TelevisCompact

Data Download Procedure

User Protocol

EN

CONTENTS

1 COMMUNICATION PROTOCOL
1.1 OVEIVIEW....eoeeieeieeieereee sttt bttt st se sttt as b st s s st e st as b e st st s st et st s sttt b et as b b et b et st ben st b e ssbrsbensntns
1.2 General Frame Format
1.3 Authentication Request (H41) ...cccooeoeevecernveerennnns
1.4 AUthentiCation ChAllENEZE (HA2) ... ettt ss sttt sas et s s b s bbb s bbb s bbb s s e b st ss s b sasbesssensasansnsans
1.5 AUthentication RESPONSE (HA3)......ccoiieieieeeieiecieieese sttt st s sss s sss s sss s s sessessssesssssessssssassssssessssssssssnsassssnsassssnsans 4
1.6 POSitive ACKNOWLEAZE OF ACK (HTT) oottt sssss s ssas e sss s sss b sss s sss s s s s s s st ebsssssessssssensssnsassnsnsans 5
1.7 Negative ACKNOWIEAZE OF NACK (HT2) .ottt ssssstss st s st ssssssesss s s sssssssssssassssssessssssassssssessssssassssnsns 5
1.8 Data Chunk TransmiSSION (H2T)ccirerieerieieireisieiseesieisessestsesses s s ssesssssssess s ssssssssssssssasssssssssssssssssssssssssssasssssssasssssssnses 5
1.9 Data ChUNK ADOIT (H22) ..ottt sttt sttt st bbbt banssennen 6
1.10 Configuration REQUESE (H20)ccovieieieeieieieieicieseses e ssestsssessesssessessssssssssssssssssessssssessssssessssessssssessssssassssssessssssessssssessssssassssasns 6
1.11 Historical Data REQUESE (H23) ..ottt sss ettt s sss s s sss s sss b sss b bss s s ssss e s ssssassssssessssssassssssessssnsassnsnsans 6
1.12 Real TiMe Data REQUESE (H24) ...ttt sttt sss s sss e sss s ses e bss bbb s st b s s s b b s sssebasss s s sasbesssensassnsnsans 7
1.13 Real Time Configure REQUESE (H25) ...ttt sssss st sss s sss e sss s sssss s ssssassssssessssssssssssessssnsssssnsans
1.14 Parameters Read Request (H26)ccccoeeerrrererennnnae
1.15 Parameters Write Request (H27)......cccceveeeveerennnes
1.16 Execute Device Command Request (H28)
1.17 Get System INFO REQUEST (H29) ..ottt sttt sss st as e sss b ses e b s s s b s s b s s s s bsssssbssasbesssensassnsnsans
1.18 Update ClOCK REQUESE (H30)......cooiirieiieieieieieiceeieiees ettt sssssasssssssesssssssssssssessssssessssssessssssessssessssssessssssessssssssessssessssssasases
1.1 TIME FOMMAL ettt sttt st a sttt e bbb ettt et bensnens
T.200 STIING FOMMAL oottt ettt st st bbb bbbt bbbt benanens
1.21T AN AUENENTICATION EXAMPLE ... ettt bt st ettt anens

2 DATA TRANSFER XML FORMATS ...ttt ettt e eestsse e s et et s e sesessesesasassssesesasasssesssasanssesesanes
2.1 REQUEST QUETY MESSAZEceeieeiieiiicieieereteesetesesseese et sttt s st sttt st bttt et b et st seacsesstasses
2.2 REtrieVed HISTOTICAl Data.....ccooiueieiieieieieirece sttt sttt sttt bttt bttt re s b sene st easssesenanans
2.3 System INFOrMALION REGUESTcuu ittt ettt sttt eb et eebs
2.4 System INFOrMAtion RESPOMSE ...ttt ettt eb st ettt tb st tb et b bbb
25 Current CONFIGUrAtioN REQUESTc.cciueieeeeieeeeceeeer ettt ettt tas s es e eb bbb sttt b bbb
2.6 CUrrent CONFIGUrAtioN RESPONSE.......ccovueiueeureueeuriereirttreiseise ittt tas e bbb bbb ettt eb st bbbt sebntas
2.7 Set Real Time FIlEr REQUESTcuieiceeercere ettt sttt es ettt sttt bbb stseen
2.8 REAL TIME RESPONSE.....cueeeiueereiacireieieeseietetses st es st ese e es st bbbt s sttt bttt bbbttt st et b se b etseen
2.9 Device COMMANG REQUEST ...ttt esstsetsesetaessess st s et st ts s ts sttt st bbbt st sstseen
2.10 Device Command Response
21T Parameter REAA REGUEST.......c.c vttt ettt sttt bbb seae b stseen
212 Parameter REAA RESPONSE ...ttt es st sess et sess sttt sttt sttt bbb st ntaeen
213 Parameter WIITE REQUESTc.cu ettt sttt esetae sttt sttt bbb s stseen
214 Parameter WIITE RESPONSEc.cucueueicireuricireieiaeisesetaetsesetae s esetae s et stssaas s ts st s st ts s ta ettt ts bbb baeb st bas b st sstsesn

3 ADAPTIVE FILTERS BEHAWVIOR ...ttt ss s s s e s s asasasasasans 21
3.1 AdAPLIVE FIlLEr EVALUGLION ..ottt s st et ss st b s b s ss b s e b s b bebs s bbb s s se b basessessnsesassnssanes 21
3.2 Adaptive SLECLOr EVAIUGLION ...c.cvceeveerieieecccstecs sttt ettt s bbbt sa bbb st b s b b s s ebssss s sessssensssnsassnsnsans 21
33 HIErarChiCal EVALUATION «.....cuveieieeieee ittt s s ettt bbb anens 21
3.4 Adaptive Interface Selector EVAlUGLION ...ttt sss b sss bbb bbb sas s sassssens 22
3.5 Adaptive Device Selector EVAlUGLION. ...ttt ettt s ss s s sss e sss b ssssessssssessssasessssasessnsnsans 22
3.6 Adaptive ReSource SeleCtor EVAlUGLION ...ttt s st sss s sss b sss s sss s s sassasessnsnsans 22
3.7 XML STrUCLUIE @nd EXAMPLES ...cvovieereiereeiieeieiesiesesie s sesses s sss st sss e s sssse s ssssessssssessssssessssssessssessssssessssssasssssssessssessssssassssnsnns 23

User Protocol
2/25

1 COMMUNICATION PROTOCOL

1.1 Overview

sd On-Demand Data Transfer)
% -
: : - ; ;

-
Consumer Service cryptedPassword is computed fromthe Database

SHAL-processed user's original
password and the token provided with
the previous H42 command.

< Original password never travels
through the connection nor itis saved
on the database

[H41] authenticationRequest

[H42] authenticationChallenge(token)

] Name, cryptedP: d)

[H43] authenticati

authenncat\onCheck(use:rName‘ cryptedPassword)

alt authenticationResult) wrongPassword
failed] [H12] negativeAcknowledge L

Isucceded] correctPassword
[H11] positiveAcknowledge T
'
: T i

ref
Data Transfer
(from Actors)

An overview of the authentication challenge between Consumer and System

sd Data Transfer)
Until

*all requested data has been transferred, or
*a data chunk abort command [H22] is sent. % @ Q

\ Consumer Service Database

| I)
. 1 1
\ T T 1
\ opt transferMode J : ' | :
\ . . -
\ [push] | lFl conditionTriggered(query)
\I :
1
1

[H23] dataRequest(query) i

e
1
'
|
'
'
|
|
'
'
|
'
'
|
|
'

dataCollection(query)

\

loop transfer)

[see note]

historicalDataChunk(chunk)
[H21] ittt

dataChunkTransmission(chunk)

T .

alt chunkReception) [H22] dataChunkAbort

e N

The service will re-send the
last sent chunk, whenever a E:}','.'—'—'—'—'—'—'—"""
[H12]is recieved. -
To abort the transmission, a

data chunk abort[H22]
should be sent.

retrievelNextChunk

(from Actors)

Historical data transfer between System and Consumer

User Protocol
3/25

1.2 General Frame Format

The following table describes the general frame format for all the messages sent from e to the server. All the
values are considered big endian.

