

Energy SB-SD-SCA600 Compact controller with Hot Water management for domestic heat pumps

CONTENTS		
1 Introduction		7
1.1 General description		7
1.1.1 Typical applications		
1.1.2 Specifications:		
1.1.3 Main functions:		ع o
1.2 Models and Features		c
2 Mechanical Assembly		
2.1 Mechanical dimensions		
3 Electrical Connections		
3.1 General warnings		
3.1.1 Power supply - High voltage in	ıputs (relay)	
3.1.2 IRIAC		
3.1.4 Serial connections TTL connect	ction	
3.2 Wiring diagrams		
3.2.1 Wiring Diagrams		
3.2.2 Example of low voltage input/	'output connection	
3.2.2.1 Example of current/volta	age input connection	
3.2.3 Example of low voltage inputs	n NTC/D1	
3.2.3.3 Example of AO3 - AO4 of	connection	
3.2.3.4 Example of AO5 connec	tion	
3.2.3.5 Example of DO5 connec	tion	
3.2.4 Example of connection of high	n voltage outputs	
3.3 Examples of network conn		ا Z ا 2 ا
3.3.2 Example of connection SD600	– 36000	
3.3.3 Example of connection SC600	– SKP 10	21
3.4 SKW22 - SKW22L remote	LCD terminal	
3.5 SKP22 - SKP22L remote LC	D terminal	23
3.5.1 Example of connection SC600	– SE600 – SKP10 – SK22/22L	23
4 Technical Data		24
4.1 General specifications		24
4.2 I/O features		
4.3 Mechanical specifications.		
4.4 Display and LEDS		
4.5 Serial		
4.6 Transformer		
4.7 Mechanical dimensions		
4.8 Permitted use		
4.9 Improper Use		
4.10 Disclaimer		
5 System configuration (fold	der PAr/CF)	
5.1 Configuration of analogue	innuts	29
5.1.1 Configuration of SE600 expansion	sion analogue inputs	
5.1.2 Configuration of Terminals Ar	alogue Inputs SKW22(L)/SKP22(L)	
5.2 Digital Input Configuration	1	
5.3 Digital output configuration	אר	
5.4 Configuration of analogue	outputs	
6 User Interface (folder PAr	[.] /UI)	
6.1 Keys		
6.1.1 Description of keys and associ	iated functions	
6.1.2 Stand-by		
6.1.3 Description of keys – combine	ed action	
6.1.3.1 Manual alarm acknowled	agement and reset	
6.2.1 LED'S dIIU DISPIDY	ndec	
6.2.2 LEDs: values and units of measure	surement	
6.2.3 LED: services		

