the consumer after the completion of the sending of data.

3.11 Real Time Configure Request (H25)

This is sent by the consumer to set the configuration of the data to be retrieved with a Real Time Data Request
(H24).

Header Command Flags Request CRC32
13 bytes H25 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,
according to the isRequestCompressed flag. For detailed explanation of the plain data see
Set Real Time Filter Request.

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed RFU RFU
Where
Bit Name Position Description
RFU 0-1 Reserved for future use.
isRequestCompressed 2 The request block is compressed.
RFU 3-7 Reserved for future use.

The server may reply in the following ways:

e Negative Acknowledge or NACK (H12) (see above). The server states that an error occurred while
decoding the packet or parsing the XML request.

e Negative Acknowledge or NACK (H12) (see above) with status code H02. The server states that the
filter provided with this request does not match any resource. The current real time configuration is
not changed.

e Positive Acknowledge or ACK (H11) (see above). The server states that the change in configuration
was successful.

3.12 Parameters Read Request (H26)

This is sent by the consumer to execute a parameter reading operation.

Header Command Flags Request CRC32
13 bytes H26 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,
according to the isRequestCompressed flag. For detailed explanation of the plain data see
Parameter Read Request.

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed isReplyCompressed RFU
User Protocol

1132

Where

Bit Name Position | Description

RFU 0 Reserved for future use.

isReplyCompressed 1 The data contained in the reply will be compressed
isRequestCompressed 2 The request block is compressed.

RFU 3-7 Reserved for future use.

The server may reply in the following ways:
o Negative Acknowledge or NACK (H12) (see above) with no status bytes. The server states that an

error occurred while decoding the packet.
e Data Chunk Transmission (H21) (see above). The server sends data about the outcome of the

parameter reading operation, according to Parameter Read Response. When the request is
submitted without authentication, the server disconnects the consumer after the completion of the
sending of data.

3.13 Parameters Write Request (H27)

This is sent by the consumer to execute a parameter writing operation.

Header Command Flags Request CRC32
13 bytes H27 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,

according to the isRequestCompressed flag. For detailed explanation of the plain data see
Parameter Write Request.

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed isReplyCompressed RFU
Where
Bit Name Position | Description
RFU 0 Reserved for future use.
isReplyCompressed 1 The data contained in the reply will be compressed
isRequestCompressed 2 The request block is compressed.
RFU 3-7 Reserved for future use.

The server may reply in the following ways:
e Negative Acknowledge or NACK (H12) (see above) with no status bytes. The server states that an

error occurred while decoding the packet.
e Data Chunk Transmission (H21) (see above). The server sends data about the outcome of the

parameter writing operation, according to Parameter Write Response. When the request is
submitted without authentication, the server disconnects the consumer after the completion of the
sending of data.

3.14 Execute Device Command Request (H28)

This is sent by the consumer to execute a command on a device.

Header Command Flags Request CRC32
13 bytes H28 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,
according to the isRequestCompressed flag. For detailed explanation of the plain data see
Device Command Request.

User Protocol
12/32

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed isReplyCompressed RFU
Where
Bit Name Position | Description
RFU 0 Reserved for future use.
isReplyCompressed 1 The data contained in the reply will be compressed
isRequestCompressed 2 The request block is compressed.
RFU 3-7 Reserved for future use.

The server may reply in the following ways:

o Negative Acknowledge or NACK (H12) (see above) with no status bytes. The server states that an
error occurred while decoding the packet.

e Data Chunk Transmission (H21) (see above). The server sends data about the outcome of the
execution of the command(s), according to Device Command Response. When the request is
submitted without authentication, the server disconnects the consumer after the completion of the
sending of data.

3.15 Get System Info Request (H29)

This is sent by the consumer to get system information such as Plant Name, MAC Address, Plant Notes and
versions of Application, OS and Bootloader.

Header Command Flags Request CRC32
13 bytes H29 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,
according to the isRequestCompressed flag. For detailed explanation of the plain data see
System Information Request.

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed isReplyCompressed RFU
Where
Bit Name Position | Description
RFU 0 Reserved for future use.
isReplyCompressed 1 The data contained in the reply will be compressed
isRequestCompressed 2 The request block is compressed.
RFU 3-7 Reserved for future use.

The server may reply in the following ways:
e Negative Acknowledge or NACK (H12) (see above) with no status bytes. The server states that an
error occurred while decoding the packet.
e Data Chunk Transmission (H21) (see above). The server sends data about the system information
according to System Information Response. When the request is submitted without
authentication, the server disconnects the consumer after the completion of the sending of data.

3.16 Update Clock Request (H30)
After authentication it’s possible to update the system time with the following command

Header Command Updated time CRC32
13 bytes H30 time value CCITT-32

The server may reply to a Data Chunk Transmission in two ways:

e Positive Acknowledge or ACK (H11) (see above). The server states that the update is successful.
e Negative Acknowledge or NACK (H12) (see above). The server states that an error occurred during
the transmission. Clock update is not effective.

User Protocol
13/32

Please note that the reply may require several seconds before being sent because updating the system clock
may imply stopping the auto-acquisition and restoring the auto-acquisition status to the original value.

3.17 Open Connection (H50)

This is sent by the server to the consumer specified address to initiate a connection (push mode).

Header Command Flags Request CRC32
13 bytes H50 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,
according to the isRequestCompressed flag. For detailed explanation of the plain data see
Open Connection.

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed RFU RFU
Where
Bit Name Position Description
RFU 0-1 Reserved for future use.
isRequestCompressed 2 The request block is compressed.
RFU 3-7 Reserved for future use.

3.18 Keep Alive (H51)

This message is periodically sent by the consumer to the server that initially created the connection via the Open
Connection (H50) message.

Header Command Flags CRC32
13 bytes H51 1 byte CCITT-32
Where
Field Name Description
Flags All flags are reserved for future use.

User Protocol
14/32

4 DATA FORMATS

4.1 Time Format

The following table describes how to compose the fields related to time. All values are big endian. The time
range is the same of the .NET DateTime struct, so the time range is 12:00 January 1st 0001 to 11:59:59 December
31 9999.