Header Command Data CRC32
ServiceType Version SendingTime Length Command Data CRC32
1 Byte 1 Byte 7 Bytes 4 bytes 1 Byte n Bytes | 4 Bytes
Where
Field Name Description
ServiceType The id of the service. For data transfer use H44
Version Protocol version. This version is HO1.

SendingTime The sending time of the message on the sender’s side. It must be formatted according to
the time format (see Real Time Data Request (H24), below).

Length The length of the message, including the header.

Command The command byte.

Data The data field. It is optional and its content changes according to the command byte.
CRC32 The CRC32. The polynomial is the same used by CCITT-32 (HEDB88320).

1.3 Authentication Request (H41)

The authentication request message must be sent by the client as first message after the establishment of the
connection. No data field must be provided

ServiceType Version SendingTime Length Command CRC32

Ha4 HO1 time value H00000012 H41 CCITT-32

The server may reply to this message with an authentication challenge or with a negative acknowledge. If a
negative acknowledge is provided the server will disconnect the client.

1.4 Authentication Challenge (H42)

The authentication challenge provides a set of random data that must be used by the client to compute the
expected cryptographic reply that is needed to authenticate the user.

ServiceType | Version SendingTime Length Command Data CRC32
H44 HO1 time value Length H42 Random bytes CCITT-32

The client must reply with an authentication response message. Any other reply will be discarded and the
connection terminated by the server.

1.5 Authentication Response (H43)
With the authentication response the client provides the cryptographic reply requested to authenticate it.

Header Command Data User CRC32
13 bytes H43 20 bytes Cryptographic reply username CCITT-32

The username provided is the UTF8 representation of the username.

The 20 bytes cryptographic reply is computed with the following algorithm:

e Compute the output (PW-SHAT1) of the SHAT algorithm using the UTF8 representation of the user
password as input.

e Append the output (PW-SHA1) of the previous step to the random bytes provided by the
authentication challenge to form a single array (PRE-SHAT).

e Compute the output of the SHAT algorithm using the output (PRE-SHAT) of the previous step as
input. Use this output as the “20 bytes cryptographic reply”.

e If the authentication is successful the server will reply to this message with a positive acknowledge
and after that the client may issue further commands.

e If the authentication is not successful, then the server will reply with a negative acknowledge and the
connection will be terminated.

User Protocol
4/25

1.6 Positive Acknowledge or ACK (H11)

The positive acknowledge is used as general positive reply to a request. See the documentation of the single
request to know if this is supported.

ServiceType Version SendingTime Length Command CRC32
H44 HO1 time value H00000012 H11 CCITT-32

1.7 Negative Acknowledge or NACK (H12)

The negative acknowledge is used as general negative reply to a request. It may or may not contain an
optional series of n status bytes. See the documentation of the single request to know if the H12 command is
supported.

Header Command Statuses [optional] CRC32
13 bytes H12 [optional] n-bytes statuses CCITT-32
Here is a table of the status bytes in use.
Status Returned by Meaning

1 H24 Real time request is too close to the previous one.

2 H20 The submitted filter does not match any resource.

17 Any Internal error, report it to Eliwell.

Any other value None Reserved for future use.

1.8 Data Chunk Transmission (H21)

The data chunk transmission is used by the TelevisCompact to the Consumer. Depending upon the mode of
the transmission the TelevisCompact may act as a client (push mode) or as a server (pull mode).

Header | Command | Chunkld | Flags | StartTime | EndTime Data CRC32
13 bytes H21 2 bytes |1 byte | time value | time value n-bytes data chunk CCITT-32
Where

Field Name Description

Chunkld Is a progressive index of the chunk.

Flags Is a set of flags used to inform about the compression of the data or the last data chunk
(see next table).

StartTime Starting time of the data (timestamp of the oldest datum present in the chunk).

EndTime Ending time of the data (timestamp of the newest datum present in the chunk).

Data Data block. Data within it may be compressed (zip algorithm) or plain, according to the
compression flag. The plain data depends upon the request that generated the data
chunk transmission. For detailed explanation of the various plain data see Data Transfer
XML Formats (below).

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU areAcquisitionsStopped RFU isCompressed isLastChunk

Where

Bit Name Position| Description

isLastChunk 0 It is set if this is the last chunk.

isCompressed 1 It is set if the data field is compressed

RFU 2 Reserved for future use.

areAcquisitionsStopped| 3 It is used when the request is a Real Time Data Request Command (H25)

only. It is set if the acquisitions are stopped.
RFU 4-7 Reserved for future use.

The consumer may reply to a Data Chunk Transmission in three ways:

e Positive Acknowledge or ACK (H11) (see above). The Consumer states that the transmission is
successful. If this is not the last chunk the next chunk will be transmitted, otherwise both the server
and the client are allowed to disconnect.

e Negative Acknowledge or NACK (H12) (see above). The Consumer states that an error occurred
during the transmission. The compact will retry the transmission of the same chunk. The Consumer
must not provide any status byte if NACK is used in this way.

e Data Chunk Abort (H22), (see below). The Consumer states that the transmission will be aborted.
User Protocol
5/25

1.9 Data Chunk Abort (H22)
The data chunk abort message is sent by the Consumer to abort a data chunk transmission.
ServiceType Version SendingTime Length Command CRC32
H44 HO1 time value H00000012 H22 CCITT-32
1.10 Configuration Request (H20)
The configuration request is sent by the Consumer in Pull mode to request data.
Header Command Flags Request CRC32
13 bytes H20 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,
according to the isRequestCompressed flag. For detailed explanation of the plain data see
Current Configuration Request (below).

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed isReplyCompressed RFU
Where
Bit Name Position | Description
RFU 0 Reserved for future use.
isReplyCompressed 1 The data contained in the reply will be compressed
isRequestCompressed 2 The request block is compressed.
RFU 3-7 Reserved for future use.

The TelevisCompact may reply in the following ways:

Negative Acknowledge or NACK (H12) (see above). The TelevisCompact states that an error occurred
while decoding the packet or parsing the XML request.

Data Chunk Transmission (H21) (see above). The TelevisCompact sends data about the current
configuration, according to Current Configuration Response (below). When the request is submitted
without authentication, the TelevisCompact disconnects the Consumer after the completion of the
sending of data.

1.11 Historical Data Request (H23)
The historical data request is sent by the Consumer in Pull mode to request data.
Header Command Flags Request CRC32
13 bytes H23 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,
according to the isRequestCompressed flag. For detailed explanation of the plain data see
Data Transfer XML Formats — Request Query Message (below).

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed isReplyCompressed RFU
Where
Bit Name Position | Description
RFU 0 Reserved for future use.
isReplyCompressed 1 The data contained in the reply will be compressed
isRequestCompressed 2 The request block is compressed.
RFU 3-7 Reserved for future use.

User Protocol
6/25

1.12 Real Time Data Request (H24)

The configuration request is sent by the Consumer in Pull mode to request data.
Header Command Flags CRC32
13 bytes H24 1 byte CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
The following table explains the meaning of the flags byte.
7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU RFU RFU RFU RFU isReplyCompressed RFU
Where
Bit Name Position Description
RFU 0 Reserved for future use.
isReplyCompressed 1 The data contained in the reply will be compressed
RFU 2-7 Reserved for future use.