6.3	First s	witch-on	
6.4	Acces	s to folders - menu structure	
6.4.	1 Mair	n display Menu	
6.4.	2 "Ope	erating Mode" Menu	
0.4.	5 51a1 5431	les Meilu Innuts/Outnuts Display (Ail dil tCL1/AOL dOL)	
(5.4.3.2	Setting the clock (CL)	
(5.4.3.3	Alarm Display (AL)	
(5.4.3.4	Example of how to set the setpoint (SP)	
(5.4.3.5	Display and reset compressor/pump hours	
6.4.	4 Prog	proming menu:	
6.4	5.4.4.0 5 Sotti	Parameters (Tolder PAr)	49 10
6.4	6 Aları	m events (Par/FU folder)	
7 Or	peratin	g Modes – Temperature Control (folder PAr/tr)	51
71	Temp	erature regulator setpoint and hysteresis	51
7.1.	1 Setp	oint and hysteresis from parameter value	
7.1.	2 Real	setpoint and hysteresis	
7	7.1.2.1	Setpoint differential: dynamic differential	
7	7.1.2.2	Setpoint differential: Economy differential	
	7.1.2.3	Setpoint and hysteresis differentials: Adaptive function	
7.2	Temp	erature regulator	53
7.2.	1 Tem	perature control probes	53
/.2.	2 Prop	ortional temperature control	54 54
7.2.	3 110µ 4 INVF	FRTFR temperature control in Cool / Heat mode	
7.2.	5 Note	es on inverter Management	
7.2.	6 Activ	vation of the XVD electronic expansion valve driver	59
7.3	ENVE	LOPE control	59
7.3.	1 Disc	harge temperature limitation	59
7.3.	2 Com	pression ratio control	61
7.3.	3 Oil r	ecovery	61
7.3.	4 ENV	ELOPE control regulation priority	61
7.5.	5 Teili 7351	Differential temperature control in Cool / Heat mode	
7.3.	6 Digit	al temperature control	
8 Or	heratin	g States (folder PAr/St)	64
0 1	Autor	g States (lotael 1747) stylling and a state stat	۲ O
0.1 9.1	1 Evan	nde of automatic changeover based on water temperature	
8.1.	2 Exan	nple of automatic changeover based on external air temperature	
8.2	Opera	ating states table	66
83	Rever	sal valve management	67
83	1 Char	ngeover from Cool to Heat and vice versa	
8.3.	2 Char	ageover from Cool to Antifreeze and vice versa	
8.3.	3 Heat	e – defrost mode changeover	70
8.3.	4 Circu	uit pressure release	71
8.4	Cycle	inversion and changeover of operating mode in XVD drivers	71
9 Cc	mpres	sors (folder PAr/CP)	72
9.1	Types	of compressor	72
9.1.	1 Non	capacity-controlled compressors (CP00 = 0)	72
9.1.	2 Capa	acity controlled compressors (CP00 = 1,2)	73
9.2	Comp	ressor configuration	73
9.3	Comp	ressor time intervals	74
9.3.	1 Mini	mum time between stops/starts for the same compressor	74
9.3.	2 Mini	mum time between start/start for the same compressor	74
9.3.	3 Mini	mum compressor on time	75
9.3.	4 Mini	mum on-on for different compressors	75
9.3.	5 Mini	mum compressor on time for increase in capacity control	75 דר
9.3. Q 2	o iviini 7 Mini	mum compressor on time for decrease in capacity control	7 / ۲۲
9.3 9.3	8 Mini	mum on-off time in defrost mode	
9.3.	9 Othe	er timings	
9.4	Comp	ressor on/off sequence	77
	r r	•	

9.4.1 Availability of resources	77
9.4.2 Resources management	77
9.4.3 Resource selection criterion	
9.4.5 Selecting the compressor or capacity step	
10 Internal circuit nump (folder PAr/PI)	80
10.1 Configuration of internal size/it water pump	
10.1 Configuration of Internal circuit water pump	
10.2. Continuous operation	
10.2 1.1 Internal circuit nume digital control in Cool / Heat	01
10.2.1.2 Internal circuit pump analogue control in Cool / Heat	
10.3 Operation on call	
, 10.3.1.1 Internal circuit pump digital control in Cool / Heat	
10.3.1.2 Internal circuit pump analogue control in Cool / Heat	83
10.3.1.3 Operation on call: periodic pump activation	
10.4 Pump antilock mode	
10.5 Antifreeze operation with pump	
11 Recirculation fan (folder PAr/FI)	
11.1.1 Continuous operation	
11.1.2 Operation on call	
11.1.2.1 Recirculation fan in Heating / Cooling	
11.2 Post-ventilation	
12 External exchanger fan (folder PAr/FE)	
12.1.1 Continuous operation	
12.1.1.1 External exchanger fan digital control in Cool / Heat	
12.1.2 Operation on call	
12.1.2.3 External exchanger fan digital control in Cool / Heat	91
12.1.2.4 External exchanger fan analogue control in Cool	92
12.1.2.5 External exchanger fan analogue control in Heat	
12.2 Fan control in defrost	
12.3 Fan control with single condensation	
13 External circuit pump (folder PAr/PE)	94
13.1 Operating modes	
13.1.1 Continuous operation	94
13.1.2 In response to a request from the temperature regulator	
13.1.3 Operation synchronised with external exchanger fans	
13.2 Pump anti-lock (anti-sticking) mode	
13.3 Antifreeze operation with pump	
14 Internal exchanger electric heaters (folder PAr/HI)	
14.1 Internal antifreeze heater	97
14.1.1 Internal circuit antifreeze heater control	
14.2 Configuration of integration heaters	
14.2.1 Integration heater differential	
14.2.2 Integration neater regulation	וטוווויייייייייייייייייייייייייייי
15 External exchanger electric heater parameters (folder PAr/HE) – electric Heaters	103
16 Auxiliary output (folder PAr/HA)	
16.1.1 Auxiliary output regulation conditional on defrosting	105
17 Boiler (folder PAr/br)	106
17.1 Water heater configuration	
17.1.1 Water heater Differential	107
17.1.2 Water heater regulation	109
18 Defrost (folder PAr/dF)	110
18.1 Defrost	
18.1.1 Start defrost	111
18.1.2 Defrost cycle	112
18.1.3 End defrost and coil drainage	
18.2 Start detrost setpoint	