Year Month Day Hour Minute Second

2 byte 1 byte 1 byte 1 byte 1 byte 1 byte
E.g.: The time September 29th 2009, 08:59:27 AM becomes

Year Month Day Hour Minute Second

2009 September 29th 08 59 27

HO07D9 HO09 H1D HO8 H3B H1B

4.2 String Format

Where a field (e.g.: user name) requires a string, the string is the zero-terminated UTF-8 representation of that
string, being the first byte the leftmost in the resulting array.

E.g.: The string becomes:

Unicode Char n i fi o Zero-termination
UTF-8 H6E H69 HC3 HB1 H6F 0

User Protocol
15/32

5 AN AUTHENTICATION EXAMPLE

This example describes the authentication handshake between a server (e.g.: TelevisCompact) and a client (e.g.:
a Consumer).

Let the username be and the password and the transaction time 29th September 2009, 08:59:27.
The client connects to the server with an authentication request message:

ServiceType Version SendingTime Length Command CRC32

44 01 |o7]p9o9|1D |08 [3B |18 |00 |00 00 |12 41 9C [97]70 65
The server replies with an Authetication Challenge message. For the sake of simplicity let the random byte
vector be composed by just two bytes [0x07 0x25].

ServiceType (Version SendingTime Length |Command [Random| CRC32

44 01 lo7pp9jpsfipjosBliBloojoojoofi4] 42 |07 [25 2ABE|C3[B3
The client then computes the output (PW-SHAT1) of the SHA-1 algorithm using the UTF-8 representation of
the password, attaching it to the random bytes extracted from the challenge message:

Random PW-SHA1 (SHA-1 applied to [esparia])

07 |25 |96 |33 [DC |28 | E8 [0 |16 [9A [D8 | E4 | ED |22 [9D |6D [8C [3A |03 [09 |09 | C5
After that client computes the output (cryptographic reply) of the SHA-1 algorithm using the previous vector
as an input, attaching to the end of it the zero-terminated UTF-8 representation of the username:

Cryptographic reply (SHA-1 applied to Random + PW-SHA1) Username (hnifio))
9C |F5 |F8 [9F [BC [cD [DC [cA [9F |04 [EC |9B [81 |3 [30 [D5 |62 [C4 [3E |41 |6E |69 [C3 [B1 [6F |00

This vector is inserted into the authentication response as follows:

wn wn ()
) [} 0 < [
2| 5 a = S l=2| & o]
a = 5' s 3 ™ O = ~
S8 = | 5 |28 & Q
< | 3 = = S < = 3)
© 3 o = m
m o —
A

20

44 | 01 |07 (D9 |09 |1D {08 |3B |1B {00 |00 (00 |2C | 43 bytes 6 bytes|AB | C3 |A2 |C7

If the authentication is successful the server replies with a positive acknowledge:

ServiceType |Version SendingTime Length Command CRC32
44 01 |o7|p9jos|1D |08 381800 00|00 [12 M F7]Fcf21]o1
After that, the client may send a new message.

User Protocol
16/32

6 DATA TRANSFER XML FORMATS

Queries and data through the Consumer-System connection are XML messages wrapped in a binary protocol
(see Errore. L'origine riferimento non é stata trovata., Errore. L'origine riferimento non é stata trovata.).
Furthermore, the data transfer configuration used by the push mode could be exported to or updated via an
XML file. This section describes the XML format for configuration, request query messages and retrieved
historical data.

6.1 Data Transfer Configuration

Data transfer configuration could be defined using an XML file; its XML Schema Definition (XSD) is described
here.

mode 0.1
[=] type = complexType
type {(union} continuous
retryDelay | duration PTEM
maxRetries | nonNegativelnteger | 3

configuration ,J-| @_ address 0.3
=] type = complexTyps T —

type = anyURI
ishctive boolean |fake
getMachddress | boclean | fake initialPosition 0.1
getRowld boolean | fake type = (union}

filtar -::..1,J]
LI

= type = complexTyps
culturs |5tring

e All direct attributes and elements are optional. If missing, a default behavior or value is used.

e The data transfer configuration may be activated (data are sent to the Consumer at specified time
intervals) or deactivated (no data is pushed to the Consumer) using its isActive attribute. The
default for this attribute is falsel. The other two optional attributes have this meaning:

e getMacAddress: is a boolean attribute that, if set to firuel, adds the System’s MAC address to the
retrieved data. If this attribute is missing, then it is assumed to be [false.

e getRowld: is boolean attribute that, if set to frue, adds a unique identifier to each data row in the
retrieved data. If this attribute is missing, then it is assumed to be [false].

e The mode element defines the triggering condition and retries policy for the data push.

e Its type attribute could be valued with either the string (meaning that data are sent at
each synchronous save), or with a time span defining the pace at which data are sent. Its default is
continuous|

e retryDelay a non-negative duration representing the amount of time to wait before attempting a
retry on a failed transmission. Its default is 5 minutes (PT5M).

e maxRetries is a non-negative integer number defining how many retry could be attempted. Its
default is 3.

e |f the mode element is missing, the default behavior is that of a continuous push with 5 minutes of
retry delay and at most 3 retries.

e Any address element is a unique resource identifier (URI) defining address and port to be used for
pushing data. Usually, at least one must be defined, and the first address is the primary target for
the push whilst subsequent one(s) are considered backup addresses. If, at the time of transfer, the
primary target is not available, the 2nd and 3rd one (if defined) are attempted before considering
the transfer failed.

e If no address is defined, the configuration is considered not active independently by the isActive
attribute.

e The initialPosition element could be valued as lunchanged, , lnewest, or a timestamp. It makes
sense only before the first data transfer or after a configuration upgrade and defines the initial
datum to be sent according to the following table. Default is junchanged.

oldest

initialPosition Semantics

Initial position is not reset: the next data to be transferred will start from the
oldest, still unsent, datum.
oldest Initial position is set to oldest: the next data to be transferred will start from the

User Protocol
17/32

oldest datum the system has memory of.

Initial position is set to newest: the next data to be transferred will start from the
newes next datum that will be saved since now.

Initial position is set to August, 15t 2009 at 16 o’clock: the next data to be
[2009-08-15T16:00:00] transferred will start from the datum that has been saved immediately after the
given timestamp.

Initial position is set to December, 315t 2999 just before midnight: the system will
[2999-12-31723:59:59 transfer no data until a datum is saved with a timestamp that follows the given
one.