The TelevisCompact may reply in the following ways:

No reply

message and sudden disconnection. This happens when aNACK reply should be sent and the

reguest was submitted without authentication.

Negative Acknowledge or NACK (H12) (see above) with no status bytes. The TelevisCompact states
that an error occurred while decoding the packet.

Negative Acknowledge or NACK (H12) (see above) with status code HO1. The TelevisCompact states
that the current real time request is too close to the previous one.

Data Chunk Transmission (H21) (see above). The TelevisCompact sends data about the real time
data, according to Real Time Response (below). When the request is submitted without
authentication, the TelevisCompact disconnects the Consumer after the completion of the sending of
data.

1.13 Real Time Configure Request (H25)

This is sent by the Consumer in Pull mode to set the configuration of the data to be retrieved with a Real

Time Data Request (H24).
Header Command Flags Request CRC32
13 bytes H25 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,
according to the isRequestCompressed flag. For detailed explanation of the plain data see
Set Real Time Filter Request (below).

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed RFU RFU
Where
Bit Name Position Description
RFU 0-1 Reserved for future use.
isRequestCompressed 2 The request block is compressed.
RFU 3-7 Reserved for future use.

The TelevisCompact may reply in the following ways:

Negative Acknowledge or NACK (H12) (see above). The TelevisCompact states that an error
occurred while decoding the packet or parsing the XML request.

Negative Acknowledge or NACK (H12) (see above) with status code H02. The TelevisCompact states
that the filter provided with this request does not match any resource. The current real time
configuration is not changed.

User Protocol
7/25

e Positive Acknoledge or ACK (H11) (see above). The TelevisCompact states that the change in
configuration was successful.

1.14 Parameters Read Request (H26)

This is sent by the Consumer in Pull mode to execute a parameter reading operation.

Header Command Flags Request CRC32
13 bytes H26 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,
according to the isRequestCompressed flag. For detailed explanation of the plain data see
Parameter Read Request (below).

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed isReplyCompressed RFU
Where
Bit Name Position | Description
RFU 0 Reserved for future use.
isReplyCompressed 1 The data contained in the reply will be compressed
isRequestCompressed 2 The request block is compressed.
RFU 3-7 Reserved for future use.

The TelevisCompact may reply in the following ways:
e Negative Acknowledge or NACK (H12) (see above) with no status bytes. The TelevisCompact states
that an error occurred while decoding the packet.
e Data Chunk Transmission (H21) (see above). The TelevisCompact sends data about the outcome of
the parameter reading operation, according to Parameter Read Response (below). When the request
is submitted without authentication, the TelevisCompact disconnects the Consumer after the

completion of the sending of data.

1.15 Parameters Write Request (H27)

This is sent by the Consumer in Pull mode to execute a parameter writing operation.

Header Command Flags Request CRC32
13 bytes H27 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,
according to the isRequestCompressed flag. For detailed explanation of the plain data see
Parameter Write Request (below).

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed isReplyCompressed RFU
Where
Bit Name Position | Description
RFU 0 Reserved for future use.
isReplyCompressed 1 The data contained in the reply will be compressed
isRequestCompressed 2 The request block is compressed.
RFU 3-7 Reserved for future use.

The TelevisCompact may reply in the following ways:
e Negative Acknowledge or NACK (H12) (see above) with no status bytes. The TelevisCompact states
that an error occurred while decoding the packet.

User Protocol
8/25

e Data Chunk Transmission (H21) (see above). The TelevisCompact sends data about the outcome of
the parameter writing operation, according to Parameter Write Response (below). When the request
is submitted without authentication, the TelevisCompact disconnects the Consumer after the
completion of the sending of data.

1.16 Execute Device Command Request (H28)
This is sent by the Consumer in Pull mode to execute a command on a device.
Header Command Flags Request CRC32
13 bytes H28 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,
according to the isRequestCompressed flag. For detailed explanation of the plain data see
Device Command Request (below).

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed isReplyCompressed RFU
Where
Bit Name Position | Description
RFU 0 Reserved for future use.
isReplyCompressed 1 The data contained in the reply will be compressed
isRequestCompressed 2 The request block is compressed.
RFU 3-7 Reserved for future use.

The TelevisCompact may reply in the following ways:
e Negative Acknowledge or NACK (H12) (see above) with no status bytes. The TelevisCompact states

1.17

Get System Info Request (H29)

This is sent by the Consumer in Pull mode to get system information such as Plant Name, MAC Address, Plant
Notes and versions of Application, OS and Bootloader.

that an error occurred while decoding the packet.

e Data Chunk Transmission (H21) (see above). The TelevisCompact sends data about the outcome of
the execution of the command(s), according to Device Command Response (below). When the
request is submitted without authentication, the TelevisCompact disconnects the Consumer after

the completion of the sending of data.

Header Command Flags Request CRC32
13 bytes H29 1 byte n-bytes request CCITT-32
Where
Field Name Description
Flags Is a set of flags used to inform about the compression of the request.
Request Request block. Request data within it may be compressed (zip algorithm) or plain,
according to the isRequestCompressed flag. For detailed explanation of the plain data see
System Information Request (below).

The following table explains the meaning of the flags byte.

7 (MSb) 6 5 4 3 2 1 0 (LSb)
RFU RFU | RFU | RFU | RFU isRequestCompressed isReplyCompressed RFU
Where
Bit Name Position | Description
RFU 0 Reserved for future use.
isReplyCompressed 1 The data contained in the reply will be compressed
isRequestCompressed 2 The request block is compressed.
RFU 3-7 Reserved for future use.

The TelevisCompact may reply in the following ways:

User Protocol
9/25

o Negative Acknowledge or NACK (H12) (see above) with no status bytes. The TelevisCompact states
that an error occurred while decoding the packet.

e Data Chunk Transmission (H21) (see above). The TelevisCompact sends data about the system
information according to System Information Response (below). When the request is submitted
without authentication, the TelevisCompact disconnects the Consumer after the completion of the
sending of data.

1.18 Update Clock Request (H30)
After authentication it’s possible to update the system time with the following command

Header Command Updated time CRC32
13 bytes H30 time value CCITT-32

The Televis Compact may reply to a Data Chunk Transmission in two ways:

e Positive Acknowledge or ACK (H11) (see above). The TelevisCompact states that the update is
successful.

e Negative Acknowledge or NACK (H12) (see above). The Consumer states that an error occurred
during the transmission. Clock update is not effective.

Please note that the reply may require several seconds before being sent because updating the system clock
may imply stopping the auto-acquisition and restoring the auto-acquisition status to the original value.

1.19 Time Format

The following table describes how to compose the fields related to time. All values are big endian. The time
range is the same of the .NET DateTime struct, so the time range is 12:00 January 15t 0001 to 11:59:59
December 31 9999.

Year Month Day Hour Minute Second

2 byte 1 byte 1 byte 1 byte 1 byte 1 byte
E.g.: The time September 29t 2009, 08:59:27 AM becomes

Year Month Day Hour Minute Second

2009 September 29th 08 59 27

HO07D9 HO09 H1D HO8 H3B H1B

1.20 String Format

Where a field (e.g.: user name) requires a string, the string is the zero-terminated UTF-8 representation of
that string, being the first byte the leftmost in the resulting array.

E.g.: The string becomes:

Unicode Char n i 1] o Zero-termination

UTF-8 H6E H69 HC3 HB1 H6F 0

1.21 An Authentication Example

This example describes the authentication handshake between a server (e.g.: TelevisCompact) and a client
(e.g.: a Consumer).