18.3	Defrost alarm management	114
18.4	Manual defrost	114
18.5	Power failure during defrost	114
19 Dy	ynamic setpoint (folder PAr/dS)	115
19.1	Modification (decalibration) of the setpoint as a function of the dynamic setpoint input	115
19.	1.1 Modification (decalibration) of the setpoint as a function of the dynamic setpoint input with positive offset	
19.	1.2 Modification (decalibration) of the setpoint based on the dynamic setpoint input with (offset) negative	116
19.2	Modification (decalibration) of the setpoint based on the external temperature	116
19.	2.1 Modification (decalibration) of the setpoint based on the external temperature (dS00=1)	
DO A	dantive (folder DAr(Ad)	
20 A0	Japuve (Totuer PAT/Au)	
20.1	Adaptive function with setpoint modification	
20.2	Adaptive function with hysteresis modification	
20.3	Adaptive function with setpoint and hysteresis modification	
20.4	Setpoint regression	
20.5	Protection	
21 Ar	ntifreeze parameters with heat pump (folder PAr/AF) - AntiFreeze	
22 Sa	initary water and Anti-legionnaire's disease (folder PAr/AS)	124
22.1	Sanitary Water in HEAT mode	125
22.	1.1 Sanitary water heater in Heat/Cool mode *	127
22.2	Sanitary Water, Cool mode	127
22.	2.1 Dynamic ACS setpoint	129
22.3	Sanitary water regulation, AS mode	130
22.4	Anti-Legionnaire's Disease	130
22.	4.1 ACS Heater for Anti-Legionnaire's Disease	
22.5	Sanitary water Antifreeze	
23 BI	ock Heat Pump (folder PAr/HP)	
23.	1.1 Block heat pump 1 - setpoint	
23.	T.2 Block heat pump from light input	135
24 FC		
24.1	Operating modes	
24.2	Power limitation - by external temperature (Cool and Heat)	
24.3	Power limitation - by temperature (Cool and Heat)	
24.4	Power limitation - by high pressure probe (Cool and Heat)	
24.5	Power limitation - by low pressure probe (Cool and Heat)	
24.6	Power limitation to 50%	141
25 Ti	me Bands (folder PAr/tE)	142
26 Al	arms and Diagnostics (folder PAr/AL)	144
26.	1.1 Digital alarms	145
26	26.1.1.1 Flow switch alarm	
26.	1.2 Analogue alarms	148
20.	1.4 XVD driver alarms	
	26.1.4.2 XVD driver probe errors	
	26.1.4.3 XVD driver alarms	155
26.2	Alarm log	158
27 Pa	arameters (PAr)	159
27.	1.1 Local I/O configuration parameters (CL) - Configuration Local	
27.	1.2 Configuration parameters for XVD driver 1 (1r / 1F / 1L / 1E)	
27. 27	 Computation parameters for AVD on VET 2 (21 / 2F / 2E / 2E)	
27.2	Parameters / visibility table, folder visibility table and client table	
27.	2.1 Parameters / visibility table	
27.3	Configuration parameters for XVD driver 1 (1r / 1F / 1L / 1E)	190
27.	3.1 Configuration parameters for XVD driver 2 (2r / 2F / 2L / 2E)	190
27.	3.2 Folder visibility table	
27.	J.S. CIIEIL I dUIC	198