6.2 Request Query Message

A request query message is an XML document satisfying the following XML Schema Definition (XSD). It is used in
pull mode by wrapping it in a specified command (see Configuration Request (H20), above).

e The query element has two, optional, attributes:

e getMacAddress: is a boolean attribute that, if set to ftruel, adds the System’s MAC address to the
retrieved data. If this attribute is missing, then it is assumed to be [false].

e getRowld: is boolean attribute that, if set to frue, adds a unique identifier to each data row in the
retrieved data. If this attribute is missing, then it is assumed to be [false]

e rowsPerChunk: defines the maximum number of rows a chunk can be composed of. If this attribute
is missing, then a default value defined via a system generic setting is used (such setting’s default is
100).

from i.1

type = dateTime

timeFrame 1.-1,J-| @a_
type = complexType I"|'I — to 0.1

(=] type = complexType —

getMacAddress | boolean false v filter 1.1
getRowld bockean false =] type = Filter
rovisPerChunk | positivelnteger

e The filter element refers to the schema definition specified in Adaptive Filter Evaluation, below.
The timeFrame element has two children:

e from: is the timestamp of the first (oldest) datum of the query.

e to: is an optional element representing the last (newest) datum of the query. If missing, then all
data since from timestamp is retrieved.

e Both timestamp must be expressed in the TelevisCompact local time.

6.3 Retrieved Historical Data

Historical data is retrieved in chunks, in order to avoid the generation of bulk messages. A single chunk is an
XML document satisfying the following XML Schema Definition (XSD). It is used both in pull mode and push
mode by wrapping it in a specified command (see Historical Data Request (H23), above).

User Protocol
18/32

6.4

A system information request message signals the TelevisCompact to respond with a system information response.

header 1l
] type = complexType T
configurationld | positiveInteger
from dateTime
to dateTimes
chunk Jﬂ @_
[£] tvpe = complexType T [device 0..DO|J_| P resource 1.00
compactiame | string =] type = complexTyps b N =] type = complexTyps
macAddress string 1 deviceCoordinates | string o reference positiveInteger
name string resourceCoordinates | string
categoryTag string name string
measurementUnit string
(=] resourceType ResourceType
zlarm
analog
body 1l digital
type = complexType I'|" status
|:.at5gor\,fTag string
L@ row [N e record 0.0
_ [«] tvpe = complexType T p—— [«] type = complexType
; timestamp | dateTime o reference | positivelnteger
=] contet | ContexdType wvalue string
configurationChangs
dateTimeChangs
povierCff
startAcguisition
stopAcguisition

timeChange | duration | PTOS

id nonMegativelnteger

A chunk refers to a single site configuration and is split in header and body. The chunk element
bears information about the specific plant via the compactName attribute or, if requested, the
macAddress attribute.

The header element collects all the devices and resources the adaptive filter has selected
according to either the request query message (pull mode) or data transfer configuration (push
mode). Header contains an attribute that uniquely identifies the site configuration it refers to
(configurationld attribute), the starting validity time of the specified configuration (from attribute)
and, possibly, the ending validity time of the specified configuration (to attribute). If to attribute is
missing, then the site configuration is the active one (it is not yet expired).

Devices and resources are optionally labeled with a category tag (if one has been defined for
them).

Resources have a reference attribute, whose purpose is to link their definition to their values in the
body section. The resourceType attribute tells if the resource is an Analog, Digital, Status or Alarm
one.

The body element collects a list of row elements. Each row has a timestamp that refers to all the
values of the row. If requested a unique identifier among the rows of a plant can be retrieved
(optional id attribute). A row can be either a context change one or a data one.

A context change row has no data, but its context attribute defines a global event happened on the
TelevisCompact site. The context attribute may assume these values:

startAcquisition: acquisitions have been started.

stopAcquisition: acquisitions have been stopped.

powerOff. system has been restarted (either willingly or by a power failure).

dateTimeChange: system time has been changed.

configurationChange: site configuration has been changed. When this row is present, its timestamp
and id are the same of the row that immediately follows it.

The timeChange attribute, when present, represent the amount of time of a system time change,
and implies the context attribute is valued as dateTimeChange.

A data row has at least one record. A record is a couple reference/value telling that the resource
value of the referenced resource has been changed. The number of records of a row may be lower
than the number of resources in the header; order is not guaranteed.

System Information Request

User Protocol
19/32

systemInfoRequest

| type = complexType
culture |5tring

e culture is an optional string that defines the culture the response will be formatted into. It is in the
form <languagecode>-<country/regioncode> according to Microsoft® specifications based onto ISO
639-1 and ISO 3166 standards. If no culture is provided, the default system culture will be used.

6.5 System Information Response

A system information response contains data about the TelevisCompact system.

plant 1.1
] type = complexType
nanie string
notes string
macAddress | string
currentTime | dateTime
siteConfiguration 1.1
=] type = complexType
eysteminfoResponse | @_ = :g::iﬁuns | AcquisitionState
type = complexType I'|'I 5 stopped
=] scheduledActions | AcquisitionState
start=d
stopped
interfaces nonMegativelnteger
devices nonMegativelnteger
FESOUFCES nonMegativelnteger
version 1.1
=] type = complexTyps
application string
database string
operatingSystem | string
uBoot string

e plant element contains the plant name, notes, its MAC address and the current date/time the
Compact is set to.

e siteConfiguration contains overall information about the current site configuration: the acquisitions

state (either or [stopped), the scheduled actions state (either or [stopped)), and the total

number of interfaces, devices and resources.

e version bears information about the application version, the database version, the OS version and
the UBoot last compatible version.

6.6 Current Configuration Request

A current configuration request message describes the amount of information that the user requires to the
TelvisCompact regarding the current site configuration.

currentConfigurationRequest
=] type = complexTyps
culture string
getCommands | boclean | false
getParameters | boclean | false

e culture is an optional string that defines the culture the response will be formatted into. It is in the
form <languagecode>-<country/regioncode> according to Microsoft® specifications based onto ISO
639-1 and ISO 3166 standards. If no culture is provided, the default system culture will be used.

e getCommands is an optional flag that defaults to ffalse]. If fruel, the response will include the list of
supported commands for each device.

e getParameters is an optional flag that defaults to ffalse]. If frue], the response will include the list of
supported parameters for each device.