Let the username be and the password and the transaction time 29th September 2009, 08:59:27.
The client connects to the server with an authentication request message:

ServiceType Version SendingTime Length Command CRC32
44 01 07]D9[09[1D |08 [3B 1B |00 |00 00 |12 41 9c 977065

The server replies with an Authetication Challenge message. For the sake of simplicity let the random byte
vector be composed by just two bytes [0x07 0x25].

ServiceType | Version SendingTime Length Command | Random CRC32

44 01 |07|p9o9 1D [08[3B 1B 0000|0014 42 07 | 25 [2a[3E[c3]B3

The client then computes the output (PW-SHAT1) of the SHA-1 algorithm using the UTF-8 representation of
the password, attaching it to the random bytes extracted from the challenge message:

Random PW-SHA1

07 [25 |96 [33 [DC [28 [E8 [0 |16 |9A [D8 [E4 [ED [22 [9D [6D [8C [3A |03 [09 [09 [C5

After that client computes the output (cryptographic reply) of the SHA-1 algorithm using the previous vector

User Protocol
10/25

as an input, attaching to the end of it the zero-terminated UTF-8 representation of the username:

Cryptographic reply

Username

9C |F5 |F8 |9F [BC [cD |DC |cCA [9F

04 |EC [98B [81]c3 30 |D5 [62 [C4 |3E [41

6E [69 | C3 |B1 |6F [00

This vector is inserted into the authentication response as follows:

adA1ad1n198
UOISIIA

SendingTime Length

puewwo)
Aday
JydesSordAin

sweusasn

CRC32

44 | 01 |07 [D9 [09]1D [o8 |38 | 1B [00 00 |00 |

2C | 43 RO bytes

6 bytes [AB | C3 | A2 |7

If the authentication is successful the server replies with a positive acknowledge:

ServiceType

Version

SendingTime

Length

Command

CRC32

44

01

07 [D9 |09 [1D [08[3B |1B

00 |00 [00 [12

1

F7 [FC [21 |91

After that, the client may send a new message.

User Protocol
11/25

2 DATA TRANSFER XML FORMATS

Queries and data through the Consumer-System connection are XML messages wrapped in a binary protocol
(see Communication Protocol, above).

2.1 Request Query Message

A request query message is an XML document satisfying the following XML Schema Definition (XSD). It is used
by wrapping it in a specified command (see Configuration Request (H20), above).

The query element has two, optional, attributes:

getMacAddress: is a boolean attribute that, if set to , adds the System’s MAC address to the
retrieved data. If this attribute is missing, then it is assumed to be .

getRowld: is boolean attribute that, if set to , adds a unique identifier to each data row in the
retrieved data. If this attribute is missing, then it is assumed to be .

rowsPerChunk: defines the maximum number of rows a chunk can be composed of. If this attribute is

missing, then a default value defined via a system generic setting is used (such setting’s default is
100).

from 1.1
timeFrame]_..]1J_| @ type = dat=Time
type = complexTyps I'|'I _— o o1
query IJ‘I @) type = dateTime
[<] type = complexTyps T —
getMacAddress | boclean falsz v filter LIl#I
getRowld boolean falsz [=] type = Filter
rowsPerChunk | positivelntager

The filter element refers to the schema definition specified in Adaptive Filter Behavior, below. The
timeFrame element has two children:

from: is the timestamp of the first (oldest) datum of the query.

to: is an optional element representing the last (newest) datum of the query. If missing, then all data
since from timestamp is retrieved.

Both timestamp must be expressed in the TelevisCompact local time.

2.2 Retrieved Historical Data

Historical data is retrieved in chunks, in order to avoid the generation of bulk messages. A single chunk is an
XML document satisfying the following XML Schema Definition (XSD). It is used by wrapping it in a specified
command (see Historical Data Request (H23), above).

| header]...11J_|
5 tvpe = complexTyps T
configurationId | positivelnteger

from dateTime
to dateTims
chunk 1‘ P
'T bype = complexType T U device 0,08, | resource 1.00
compactiame |slr|'ng B '7 type = complexTyps T N 'T type = complexType
macAddress | string T deviceCoordinates | string T reference positivelnteger
name string resourceCoordinates | string
categoryTag string name string
string
[<] resourceType ResourceType
zlarm
anzlog
[body L1l digital
|t\.rpe = complexType I'|" status
|categor\.rTag string
L@ [row ol 7w [record 0.0
— 'T type = complexType b u“ 'T type = complexType
N il |daleT|'me 0. referem:el positivelnteger
[Fcontext | ContextType value [string
configurationChange
dateTimeChangs
powerOff
startAcquisition
stopAcquisition
|timeChange |duration PTOS
| id | nonMegativelnteger

User Protocol
12/25

A chunk refers to a single site configuration and is split in header and body. The chunk element
bears information about the specific plant via the compactName attribute or, if requested, the
macAddress attribute.

The header element collects all the devices and resources the adaptive filter has selected
according to the request query message. Header contains an attribute that uniquely identifies the site
configuration it refers to (configurationid attribute), the starting validity time of the specified
configuration (from attribute) and, possibly, the ending validity time of the specified configuration
(to attribute). If to attribute is missing, then the site configuration is the active one (it is not yet
expired).

Devices and resources are optionally labeled with a category tag (if one has been defined for
them).

Resources have a reference attribute, whose purpose is to link their definition to their values in the
body section. The resourceType attribute tells if the resource is an Analog, Digital, Status or Alarm
one.

The body element collects a list of row elements. Each row has a timestamp that refers to all the
values of the row. If requested a unique identifier among the rows of a plant can be retrieved
(optional id attribute). A row can be either a context change one or a data one.

A context change row has no data, but its context attribute defines a global event happened on the
TelevisCompact site. The context attribute may assume these values:

startAcquisition: acquisitions have been started.

stopAcquisition: acquisitions have been stopped.

powerOff. system has been restarted (either willingly or by a power failure).

dateTimeChange: system time has been changed.

configurationChange: site configuration has been changed. When this row is present, its timestamp
and id are the same of the row that immediately follows it.

The timeChange attribute, when present, represent the amount of time of a system time change, and
implies the context attribute is valued as dateTimeChange.

A data row has at least one record. A record is a couple reference/value telling that the resource
value of the referenced resource has been changed. The number of records of a row may be lower
than the number of resources in the header; order is not guaranteed.

23 System Information Request

A system
response.

information request message signals the TelevisCompact to respond with a system information

systemInfoRequest

[=] type = complexType
culturs |5tring

culture is an optional string that defines the culture the response will be formatted into. It is in the
form <languagecode>-<country/regioncode> according to Microsoft® specifications based onto 1SO
639-1 and ISO 3166 standards. If no culture is provided, the default system culture will be used.

User Protocol
13/25

24

System Information Response

A system information response contains data about the TelevisCompact system.

2.5

plant 1.1
] type = complexType
nanie string
notes string
macAddress | string
currentTime | dateTime
siteConfiguration 1.1
systemInfoResponse |J_| I~ type = complexType
type = complexType IT' <:E£|_ = | acquisitions |Au:\qui5|'ﬁurﬂlate
h started
stopped
interfaces nonMegativelnteger
devices nonMegativelnteger
FESOUFCES nonllegativelnteger
WEersion 1.1
=] type = complexTyps
application string
database string
operatingSystem | string
uBoot string

plant element contains the plant name, notes, its MAC address and the current date/time the
Compact is set to.

siteConfiguration contains overall information about the current site configuration: the acquisitions
state (either or stopped), and the total number of interfaces, devices and resources.

version bears information about the application version, the database version, the OS version and
the UBoot last compatible version.