28 Functions (folder FnC)	
28.1 Manual defrost activation (folder dEF)	
28.2 Manual Reset (folder tA)	
28.3 Change On/OFF state (folder St)	
28.4 Multi Function key	
28.4.1 Download from reset	
28.5 Reset alarm log (folder EUr)	
29 DeviceManager	212
29.1.1 Device Manager software component	
29.1.2 Device Manager interface component	
29.1.3 Multi Function Key Component	
30 Supervision	
30.1 Configuration with Modbus RTU	
30.1.1 Data format (RIU)	
30.2 Configuration of device address	214
30.2.1 Configuration of parameter addresses	
30.2.2 Configuration of variable addresses / states	
31 Annexe – XVD Driver	
31.1.1 Main functions	
31.2 Models and Features	
31.3 XVD assembly	
31.4 Electrical connections	
31.4.1 General warnings	
31.4.1.1 Analogue Inputs-Probes	
31.4.1.2 Serial connections	
31.5 Wiring diagrams	
31.5.1 Compatible valves connection	
31.6 Technical Specifications	225
31.7 I/O features	225
31.8 Serial	225
31.0 Transformer	225
31 9 1 Dimensions	225
31.10 MFK	226
31.11 Operation	
31.12 XVD applications	228
31.12.1.1 Digital Inputs regulation	
31.12.2 Example of 1 circuit heat pump application	
31.12.3 Example of 2 circuit heat pump	
31.13 Alarms	
31.14 Configuration with Modbus RTU	
31.14.1 Data format (RTU)	
31.14.2 Modbus commands available and data areas	
31.15 Configuration of device address	
31.15.2 Configuration of variable addresses / states	
31.16 Table of XVD parameters	
31.16.1 Table A	
31.16.2 Table B	
32 Models and Accessories	
32.1 Models	
32.1.1 Models SB • SD • SC	
32.1.2 Expansion modules	
32.1.3 Models XVD	
32.1.4 LISE OF COMPARISHE VALVES	
32.2 Accessories	

1 INTRODUCTION

To allow quick and easy reference, this guide has the following features:

References References column:

Important! :

Note / highlight:

A column to the left of the text contains references to subjects discussed in the text to help you locate the information you need quickly and easily.

A

and a

indicates further information on the subject that the user should take into account

P

Tip:

a suggestion that could help the user understand and make better use of the information provided.

highlights information of which an incorrect understanding can impact negatively on the system or result in risk to persons, instruments, data, etc.; users *must* read and take note of these sections.

1.1 General description

Eliwell, the leading manufacturer of controllers for small and medium air conditioning plants, presents SBA600 in the Energy Flex product family, a compact heat pump controller with advanced functions (domestic hot water and antilegionnaire's disease in a dedicated storage tank) for residential applications.

Control of centralized air-conditioning systems with up to 2 circuits and a maximum of 4 compressors (steps) of the following types:

- Chillers:
 - o air-air;
 - o air-water;
 - o water-water;
- Heat pumps:
 - o air-air;
 - o air-water;
 - water-water with gas inversion;
 - water-water with water inversion;

• Condenser units

- Air chillers;
- Air heat pumps
- Water chillers;
- Water heat pumps

1.1.1 Typical applications

- Minimarkets,
- Industrial plants,
- Offices
- Hotels,
- Homes

1.1.2 **Specifications:**

Energy SBA600 has 2 models providing 6 digital inputs, up to 5 relay outputs, a TRIAC output, 2 PWM analogue outputs, 3 configurable 0...10 V/0...20 mA/4...20 mA analogue outputs and an Open Collector digital output for an external relay. The standard Eliwell 32x74 mm format ensures versatility and ease of installation.

Energy SDA - SCA - SE 600 features various models which can be used to obtain 6 digital inputs, up to 5 relay outputs, up to 2 TRIAC outputs, up to 2 PWM analogue outputs, up to 3 configurable 0...10 V/0...20 mA/4...20 mA analogue outputs and up to 2 Open Collector digital outputs for external relays.

The 4DIN format guarantees maximum flexibility and easy installation.