User Protocol
20/32

6.7 Current Configuration Response

A current configuration response message contains information about the current site configuration, and its level
of details depends on the specified current configuration request.

currentConfiugrationResponse ,J_| interface 1..1%_@ device 0..DD’J]_@_
[=] tvpe = complexType T @ [=] tvpe = complexType b — [<] tvpe = complexType N —
id noenlegativelnteger ; id nonMegativelnteger N address DeviceAddress N
validSince | dateTime name | string sOnling boclean trus
isModbus bool=an fals=
name string
modelName | string
alias string
shortAlizs string
PESOUPCES 1. o e FESOURCE 0.0
type = complexTyps \J =] type = complexTyps
; id Resourceld
=] type ResourceType
alarm
znzlog
digital
status
is0nline boolean true
name string
shortName | string
zlizs string
— PSS - shortAlizs | string
P e T3 zlarmDelzy | nonMegativelnteger
DeviceAddress
boclzan trus commands 0..a_| T command 0.0 argument 0..00
boclean falz= type = complexTyps u“ =] type = complexType q _-"_] type = complexType
- id |[Commandid - id string
name | string =] valueType | ValueType
boolean
g numeric
string
time
parameters [\ P F 0,00
type = complexType \J = type = complexTyps
; label string
name string
readOnhy boclean fake
=] walueType | ValueType
boolzan
numeric
string
time:

The currentConfigurationResponse element always bears the following attributes:

e idis the configuration ID number.

validSince is the timestamp representing the first instant of the configuration’s validity interval.

There is an interface element for each interface (either physical or logical) defined in the current
configuration. It has the following attributes:

id is the interface ID number.
name is the textual representation of the interface settings (e.g.: [COMZ2 or [192.168.0.1).

There is a device element for each device (either physical or logical) defined in the interface. It has the
following attributes:

address is the device address expressed in the FAA:dEA format (satisfying the
regular expression); e.g.: [00:00], [03:12], [14:14].

isOnline is optional and defaults to ftrue]; it is present and its value is only if the device has been
put offline by the user.

isModbus is optional and defaults to false} it is present and its value is only if the device is a
Modbus one.

name is the device name (computed by TelevisCompact in order to be unique in the entire
configuration).

modelName is the name of the device model (e.g.: ID974 LX|, EWCM 9000).

alias is optional; it is present only if the user has defined an alternative name for the device.

User Protocol
21/32

e shortAlias is optional; it is present only if the user has defined an alternative short name for the
device.

The device element contains at least a resources element child and, according to the current configuration
request settings, an optional commands element and/or an optional parameters element.

resources contains several resource elements, one for each resource (either physical or logical) defined in the
device. A resource element bears the following attributes:

e id is the resource ID, satisfying the [A-Z{8\d{5}(\d+)?(-.+)?| regular expression (e.g.: INP40000-1,
ISTA00063], /ALM40166-ext, [STA00327:12], [ALM40091:5-2nd).

e type is one of the following values: [alarm), (either a digital input or a digital output),
(either an analog input or an analog output), lstatus; and represents the resource typology.

e isOnline is optional and defaults to frue]; it is present and its value is only if the resource has
been put offline by the user.

e name is the resource name (translated according to the culture defined in the current configuration
request).

e shortName is the resource’s short name (a culture-invariant short string computed on the resource
ID).

e alias is optional; it is present only if the user has defined an alternative name for the resource.

e shortAlias is optional; it is present only if the user has defined an alternative short name for the
resource.

e alarmDelay is optional; it is present only if the resource is of alarm type and only if its value differs
from the default alarm delay defined in the system (usually 0 minutes). It represents the number of
minutes of delay the user set for the resource.

commands is optional, and (when present) contains several command elements, one for each command the
device supports. A command element bears the following attributes and children elements:

e commandld is the command ID, satisfying the [A-Z]{3\d{5}] regular expression (e.g.: [FNC00001,
FNC00008).

e name is the command name (translated according to the culture defined in the current
configuration request).

e A series of 0 to many argument elements representing the command’s arguments. Each argument
has a textual id and a valueType (either boolean string| or [time).

parameters is optional, and (when present) contains several parameter elements, one for each parameter the
device exposes. A parameter element bears the following attributes:

numeric

e label is a string identifying the parameter (usually equals to the ones visible on the device’s display;
e.g.: [SE, [HAL, dIF).

e name is the parameter name (translated according to the culture defined in the current
configuration request).

e readOnly is optional and defaults to false] it is present and its value is if the parameter cannot
be written.

e valueType could be either [poolean

numeric

string| or ftime}; represents the parameter value type.

3 »

6.8 Set Real Time Filter Request

A set real time filter request is a message that asks the TelevisCompact to store a filter on the current site
configuration to be used when sending real time data.

setRealTimeFilterRequest |
=] type = Filter T

It is composed of a unique element of the Filter type (see Errore. L'origine riferimento non é stata
trovata. Errore. L'origine riferimento non é stata trovata., Errore. L'origine riferimento non é stata
trovata., for specifications). The filter is then persisted on the TelevisCompact until another sound
setRealTimeFilterRequest overwrites it.

The file is saved (and could be retrieved via Web Server) at the following address: <conpact ' s:
addr ess>/ bi n/ Real Ti neServi ceFi I ter.xnf:

A backup file is copied at <conpact’ s addr ess>/ bi n/ Real Ti meSer vi ceFi | t er. backup. xni -

Real Time Response

User Protocol
22/32

A real time response contains information about the current values of the current configuration’s resources that

have been filtered using a set real time filter request.

realTimeResponse l| < E] | interface 0..DO|J.| Iy ey |dE\r|'ce 0..DD,J]_® resource [-]
[=] tvpe = complexType _— 'T| type = complexType I'|'I _}" 'T type = complexTyps b — 'T type = complexTyps
v id | nonMegativelnteger v addrﬁs| DeviceAddress . id | Resourceld
isMNoLink | boolean |false value |str|'ng

timestamp indicates the moment the data has been retrieved.

There is an interface element for each filtered interface.

id is the number that identifies the interface.

There is a device element for each filtered device belonging to the interface.

address is the device address expressed in the FAA:dEA format (satisfying the
regular expression); e.g.: 00:00, 03:12], [14:14|.

isNoLink is an optional boolean value that defaults to ffalse. If present its value is and means
that, at the moment the response is produced, the specified device is in No-Link state.