Current Configuration Request

A current configuration request message describes the amount of information that the user requires to the
TelvisCompact regarding the current site configuration.

2.6

currentConfigurationRequest
=] type = complexType
culturs string
getCommands | boolean | false
getParameters | boclean | fake

culture is an optional string that defines the culture the response will be formatted into. It is in the
form <languagecode>-<country/regioncode> according to Microsoft® specifications based onto 1SO
639-1 and ISO 3166 standards. If no culture is provided, the default system culture will be used.
getCommands is an optional flag that defaults to . If , the response will include the list of
supported commands for each device.

getParameters is an optional flag that defaults to . If , the response will include the list of
supported parameters for each device.

Current Configuration Response

A current configuration response message contains information about the current site configuration, and its
level of details depends on the specified current configuration request.

User Protocol
14/25

[currentconfiugrationResponse | P [interface 1..%_@ [device 0.0 L @_
|T type = complexTyps T _}_' 'T type = complexTyps g _— 'T type = complexType T —

id | nonMegativelntegar N id | nonNegativelnteger v address DeviceAddress
validSince |daleT|'me name |slr|'ng isOnline boclean |true
isModbus | boolean | false
name string
modelName | string
zlizs string
shortAlias string

resources 1. | resource .00
type = complexType — [D]type = complexType
N id | Resourceld
[Ftype |ResourceType
alarm
analog
digital
status
is0nline boclean trus
name string
shortMame | string
alias string
— —mm—] shortalizs | string
pe .D :_: i slarmDelzy | nonNegativelnteger
eviceAddress

boclean true commands 0. o nd 0..00 e ar 0..00
boolezn fzls= type = complexType — 'T type = complexTyps b ;}-‘ 'T type = complexType
string v id |Command]:d B id |slr|'ng
e |string name |slr|'ng =] valueType | ValuaeType
string boclezn
numeric
string
time
parameters 0. |parameter 0.0
type = complexType — 'T type = complexType
v label string
name string

readOnhy boclean fals=
[x] valueType | ValueType
boolean

numeric

string

time

The currentConfigurationResponse element always bears the following attributes:

e jdis the configuration ID number.
e validSince is the timestamp representing the first instant of the configuration’s validity interval.

There is an interface element for each interface (either physical or logical) defined in the current
configuration. It has the following attributes:

e idis the interface ID number.

e name is the textual representation of the interface settings (e.g.: ‘COMZ‘ or ‘192.168.0.1‘).

There is a device element for each device (either physical or logical) defined in the interface. It has the
following attributes:

e address is the device address expressed in the FAA:dEA format (satisfying the |(1[0-5]/0?[\d]):(1[0-
5110?[\d])| regular expression); e.g.: (00:00), 03:12, [14:14.

e jsOnline is optional and defaults to ; it is present and its value is only if the device has been
put offline by the user.

e jsModbus is optional and defaults to ; it is present and its value is only if the device is a
Modbus one.

e name is the device name (computed by TelevisCompact in order to be unique in the entire
configuration).

e modelName is the name of the device model (e.g.: ‘ID974 LX|, ‘EWCM 9000‘).

e alias is optional; it is present only if the user has defined an alternative name for the device.

e shortAlias is optional; it is present only if the user has defined an alternative short name for the
device.

The device element contains at least a resources element child and, according to the current configuration
request settings, an optional commands element and/or an optional parameters element.

resources contains several resource elements, one for each resource (either physical or logical) defined in the
device. A resource element bears the following attributes:

User Protocol
15/25

e jd is the resource ID, satisfying the ‘[A-Z]{3}\d{5}(:\d+)?(-.+)?‘ regular expression (e.g.: INP40000-1,
STA00063, ALMA40166-ext, STA00327:12, ALM40091:5-2nd).

e type is one of the following values: jalarm| |digital (either a digital input or a digital output),
(either an analog input or an analog output), ; and represents the resource typology.

e sOnline is optional and defaults to ; it is present and its value is only if the resource has
been put offline by the user.

e name is the resource name (translated according to the culture defined in the current configuration
request).

e shortName is the resource’s short name (a culture-invariant short string computed on the resource
ID).

e alias is optional; it is present only if the user has defined an alternative name for the resource.

e shortAlias is optional; it is present only if the user has defined an alternative short name for the
resource.

e alarmDelay is optional; it is present only if the resource is of alarm type and only if its value differs
from the default alarm delay defined in the system (usually 0 minutes). It represents the number of
minutes of delay the user set for the resource.

commands is optional, and (when present) contains several command elements, one for each command the
device supports. A command element bears the following attributes and children elements:

e commandld is the command ID, satisfying the [A-Z]{3\d{5} regular expression (e.g. ,
Frco000).

e name is the command name (translated according to the culture defined in the current configuration
request).

e A series of 0 to many argument elements representing the command’s arguments. Each argument
has a textual id and a valueType (either ’boolean‘, ‘numeric‘, string‘ or).

parameters is optional, and (when present) contains several parameter elements, one for each parameter the
device exposes. A parameter element bears the following attributes:

e label is a string identifying the parameter (usually equals to the ones visible on the device’s display;

e.g.: , ,).

e name is the parameter name (translated according to the culture defined in the current
configuration request).

e readOnly is optional and defaults to ; it is present and its value is if the parameter cannot be
written.

e valueType could be either ‘boolean numeric, string‘ or ; represents the parameter value type.

>

2.7 Set Real Time Filter Request

A set real time filter request is a message that asks the TelevisCompact to store a filter on the current site
configuration to be used when sending real time data.

setRealTimeFilterRequest |
[=] type = Filter T

It is composed of a unique element of the Filter type (see Adaptive Filter Behavior, below, for specifications).
The filter is then persisted on the TelevisCompact until another sound setRealTimeFilterRequest overwrites it.

The file is saved (and could be retrieved via Web Server) at the following address: <conpact ’ s!
address>/ bi n/ Real viceFilter. xn

A backup file is copied at <conpact’ s addr ess>/ bi n/ Real Ti meSer vi ceFi | t er. backup. xni -

2.8 Real Time Response

A real time response contains information about the current values of the current configuration’s resources
that have been filtered using a set real time filter request.

realTis 1‘ I P interface 0,08, " | device 0..w'J_| resource 0.0
—— =1
[=] type = complexTyps U [=] type = complexType U 'T type = complexType u“ 'T type = complexType
N m nonMegativelnteger N addrasl DeviceAddress " id | Resourceld
iMaLink | boclean |fa|se value |slr|'ng

e timestamp indicates the moment the data has been retrieved.

User Protocol
16/25

There is an interface element for each filtered interface.
e jdis the number that identifies the interface.

There is a device element for each filtered device belonging to the interface.
e address is the device address expressed in the FAA:dEA format (satisfying the ((1[0-5]]0?[\d]):(1[0-

5110?[\d])| regular expression); e.g.: ‘00:00 03:12 14:14‘.
e jsNolLink is an optional boolean value that defaults to . If present its value is and means that,
at the moment the response is produced, the specified device is in No-Link state.

3 3

There is a resource element for each filtered resource belonging to the device.
e id is the resource ID, satisfying the ‘[A-Z]{3}\d{5}(:\d+)’?(-.+)?‘ regular expression (e.g. ,
STA00063, ALMA40166-ext, STA00327:12, ALM40091:5-2nd).
e value is the textual representation of the resource’s last known value, formatted according to the
system culture defined for the TelevisCompact. It could bear the special values of (if the
resource value is still unknown), H (if the resource’s device is in No-Link) or H (if the resource value

is erroneous).