There is a resource element for each filtered resource belonging to the device.

6.9

id is the resource ID, satisfying the [A-ZJ{8\d{5}(\d+)?(-.+)?| regular expression (e.g.: [NP40000-1,
ISTA00063], /ALM40166-ext, [STA00327:12], [ALM40091:5-2nd).

value is the textual representation of the resource’s last known value, formatted according to the
system culture defined for the TelevisCompact. It could bear the special values of (if the
resource value is still unknown), -] (if the resource’s device is in No-Link) or (if the resource
value is erroneous).

Device Command Request

A device command request message contains a filter defining the set of devices the command must be
performed onto, along with the command to be performed and its optional arguments.

comma

=] type = complexType

deviceFilter LI"\#
ndRequest ,J-| CE_ =] type = Filter

L

commandld | CommandId

arguments]...]1J_| i E] argument
culture string type = complexType I'|'I _— =] trpe = complexType

id string

6.10

value | string

culture is an optional string that defines the culture the arguments must be parsed into. It is in the
form <languagecode>-<country/regioncode> according to Microsoft® specifications based onto ISO
639-1 and ISO 3166 standards. If no culture is provided, the default system culture will be used.
Note that this culture could be different from the one defined in the deviceFilter (e.g.: a filter on
the resources’ English names could be created while the command’s arguments should be parsed in
Spanish).

commandld is a string that should satisfy the regular expression (e.g.. [FNC00001,
[FNC00008) and identifies the command to be performed; command IDs usually start with “FNC”.
Each argument bears an id (a string of text) and a value to be set to (a string of text that will be
parsed according to the request’s culture).

deviceFilter is an adaptive filter (see Errore. L'origine riferimento non é stata trovata. Errore.
L'origine riferimento non é stata trovata., Errore. L'origine riferimento non é stata trovata.)
that, when applied to the current configuration, retrieves a subset of its resources. The command
will be applied to any device whose at least one resource appears in the filtered subset.

Device Command Response

A device command response contains information about the successes and/or failures of a device command

request.

User Protocol
23/32

commandResponse ,J_| commandResult 0.0z
= type = complexType = @ =] type = complexType
=] owerallResult | CommandResultOverall v deviceCoordinates | DeviceCoordinates
aliok | result CommandResultSpeacific
noleviceSelect=d argumentError
someErrors nolink
notExecuted
notSupported
ok

overallResult gives a hint on how well the command performed on the whole set of filtered devices.

overallResult Semantics
i The request’s filter was too strict, thus excluding all devices from the result. In this
. :
case the list of commandResults is empty
At least one device has been selected and the command has been correctly
executed on all devices
At least one device has been selected and the command execution failed on at least

one of them

There will be a commandResult element for each device that the filter selected, and its deviceCoordinates
attribute specifies the device the result is about.

result Semantics
Command has been successfully executed on the specified device
notSupported Command has not been executed because the specified device doesn’t support it
InoLink Command has not been executed because the specified device was in No-Link state
notExecuted Command has not been executed for an unknown reason
Command has not been executed because the provided arguments were wrong in
number, have a wrong ID, or for a syntactic error in their values
6.11 Parameter Read Request

A parameter read request message contains a filter defining the set of devices whose parameters must be read,

along with the list specific parameters to read.

deviceFilter

-

| type = complexType

parameters

culturs | string

parameterReadRequest | (:E_ type = Filter
L

0..0o

6.12

1..11J_| i t] parameter
=] type = complexType T — [=] type = complexType

readall | boolean | false

label |str|'ng

e culture is an optional string that defines the culture the response will be formatted into. It is in the
form <languagecode>-<country/regioncode> according to Microsoft® specifications based onto ISO
639-1 and ISO 3166 standards. If no culture is provided, the default system culture will be used.

e deviceFilter is an adaptive filter (see Errore. L'origine riferimento non é stata trovata. Errore.
L'origine riferimento non é stata trovata., Errore. L'origine riferimento non é stata trovata.)
that, when applied to the current configuration, retrieves a subset of its resources. The parameters
will be read from any device whose at least one resource appears in the filtered subset.

e readAll attribute of the parameters element is an optional flag that defaults to false]. If set to it
implies that the request is intended to read all the device parameters (the underlying list of
parameter elements is expected to be empty and thus is ignored).

e Each parameter element defines a parameter the request is intended to read, specified by its label.

Parameter Read Response

A parameter read response contains information about the successes and/or failures of a parameter read request
along with the values of the read parameters.

User Protocol
24/32

[parameterreadResponse L e [parameterreadDeviceResult s [parameter)
ht\.rpe = complexType T U '7 type = complexType T u" 'T type = complexType
= lIResul Overall - deviceCoordi [pevicec label string
zlick =] deviceResult | ParameterReadResultDevice value string
noDeviceSelected =lok measurementUnit | string
someErrors nolink [=] result
someErrors notRead
notSupported
ok

overallResult gives a hint on how well the read parameter session performed on the whole set of filtered

devices.
overallResult Semantics
i The request’s filter was too strict, thus excluding all devices from the result. In this
case the list of parameterReadDeviceResults is empty
e At least one device has been selected and all the requested parameters have been
a correctly read on all devices
At least one device has been selected, but at least one of them encountered
problems with at least one parameter reading operation

There will be a parameterReadDeviceResult element for each device that the filter selected, and its
deviceCoordinates attribute specifies the device the parameters belong to. The deviceResult gives a hint on
how well the read parameter session performed on the specified device.

deviceResult Semantics

lalloK All requested parameters have been successfully read from the device

Reque.sted.parameters have not bgen .read because the specified device was in No-Link
state; in this case the parameter list will be empty

lsomeErrors| At least one parameter has not been read for some reason

There will be a parameter element for each label specified in the request. value contains a textual
representation of the parameter value (rendered in the culture specified with the request), and
measurementUnit contains the measurement unit of the specified parameter. result specifies the success or

failure of the reading.

result Semantics
Parameter has been correctly read
Parameter has not been read because the device has no parameter with the specified
label; in this case the value attribute will be an empty string
Parameter has not been read for an unknown reason (e.g.: a timeout on the network); in
| . . ©8)
this case the value will be an empty string
6.13 Parameter Write Request

A parameter write request message contains a filter defining the set of devices whose parameters must be
written, along with the list specific parameters and values to write.

parameterWriteRequest ,J_|

L

=] type = complexType
culturs |string

deviceFilter 1.1
type = Filter ‘LJEI
parameters L..],J_| CE_] parameter 1.0
type = complexType I‘|'I _— [«] type = complexType
v label |string
value | string

e culture is an optional string that defines the culture the response will be formatted into and the
culture values to be set are parsed from. It is in the form <languagecode>-<country/regioncode>
according to Microsoft® specifications based onto ISO 639-1 and ISO 3166 standards. If no culture
is provided, the default system culture will be used.

e devicefilter is an adaptive filter (see Errore. L'origine riferimento non é stata trovata. Errore.
L'origine riferimento non é stata trovata., Errore. L'origine riferimento non é stata trovata.)
that, when applied to the current configuration, retrieves a subset of its resources. The parameters
will be set on any device whose at least one resource appears in the filtered subset.

e Each parameter element defines a parameter the request is intended to write (specified by its label)
along with the value to set.

User Protocol
25/32

6.14 Parameter Write Response

A parameter write response contains information about the successes and/or failures of a parameter write
request.

| o] Wil P | parameterWriteDeviceResult 0..Dql| | parameter
IT‘ type = complexType T U 'T type = complexType T U 'T type = complexType
=] I ltOverall v deviceCoordi | DreviceCoordi - label string
zlak =] deviceResult | ParameterWriteResultDevice valus string
noDeviceSelected zliok (=] result
someErrors nolink notSupported
someErrors notWritten
ck
outOfBounds
readCnby
syntaxError

overallResult gives a hint on how well the write parameter session performed on the whole set of filtered
devices.

overallResult Semantics
i The request’s filter was too strict, thus excluding all devices from the result. In this
case the list of parameterWriteDeviceResults is empty
e At least one device has been selected and all the requested parameters have been
a correctly written on all devices
At least one device has been selected, but at least one of them encountered
E . - .
problems with at least one parameter writing operation

There will be a parameterWriteDeviceResult element for each device that the filter selected, and its
deviceCoordinates attribute specifies the device the parameters belong to. The deviceResult gives a hint on
how well the write parameter session performed on the specified device.

deviceResult Semantics
lalloK All requested parameters have been successfully written on the device
i Requested parameters have not been written because the specified device was in No-
Link state; in this case the parameter list will be empty
lsomeErrors At least one parameter has not been written for some reason

There will be a parameter element for each label specified in the request. value contains a textual
representation of the parameter value after the write operation (rendered in the culture specified with the
request). result specifies the success or failure of the writing operation.

result Semantics
Parameter has been correctly written

Parameter has not been written because the device has no parameter with the specified

notSupporte label

Parameter has not been written because otherwise its value would be set outside its

B
current bounds
readOnly/ Parameter has not been written because it is protected from write
Parameter has not been written because the specified value couldn’t be parsed (in the
E . . .
specified culture) as a consistent value for its type
notWritten Parameter has not been written for an unknown reason (e.g.: a timeout on the network)

6.15 Open Connection

An open connection message is sent by the TelevisCompact to initiate a connection to a remote client.

openConnection

(=] trpe = complexType
plantName |string
ipAddress | string
macAddress | string

It brings information about the name of the plant (plantName), the I P address he owns on its local
network (ipAddress), and its MAC address (macAddress).

User Protocol
26/32

7 ADAPTIVE FILTERS BEHAVIOR

Most of the services exposed need to know which are the resources whose data are to be transferred, the
devices a command must be performed onto, etc. Adaptive filters represent a language to identify interfaces,
devices and resources independently by the specific site configuration (using coordinates and calculated
names) and in a compact way (by mean of wildcards and defaults).
e To provide a usable set of interface ids, device coordinates and resource coordinates, the
adaptive filter must be evaluated against a specific site configuration and, possibly, a specific
culture (language).

7.1 Adaptive Filter Evaluation

Evaluation starts with an “empty pool” of resources. The filter element has an optional culture attribute that
could indicate the language resources must be translated into (filter on resource names may need it).

e Then, each adaptive selector is applied in order (order matters). An adaptive selector retrieves a
subset of the specified site configuration’s resources and then its type specifies if this subset
must be added to o removed from the filter’s pool (if type is omitted, the selector is considered to
be additive).

e After all adaptive selectors have been evaluated and the pool has been consolidated, all
resources in the pool are being retrieved along with the minimum set of devices and interfaces
the resources belong to.

resourceTypes 0.1

filter selector c..mﬁ_@i type = (lst)
[<] tvpe = complexType _— [«] tvpe = complexType b _—

IT t\,rpe| SElectorT\,rpel =dd
add

remove

interface 0..%_@ device 0..DO’J]_® resgurce 0.0
=] type = complexTyps 5 _“-_ =] type = complexTyps H _--_ =] type = complexType
id InterfaceldPattern * v =address DeviceAddressPattern| *:* . id ResourceldPattern | *
name | InterfaceNamePattern | * nams string = nams string =
model string * =] type | ResourceType Ell
=] protocol | ProtocolType any alarm
any all
micronet analog
modbus digital
category | string status

| cat:_-gar\,rl string

7.2 Adaptive Selector Evaluation

An adaptive selection works in two ways.

e Selects resources according to their resource type (each of the specified site configuration’s
resources whose type is in the indicated list falls into the selection subset), and

e Selects interfaces, devices and resources in a hierarchical way.

e The result of both selections enters the subset (that will be either added or removed from the pool
according to the selector’s type).

7.3 Hierarchical Evaluation
Selection of interfaces, devices and resources comes in this order and through successive refinements.

e What really matters is the final set of resources, so interface and device selectors are only a
mean to narrow the selection scope.

e Each of the three types of adaptive selectors (interface, device and resource) has a twofold filter
possibility: via id (or address) and via its calculated name. These filters are applied with AND logic,
meaning that an item must satisfy both filters to be included in the selection subset.

e Both filters can use wildcards characters:

e A question mark |7 means any single character or no character.

e An asterisk [{ means any substring or no substring.

User Protocol
27132

e The escape character to represent question marks, asterisks and the escape characters themselves is
the backslash \. So, the escaped characters are:)2, \ and \.
e If one of these filters is not specified, the default for it is | (selects any item).