2.9 Device Command Request

A device command request message contains a filter defining the set of devices the command must be
performed onto, along with the command to be performed and its optional arguments.

deviceFilter 1..;\#‘

commandRequest lJ_| CE_ [=] trpe = Filter
=] tvpe = complexType T — t1l

- arguments @ argument 0.
culture string type = complexType IT' [=] brpe = complexType
commandId | CommandId i1 id string

wvalue |string

e culture is an optional string that defines the culture the arguments must be parsed into. It is in the
form <languagecode>-<country/regioncode> according to Microsoft® specifications based onto 1SO
639-1 and ISO 3166 standards. If no culture is provided, the default system culture will be used. Note
that this culture could be different from the one defined in the deviceFilter (e.g.: a filter on the
resources’ English names could be created while the command’s arguments should be parsed in
Spanish).

e commandld is a string that should satisfy the [A-Z]{3)\d{5} regular expression (e.g. ,

) and identifies the command to be performed; command IDs usually start with “FNC”.

e Each argument bears an id (a string of text) and a value to be set to (a string of text that will be
parsed according to the request’s culture).

e deviceFilter is an adaptive filter (see Adaptive Filter Behavior, below) that, when applied to the
current configuration, retrieves a subset of its resources. The command will be applied to any device
whose at least one resource appears in the filtered subset.

2.10 Device Command Response

A device command response contains information about the successes and/or failures of a device command
request.

commandResponse |J'| commandResult 0..00
= type = complexTyps o C}] =] type = complexTyps
=] owerallResult | CommandResultOwverall v deviceCoordinates | DeviceCoordinates
a2k =] result CommandResultSpecific
nolDeviceSelectad argumentError
someErrors nolink
notExecuted
nctSupported
ak

overallResult gives a hint on how well the command performed on the whole set of filtered devices.

overallResult Semantics

User Protocol
17/25

overallResult Semantics
X The request’s filter was too strict, thus excluding all devices from the result.
noDeviceSelected . . .
In this case the list of commandResults is empty
Lo At least one device has been selected and the command has been correctly
executed on all devices

At least one device has been selected and the command execution failed on
at least one of them

someErrors

There will be a commandResult element for each device that the filter selected, and its deviceCoordinates
attribute specifies the device the result is about.

result Semantics

Command has been successfully executed on the specified device

Command has not been executed because the specified device doesn’t support
notSupported it

Command has not been executed because the specified device was in No-Link

noLink
state

’notExecuted‘ Command has not been executed for an unknown reason
Command has not been executed because the provided arguments were wrong
in number, have a wrong ID, or for a syntactic error in their values

2.11 Parameter Read Request

A parameter read request message contains a filter defining the set of devices whose parameters must be
read, along with the list specific parameters to read.

deviceFiltar Ll‘{#
parameterReadRequest | (:E_ typs = Fiter

T type = complexType T

11 parameters 1..].|J_| parameter 0,00
culture |string h — L - —

=] type = complexType — =] type = complexType
readAll | boolean | false - label | string

e culture is an optional string that defines the culture the response will be formatted into. It is in the
form <languagecode>-<country/regioncode> according to Microsoft® specifications based onto 1SO
639-1 and ISO 3166 standards. If no culture is provided, the default system culture will be used.

e devicefilter is an adaptive filter (see Adaptive Filter Behavior, below) that, when applied to the
current configuration, retrieves a subset of its resources. The parameters will be read from any
device whose at least one resource appears in the filtered subset.

e readAll attribute of the parameters element is an optional flag that defaults to . If set to it
implies that the request is intended to read all the device parameters (the underlying list of
parameter elements is expected to be empty and thus is ignored).

e Each parameter element defines a parameter the request is intended to read, specified by its label.

2.12 Parameter Read Response

A parameter read response contains information about the successes and/or failures of a parameter read
request along with the values of the read parameters.

[L . [paremeterReadDevic ouel o [parameter 0.0
[5]tvee = complexType b pN—— [T tvee = complexType b p— TJtype = complexTyps
5 Overall deviceCoordinates | DeviceCoordinates label string
stk [+ deviceResult ‘ ParameterReadResultDevice value string
ncDeviceSelected aliok measurementUnit | string
someErrors noLink [+] result ParameterReadResultParameter
someErrors nctRezd
notSupported
ok

overallResult gives a hint on how well the read parameter session performed on the whole set of filtered
devices.

overallResult Semantics
X The request’s filter was too strict, thus excluding all devices from the result.
noDeviceSelected
In this case the list of parameterReadDeviceResults is empty
’aIIOk‘ At least one device has been selected and all the requested parameters have

User Protocol
18/25

been correctly read on all devices

At least one device has been selected, but at least one of them encountered
problems with at least one parameter reading operation

There will be a parameterReadDeviceResult element for each device that the filter selected, and its
deviceCoordinates attribute specifies the device the parameters belong to. The deviceResult gives a hint on
how well the read parameter session performed on the specified device.

deviceResult Semantics

’aIIOk‘ All requested parameters have been successfully read from the device

Requested parameters have not been read because the specified device was in
No-Link state; in this case the parameter list will be empty

’someErrors‘ At least one parameter has not been read for some reason

There will be a parameter element for each label specified in the request. value contains a textual
representation of the parameter value (rendered in the culture specified with the request), and
measurementUnit contains the measurement unit of the specified parameter. result specifies the success or
failure of the reading.

result Semantics

@ Parameter has been correctly read

Parameter has not been read because the device has no parameter with the

notSupported
specified label; in this case the value attribute will be an empty string
Parameter has not been read for an unknown reason (e.g.: a timeout on the
network); in this case the value will be an empty string

2.13 Parameter Write Request

A parameter write request message contains a filter defining the set of devices whose parameters must be
written, along with the list specific parameters and values to write.

deviceFilter 11,#'

parameterWriteRequest | @_ type = Filter
— — -
=] type = complexType _ 1..11J_|

parameters parameter 1..00
culture |string) type = complexType I'|'I <:E_] =] tvpe = complexType
. label |string
value | string

e culture is an optional string that defines the culture the response will be formatted into and the
culture values to be set are parsed from. It is in the form <languagecode>-<country/regioncode>
according to Microsoft® specifications based onto ISO 639-1 and ISO 3166 standards. If no culture is

provided, the default system culture will be used.

e devicefilter is an adaptive filter (see Adaptive Filter Behavior, below) that, when applied to the
current configuration, retrieves a subset of its resources. The parameters will be set on any device

whose at least one resource appears in the filtered subset.

e Each parameter element defines a parameter the request is intended to write (specified by its label)

along with the value to set.

User Protocol
19/25

2.14

Parameter Write Response

A parameter write response contains information about the successes and/or failures of a parameter write

request.