7.3.1 Adaptive Interface Selector Evaluation

A list of adaptive interface selectors may be defined within an adaptive selector, and each interface
selector is evaluated. The items selected by all interface selectors are combined with OR logic, meaning that all
of them will be included in the selection subset.

An interface may be selected by its name, by its id, or both.

e A filter on name assumes that the interface name is “COMx” for a serial network interface
(where X’ is the COM number), “aaa.bbb.ccc.ddd” for a LanAdapter one (the representation of the
LanAdapter IP address) and “Logical” for the TelevisCompact logical interface. Filter is interpreted as
well-formed if it satisfies this regular expression: \s*(*|Logicall COM(DNd\?]+|*)|((*][2\?][5\?][0-5\?]|[2\?][O
\2]0d\2][0-1\?] NN NaV2] NV V2] V2] (. (] [2\2][5\?][0-5\2])[2\2][0-4\?][\\ 2] [0
2]\ 2] V2] V2] NN ?] NV 2]))EB D).

o A filter on id assumes the id is the textual representation of a non-negative integer value. The

regular expression for this filter is: \s*(*|\d+)\s*.

7.3.2 Adaptive Device Selector Evaluation

A list of adaptive device selectors may be defined within an adaptive interface selector, and each device
selector is evaluated. The items selected by all device selectors are combined with OR logic, meaning that all of
them will be included in the selection subset.

A device may be selected by its name, its model, its address, its protocol or a combination (in AND logic) of
the four.

e Afilter on name uses the device calculated name.

e A filter on model uses the device model.

o A filter on address assumes the device address is “xx:yy” (family and low-address, with xx and yy
between 00 and 15). The regular expression for this filter is: \s*(*|([0\?]2[\d\?]|[1\?][0]
B\2][\):([0V2] 2 [\a\ 2] [1\?][0-5\?] [*))\s¥.

e Afilter on protocol may be micronet, or [anyl. The default is [any.

A device selector may be accompanied by additional information: the category tag. Category tag is a label
that, if the selector is additive, will be applied to each device the selection has found.

7.3.3 Adaptive Resource Selector Evaluation

A list of adaptive resource selectors may be defined within an adaptive device selector, and each resource
selector is evaluated. The items selected by all resource selectors are combined with OR logic, meaning that all
of them will be included in the selection subset.

A resource may be selected by its name, by its id, by its type or any combination (in AND logic) of the three.

e A filter on name uses the resource calculated name, optionally translated using the specified
language (if present) or the default system language (if no one has been specified).

e A filter on id assumes the resource id is “AAAxxxxx-y:z” (resource code with — optionally —
placeholder and tiebreaker). The regular expression for this filter is: \s*(*|(JA-2\?){8}\)(N\d\?){5}\)
([\-1+219)) 2 (V2] +[\9) 2)\s¥.

e Afilter on resource type may be alarm

status| or [anyl. The default is fanyl.

A resource selector may be accompanied by additional information: the category tag. Category tag is a
label that, if the selector is additive, will be applied to each resource the selection has found.

,)analog|, digitall,

7.4 XML Structure and Examples

Data transfer configuration (in push) is defined with XML structure (whose file form is exported with the Errore.
L'origine riferimento non é stata trovata. Errore. L'origine riferimento non é stata trovata. use case,
Errore. L'origine riferimento non é stata trovata.); and so is the data transfer request query message (pull).
They both needs to define an adaptive filter; and the XML structure is the same in both cases.

User Protocol
28/32

[= e = T I S L

w

"
12

z

2

z

<filter culture="en-GB">
<gelector type="add">
<l-- Selects all the analog and digital resources of any interface and device -->
<resourceTypes=analog digital</resourceTypes=

<l-- Selects all the NoLink alarms from any device of the serial interface COM2 and assigns to all of them the "CommunicationFailure” tag -

<interface name="COMZ2"=
<device address=""""»
<resource id="ALMO0300" category="CommunicationFailure” />
</device=
<linterface=
</selector>
<filter=

Example 1

Example 1 shows the XML structure of an adptive filter that selects all analog and digital inputs of
any device under any interface, plus the NoLink alarms (id JALM00300) of every device under the
serial interface COM2.

Data is retrieved with the en-GB culture (British English).

Absent filters (on interface id, device name, device model, and resource name) are considered as
M. Absent resource type is considered fanyl.

The filter also permits to label all the NoLink alarm resources of the COM2 interface (and not
others) with a [CommunicationFailure| category tag.

<filter culture="en-GB"=»
<selector=
<l Selects all the resources whose translated name starts with "Analag input” —>
<interface><device><resource name="Analog input*"/=</device></interface>

<l-- Selects all the resources of all devices of the 11th family laying on any LanAdapter interface belonging to the 192.168 x

<interface name="192.166.* *"»><device address="11""/><finterface>
</selector=
<selector type="remove”=

<l-- Unselects all digitals and alarms of any interface -->

<resourceTypes=digital alarm=</resourceTypes=

<l Unselects any status of devices whose name contains the word "meat” or the word "ID983 LX" —»
<interface=

<device name="*meat™"»<resource id="STA™/></device>
<device name="*1D983 LX*"><resource id="STA*"/></device=
<finterface=
</selector=
<filter=

Example 2

Example 2 shows the XML structure of a more complex filter with two adaptive selectors.

The first selector is additive (type is missing) and does two things:

Selects (adds) all the resources whose calculated name (in British English) starts with [Analog input.
Because of filters on interface and device are missing, the resource filter’s scope is the whole set
of resources.

Selects (adds) all the resources of any device on the family 11 that lie beyond any LanAdapter on
the 192.168.x.x subnet mask. Because resource elements are missing altogether, the selector selects
all of them in the given scope.

After the evaluation of this selector, the pool of filtered resources comprehends both “Analog
input*” resources (any resource whose British English-translated name starts with the
string) and LanAdapter 11th-family-device resources.

The second selector is subtractive (type = femove)) and does three things:

Selects (removes from the pool) all the digital input- and alarm-typed resources.

Selects (removes from the pool) all the resources whose id starts with from any device whose
calculated name contains the word [meat. These selections could also be accomplished with a filter

on resource type [status.

Selects (removes from the pool) all the status resources from any device whose calculated name

contains the word D983 LX,.

After the evaluation of the second selector, being this one subtractive the original pool reduces in
size.