[L e | parameterwriteDeviceResult 0.l | parameter 0.8
'7|tvpe = complexType b u |7 type = complexType = _}" |7 type = complexType
= I I IO Il . deviceCoordinates ‘DEVI‘CECmrdI-rIElﬁ label string
aliok] devi ' [tDevice value [string

noDeviceSelected 2ok =] result
someErrars nelink nctSupported
someErrors not\Written
ck
cutOfBounds
readOnly
syntaxError

overallResult gives a hint on how well the write parameter session performed on the whole set of filtered

devices.
overallResult Semantics
X The request’s filter was too strict, thus excluding all devices from the result.
noDeviceSelected
In this case the list of parameterWriteDeviceResults is empty

allok

At least one device has been selected and all the requested parameters have
been correctly written on all devices

someErrors

At least one device has been selected, but at least one of them encountered
problems with at least one parameter writing operation

There will be a parameterWriteDeviceResult element for each device that the filter selected, and its

deviceCoordinates attribute specifies the device the parameters belong to. The deviceResult gives a hint on

how well the write parameter session performed on the specified device.

deviceResult

Semantics

alloK

All requested parameters have been successfully written on the device

noLink

Requested parameters have not been written because the specified device was
in No-Link state; in this case the parameter list will be empty

someErrors‘

At least one parameter has not been written for some reason

There will be a parameter element for each label specified in the request. value contains a textual
representation of the parameter value after the write operation (rendered in the culture specified with the
request). result specifies the success or failure of the writing operation.

result

Semantics

k

Parameter has been correctly written

notSupported

Parameter has not been written because the device has no parameter with the
specified label

outOfBounds|

IIﬂ

Parameter has not been written because otherwise its value would be set outside
its current bounds

——
(0]
Q
Q.
o
=

<

Parameter has not been written because it is protected from write

syntaxErro

Parameter has not been written because the specified value couldn’t be parsed
(in the specified culture) as a consistent value for its type

notWritten

Parameter has not been written for an unknown reason (e.g.: a timeout on the
network)

User Protocol
20/25

3 ADAPTIVE FILTERS BEHAVIOR

Most of the services exposed need to know which are the resources whose data are to be transferred, the
devices a command must be performed onto, etc. Adaptive filters represent a language to identify
interfaces, devices and resources independently by the specific site configuration (using coordinates and
calculated names) and in a compact way (by mean of wildcards and defaults).

3.1

To provide a usable set of interface ids, device coordinates and resource coordinates, the
adaptive filter must be evaluated against a specific site configuration and, possibly, a specific
culture (language).

Adaptive Filter Evaluation

Evaluation starts with an “empty pool” of resources. The filter element has an optional culture attribute that
could indicate the language resources must be translated into (filter on resource names may need it).

Then, each adaptive selector is applied in order (order matters). An adaptive selector retrieves a
subset of the specified site configuration’s resources and then its type specifies if this subset must
be added to o removed from the filter’s pool (if type is omitted, the selector is considered to be
additive).

After all adaptive selectors have been evaluated and the pool has been consolidated, all resources
in the pool are being retrieved along with the minimum set of devices and interfaces the resources
belong to.

| resourceTypes [|

| filter

selector 0.0 @_ [type = (ist) |
[T type = complexType - type = complxType | _

3.2

= type | SelectorType | add
=dd
remove
[interface [[device [[resource 0.
'7 typs = complexTyps b u" 'T type = complexTyps b u" '7 type = complexTyps
id |]nterface]dpattern |" N address DeviceAddressPattern| *:% id ResourceldPsttern | *
nams | InterfaceMamePattzrn | = nams string * name string =
model string = [=|type |ResourceType Ell
[x] protecol | ProtocolType any zlarm
any Ell
micronzt analog
modbus digital
category | string status
|categor\.r| string

Adaptive Selector Evaluation

An adaptive selection works in two ways.

33

Selects resources according to their resource type (each of the specified site configuration’s
resources whose type is in the indicated list falls into the selection subset), and

Selects interfaces, devices and resources in a hierarchical way.

The result of both selections enters the subset (that will be either added or removed from the pool
according to the selector’s type).

Hierarchical Evaluation

Selection of interfaces, devices and resources comes in this order and through successive refinements.

What really matters is the final set of resources, so interface and device selectors are only a mean
to narrow the selection scope.

Each of the three types of adaptive selectors (interface, device and resource) has a twofold filter
possibility: via id (or address) and via its calculated name. These filters are applied with AND logic,
meaning that an item must satisfy both filters to be included in the selection subset.

Both filters can use wildcards characters:

A question mark |?| means any single character or no character.

An asterisk [means any substring or no substring.

The escape character to represent question marks, asterisks and the escape characters themselves is
the backslash H So, the escaped characters are: , and M

If one of these filters is not specified, the default for it is [| (selects any item).

User Protocol
21/25

3.4 Adaptive Interface Selector Evaluation

A list of adaptive interface selectors may be defined within an adaptive selector, and each interface
selector is evaluated. The items selected by all interface selectors are combined with OR logic, meaning
that all of them will be included in the selection subset.

An interface may be selected by its name, by its id, or both.

e A filter on name assumes that the interface name is “COMx” for a serial network interface (where
X’ is the COM number), “aaa.bbb.ccc.ddd” for a LanAdapter one (the representation of the
LanAdapter IP address) and “Logical” for the TelevisCompact logical interface. Filter is interpreted as

well-formed if it satisfies this regular expression: r\s*(*|Logical|COM([\d\?]+|*)|((*|[2\?][5\?][0-5\?]|[2\?][0-
4\2]\d\?]([0- 1\ 2] N2 V2] DAV T AN 2] AV 2T) (. (V] [2\ 2[5\ 2] [0-5\ 2] [2\2][0-4\ 2] \d\ 2] | [O-

I\?2INA\?INA\?] NI\ ?INA\?] N\ ?])){3}))\s ™.
e Afilter on id assumes the id is the textual representation of a non-negative integer value. The regular

expression for this filter is: \s*(*|\d+)\s*|

3.5 Adaptive Device Selector Evaluation

A list of adaptive device selectors may be defined within an adaptive interface selector, and each device
selector is evaluated. The items selected by all device selectors are combined with OR logic, meaning that
all of them will be included in the selection subset.

A device may be selected by its name, its model, its address, its protocol or a combination (in AND logic) of
the four.

e A filter on name uses the device calculated name.

e A filter on model uses the device model.

o A filter on address assumes the device address is “xx:yy” (family and low-address, with xx and yy
between 00 and 15). The regular expression for this filter is: ’\s*(*|([0\?]?[\d\?]|[1\?][O-

5\2]*):([0\2]20\d\?]|[1\?][0-5\?]*))\s*

e Afilter on protocol may be micronet, modbus| or . The default is .

A device selector may be accompanied by additional information: the category tag. Category tag is a label
that, if the selector is additive, will be applied to each device the selection has found.

3.6 Adaptive Resource Selector Evaluation

A list of adaptive resource selectors may be defined within an adaptive device selector, and each
resource selector is evaluated. The items selected by all resource selectors are combined with OR logic,
meaning that all of them will be included in the selection subset.

A resource may be selected by its name, by its id, by its type or any combination (in AND logic) of the three.
e A filter on name uses the resource calculated name, optionally translated using the specified
language (if present) or the default system language (if no one has been specified).
e A filter on id assumes the resource id is “AAAxxxxx-y:z” (resource code with — optionally —
placeholder and tiebreaker). The regular expression for this filter is: r\s*(*|([A-Z\?]{3}|*)([\d\?]{5}|*)(-(['\\-

1+21%) 2G(NdV2T+\¥) P)\s .
status‘ or . The default is .

e A filter on resource type may be ’alarm
A resource selector may be accompanied by additional information: the category tag. Category tag is a
label that, if the selector is additive, will be applied to each resource the selection has found.

,)@analog|, digital|,

User Protocol
22/25

3.7

=T = T T S L

w

"
12

XML Structure and Examples

3

&

<filter culture="en-GB">
<selector type="add">
<lI-- Selects all the analog and digital resources of any interface and device -->
<resourceTypes=analog digital</resourceTypes>=

<I- Selects all the NoLink alarms from any device of the serial interface COMZ2 and assigns to all of them the "CommunicationFailure” tag —»

<interface name="COM2">
<device address="""">
<resource id="ALMO0300" category="CommunicationFailure” /=
</devicex
<linterface=
</selector>
</filters=

Example 1

Example 1 shows the XML structure of an adaptive filter that selects all analog and digital inputs of
any device under any interface, plus the NoLink alarms (id) of every device under the
serial interface COM2.

Data is retrieved with the en-GB culture (British English).

Absent filters (on interface id, device name, device model, and resource name) are considered as
. Absent resource type is considered .