User Protocol
29/32

¥ mask —»

User Protocol
30/32

8 ANALITIC INDEX

A

Adaptive Device Selector Evaluation........................ 28
Adaptive Filter Evalu@tion................coceeerereereennnns 27
ADAPTIVE FILTERS BEHAVIOR........ueeeeevereererenne. 27
Adaptive Interface Selector Evaluation..................... 28
Adaptive Resource Selector Evaluation 28
Adaptive Selector Evaluationcoeveeenreennnes
AN AUTHENTICATION EXAMPLE

Authentication Challenge (H42)eeeeevcveennnnne
Authentication Request (HAT) ...eeeeeeeneeesirnrnennns
Authentication Response (H43)cveeeeeeerinesnennns
C

Configuration Request (H20)ocovveveeerenrreerenrrnnns 9
ConSUMEr INIEIALIVE. ... seseeiens 3
Current Configuration Request..............cceveevrereennne 20
Current Configuration Response............c.oeeeveeenne 21
D

Data Chunk Abort (H22)eeeeeeeeresneesinesesssnenes 9
Data Chunk Transmission (H21)eeenereernenns 9
DATA FORMATS ..o eseseasenseessassssesssssssses 15
Data Transfer Configurationc..oeeserennnes 17
DATA TRANSFER XML FORMATS.ooeeeerererererenenn 17
Device Command ReqUESccoevevuveeerrreesererennnes 23
Device Command ResSpOnse.............ccveerereerererenenes 23
E

Execute Device Command Request (H28) 12
G

GENERAL FRAME FORMAT ...cvovrerirrrrrirsireesissirsesesannns 7
Get System Info Request (H29)cocoveverevenenennes 13
H

Hierarchical Evalu@tioncecenecenenencnne. 27
Historical Data Request (H23)eeeveveeeeererennne. 10
K

Keep ALIVE (H5T) cuuveeeeeereeeererenreisievesesieseee e ssessessensens 14

M

MESSAGES ... ses s ss s ssanens 8
MiXEA MOGE ... asasees 5
N

Negative Acknowledge or NACK (H12)......cuceeveueunee. 8
@)

0Pen CONNECLION.......uueeereerererererererersieresssesesssesesansens 26
Open Connection (H50)cceeeeeeeeerereererernrererennes 14
OVERVIEWeeeeeeetressssesinsisssessasssissasss s sssassssanens 3
P

Parameter Read Requestcueeeeevererereererenennnns
Parameter Read ReSpONSe...........ceeeeeveveerererenrererensens
Parameter Write Request..............cueeeevererercnrerenennnns
Parameter Write ReSpONSE.coueeeveevererernreverennens
Parameters Read Request (H26)
Parameters Write Request (H27)
Positive Acknowledge or ACK (HT11) wueeverevcererenennnn 8
R

Real Time Configure Request (H25)cccoueveueunnee. 11
Real Time Data Request (H24)ueeeeerceerrnennnn 10
Request Query MESSAQEcwueeeeeeereeeerserrerernrerenenns
Retrieved Historical Data
S

S@IVICE INIEIALIVE ...
Set Real Time Filter ReQUEST...........coveerevernrerererrernens
SErING FOIMQL .ot senanens
System Information Requestccceeeeereeererenennns

System Information Response
T

TimMe FOIMQL ..o ssessesssssssssees 15

U

Update Clock Request (H30)........coouevvreererecrerernenenes 13

X

XML Structure and Examples.............eeeeeeeveerennn. 28
User Protocol

31/32

44l

Eliwell Controls S.r.l.

Via dell’ Industria, 15 Zona Industriale Paludi
32010 Pieve d’ Alpago (BL) Italy

Telephone +39 0437 986 111

Facsimile +39 0437 989 066

Sales:

+39 0437 986 100 (Italy)

+39 0437 986 200 (other countries)
saleseliwell@invensys.com

Technical helpline:
+39 0437 986 300

E-mail: techsuppeliwell@invensys.com

www.eliwell.it

User Protocol

2011/11/0

Cod: Protocol

© Eliwell Controls s.r.l. 2011 - All rights
reserved.

	1 OVERVIEW
	1.1.1 Consumer Initiative
	1.1.2 Service Initiative
	1.1.3 Mixed Mode

	2 GENERAL FRAME FORMAT
	3 MESSAGES
	Authentication Request (H41)
	3.2 Authentication Challenge (H42)
	3.3 Authentication Response (H43)
	3.4 Positive Acknowledge or ACK (H11)
	3.5 Negative Acknowledge or NACK (H12)
	3.6 Data Chunk Transmission (H21)
	3.7 Data Chunk Abort (H22)
	3.8 Configuration Request (H20)
	3.9 Historical Data Request (H23)
	3.10 Real Time Data Request (H24)
	3.11 Real Time Configure Request (H25)
	3.12 Parameters Read Request (H26)
	3.13 Parameters Write Request (H27)
	3.14 Execute Device Command Request (H28)
	3.15 Get System Info Request (H29)
	3.16 Update Clock Request (H30)
	3.17 Open Connection (H50)
	3.18 Keep Alive (H51)

	4 DATA FORMATS
	Time Format
	4.2 String Format

	5 AN AUTHENTICATION EXAMPLE
	6 DATA TRANSFER XML FORMATS
	6.1 Data Transfer Configuration
	6.2 Request Query Message
	6.3 Retrieved Historical Data
	6.4 System Information Request
	6.5 System Information Response
	6.6 Current Configuration Request
	6.7 Current Configuration Response
	6.8 Set Real Time Filter Request
	6.9 Device Command Request
	6.10 Device Command Response
	6.11 Parameter Read Request
	6.12 Parameter Read Response
	6.13 Parameter Write Request
	6.14 Parameter Write Response
	6.15 Open Connection

	7 ADAPTIVE FILTERS BEHAVIOR
	7.1 Adaptive Filter Evaluation
	7.2 Adaptive Selector Evaluation
	7.3 Hierarchical Evaluation
	7.3.1 Adaptive Interface Selector Evaluation
	7.3.2 Adaptive Device Selector Evaluation
	7.3.3 Adaptive Resource Selector Evaluation

	7.4 XML Structure and Examples

	8 ANALITIC INDEX
	A
	C
	D
	E
	G
	H
	K
	M
	N
	O
	P
	R
	S
	T
	U
	X