The filter also permits to label all the NoLink alarm resources of the COM2 interface (and not

others) with a CommunicationFaiIure‘ category tag.

<filter culture="en-GB"»
<selector=
<l-- Selects all the resources whose translated name starts with "Analog input” —=>
<interface><device><resource name="Analog input*"/></device></interface>
<l Selects all the resources of all devices of the 11th family laying on any LanAdapter interface belonging to the 192.168
<interface name="192.168 * *"=<device address="11:""/></interface>
</selector>
<selector type="remove"=
<l Unselects all digitals and alarms of any interface —=
<resourceTypes=digital alarm</resourceTypes=
<l-- Unselects any status of devices whose name contains the word "meat” or the word "ID983 LX" -
<interface=
<device name=""meat™"><resource id="STA™/></device>
<device name=""ID983 LX*" =<resource id="STA™/></device>
<finterfaces
<fselector=
<filter=

Example 2

Example 2 shows the XML structure of a more complex filter with two adaptable selectors.

The first selector is additive (type is missing) and does two things:

Selects (adds) all the resources whose calculated name (in British English) starts with .
Because of filters on interface and device are missing, the resource filter’s scope is the whole set of
resources.

Selects (adds) all the resources of any device on the family 11 that lie beyond any LanAdapter on
the 192.168.x.x subnet mask. Because resource elements are missing altogether, the selector selects
all of them in the given scope.

After the evaluation of this selector, the pool of filtered resources comprehends both “Analog

input*” resources (any resource whose British English-translated name starts with the
string) and LanAdapter 11th-family-device resources.

The second selector is subtractive (type =) and does three things:

Selects (removes from the pool) all the digital input- and alarm-typed resources.

Selects (removes from the pool) all the resources whose id starts with from any device whose
calculated name contains the word . These selections could also be accomplished with a filter

on resource type .

Selects (removes from the pool) all the status resources from any device whose calculated name

contains the word D983 LX.

After the evaluation of the second selector, being this one subtractive the original pool reduces in
size.

User Protocol
23/25

w mask -

4 ANALITIC INDEX

A

Adaptive Device Selector Evaluation......................... 22
Adaptive Filter Evaluation................ceeeveeeeerennnns 21
ADAPTIVE FILTERS BEHAVIOR........ueeeeeveereererenne 21
Adaptive Interface Selector Evaluation..................... 22
Adaptive Resource Selector Evaluation 22
Adaptive Selector Evaluation

An Authentication Exampleeeeeveeererenennnn
Authentication Challenge (H42)cueeeecereeevenrnnn. 4
Authentication Request (HAT)cvvnreveneneeeereanns 4
Authentication Response (H43)......ceeeecerneeeennnenns 4
C

COMMUNICATION PROTOCOL ...ueeerererrerrerrerrerrennen
Configuration Request (H20)coovvrerrerecvrnerrrrnennes
Current Configuration Request..............cceveevrereenene

Current Configuration Response
D

Data Chunk Abort (H22)eeeeeeeeeecsneresinessseenes 6
Data Chunk Transmission (H21)c.ernreesnnenns 5
DATA TRANSFER XML FORMATSveeeeeeerererererereennns 7
Device Command ReqUESLccoveevreercerrerrnrrenenns 17
Device Command ReSpONSe...........oeeveveevrrerenrneenens 17
E

Execute Device Command Request (H28) 9
G

General Frame FOrmQ@t..........ooeeeevnesenenesneneenenens 4
Get System Info Request (H29)ccveeveeveenvenenennce 10
H

Hierarchical Evalu@tionvneeenenecneenne 21
Historical Data Request (H23)cooeeeeeeeeeeeeererennns 6

N

Negative Acknowledge or NACK (H12).....cooveveunnn.. 5
(0]

OVEIVIBWeeeeteeieiresisiseesissiseasiseseas s aseasessssesssassssasen 3
P

Parameter Read Requestceceeevecnreeernrrnennns 18
Parameter Read ReSpONSe............ccvueeereeernrrenenrrrennnns 18
Parameter Write ReqUESt...........cccvecereeernrreennrrnennns 19
Parameter Write ReSPONSE.cccvueeerreernrrenenrrsennns 20
Parameters Read Request (H26)ceeeveeeerreennne 9
Parameters Write Request (H27)ceveeecerveernrrennnns 9
Positive Acknowledge or ACK (HT11) wueeverveevnrreennnn 5
R

Real Time Configure Request (H25)ccovuevvnennee. 8
Real Time Data Request (H24)weveeeverenrrrennne 7
Real Time ReSPONSE.........oeeveevernerirerriresesireseseseasees 18
Request Query MeSSAge...........ccveeeeerencreenencererencnnes 12
Retrieved Historical Data............ucveeveneenenceneunennn. 12
S

Set Real Time Filter ReGUESE..........ooveevvereeverererenennns 16
SEING FOIMQL et seiseaeen 11
System Information Request..............cvvcvevevceneunence 13
System Information ReSPONSeowvveeeevereerennenn. 14
T

Time FOIMQL ...ttt 10
U

Update Clock Request (H30)........ccovuereeevereneerenennnee 10
X

XML Structure and Examples.............cceevererererennnens. 23

User Protocol
24/25

44l

Eliwell Controls S.r.l.

Via dell’ Industria, 15 Zona Industriale Paludi
32010 Pieve d’ Alpago (BL) Italy

Telephone +39 0437 986 111

Facsimile +39 0437 989 066

Sales:

+39 0437 986 100 (Italy)

+39 0437 986 200 (other countries)
saleseliwell@invensys.com

Technical helpline:
+39 0437 986 300

E-mail: techsuppeliwell@invensys.com

www.eliwell.it

[SO 9001

TelevisCompact User Protocol

2011/01/0

Cod: Protocol

© Eliwell Controls s.r.l. 2011 All rights reserved.

	1 COMMUNICATION PROTOCOL
	1.1 Overview
	1.2 General Frame Format
	1.3 Authentication Request (H41)
	1.4 Authentication Challenge (H42)
	1.5 Authentication Response (H43)
	1.6 Positive Acknowledge or ACK (H11)
	1.7 Negative Acknowledge or NACK (H12)
	1.8 Data Chunk Transmission (H21)
	1.9 Data Chunk Abort (H22)
	1.10 Configuration Request (H20)
	1.11 Historical Data Request (H23)
	1.12 Real Time Data Request (H24)
	1.13 Real Time Configure Request (H25)
	1.14 Parameters Read Request (H26)
	1.15 Parameters Write Request (H27)
	1.16 Execute Device Command Request (H28)
	1.17 Get System Info Request (H29)
	1.18 Update Clock Request (H30)
	1.19 Time Format
	1.20 String Format
	1.21 An Authentication Example

	2 DATA TRANSFER XML FORMATS
	2.1 Request Query Message
	2.2 Retrieved Historical Data
	2.3 System Information Request
	2.4 System Information Response
	2.5 Current Configuration Request
	2.6 Current Configuration Response
	2.7 Set Real Time Filter Request
	2.8 Real Time Response
	2.9 Device Command Request
	2.10 Device Command Response
	2.11 Parameter Read Request
	2.12 Parameter Read Response
	2.13 Parameter Write Request
	2.14 Parameter Write Response

	3 ADAPTIVE FILTERS BEHAVIOR
	3.1 Adaptive Filter Evaluation
	3.2 Adaptive Selector Evaluation
	3.3 Hierarchical Evaluation
	3.4 Adaptive Interface Selector Evaluation
	3.5 Adaptive Device Selector Evaluation
	3.6 Adaptive Resource Selector Evaluation
	3.7 XML Structure and Examples

	4 ANALITIC INDEX