All inputs and outputs are independent and configurable, meaning they can be adapted to fit any system. It runs on 12-24 V~ or 12-24 V~/24 V... $\Box = 4 |i| = 4 |i| = 2 |i| = 2$

1.1.3 Main functions:

- Domestic hot water with auto-adaptive setpoint
- Domestic hot water and Anti-legionnaire's Disease with weekly programming
- Inverter management for BLDCM compressors
- User interface with configurable keys.
- Menus with configurable displays.
- Parameter settings via keyboard or PC
- Alarms log

•

- Multi Function Key (MFK) to download or upload parameter maps
- Terminal (up to 100 m) connectible directly with no serial interface
- Configurable NTC inputs, 4...20 mA, 0...1 V, 0...5 V, 0...10 V, or digital inputs configurable from parameters.
- Temperature control via input or output probe depending on configuration and installation
- Automatic change-over
- Dynamic setpoint
- Digital/analogue condensation control without external devices up to 2A
- Water heater or supplementary electrical heater control for heating
- Electrical heater for domestic hot water
- Control of 1 or 2 stepper motor electronic expansion valves via
 - XVD Open driver (on LAN serial port) 0
 - third-party drivers (on suitably configured digital inputs). 0
- Internal ventilation control
- Control of semi-hermetically sealed, scroll and screw compressors with one or two capacity steps
- Control of a single circuit with up to 4 compressors or 1 compressor with 4 capacity steps
- Control of double circuits up to a maximum of 2 compressors/capacity steps per circuit. •
- Management of cycle inversion valve (including valve temporary inversion)
- External circuit pump extended management

1.2 **Models and Features**

-->See Appendix A - Models and Accessories, and Technical Data section

2 **MECHANICAL ASSEMBLY**

SB600 - SKP 10

The instrument is intended for panel mounting (see diagram).

Make a 29x71 mm hole and insert the instrument; secure it with the special brackets provided. Do not mount the device in damp and/or dirt-laden areas; it is suitable for use in places with ordinary or normal levels of pollution.

Keep the area around the device cooling slots adequately ventilated. The TTL serial is on the left side of the device.

The images refer to SB600

SD600 - SC600 - SE600

The instrument is intended for 4DIN rail mounting

Follow the instructions below to install the BASE on DIN RAIL:

- Move the two spring docking devices to their standby position (use a screwdriver). Install the "BASE" on the DIN RAIL, then press the "spring docking devices" which will go to the closing position. •

2.1 Mechanical dimensions

ELECTRICAL CONNECTIONS 3

A

4	3.1 General warning	S									
	MPORTANT! Make sure the machine is switched off before working on the electrical connections. The work must be done by qualified personnel. To ensure proper connections, comply with the following: Power supplies other than those specified can seriously damage the system. Use cables of suitable section for the terminals used. Separate the cables of probes and digital inputs from inductive loads and high voltage connections to prevent any electromagnetic interference. Do not place the probe cables near other electrical equipment (switches, meters, etc.) Make connections as short as possible and do not wind them around electrically connected parts. To avoid causing static discharges, do not touch the electronic components on the boards. Eliwell supplies the high voltage cables to connect the device to loads - see Accessories chapter Eliwell supplies the signal cables to connect the power supply, probes, digital inputs, etc See the Accessories chapter The device must be connected to a suitable transformer that complies with the specifications provided in the Specifications chapter.										
	3.1.1 Power supply - H	igh voltage inputs (relay)									
A	Do not exceed the maximum permitted current; for higher loads, use a contactor with sufficient power capacity. Important! Make sure that power supply is of the correct voltage for the device.										
	312 TRIAC										
	The TRIAC (TC1, TC2 for 63x	models) output, when partialized, suppresses the half-wave at the zero-crossing.									
		······································									
	3.1.3 Analogue inputs-	Probes									
Temperature probes	The temperature probes have that extending cables can af with the wiring).	ve no characteristic insertion polarity and can be extended using standard bipolar cable (note fect the performance of the device in terms of electromagnetic compatibility: take great care									
	Important!										
Pressure probes	Pressure probes have a speci Signal cables (temperature/p Eliwell supplied cables are re	ific insertion polarity which must be observed. oressure probes, digital inputs, TTL serial) must be cabled separately from high voltage cables. ccommended. Contact the Eliwell sales department for item availability.									
	3.1.4 Serial connectior	ns TTL connection									
TTL (COM 1)	Use a 5-wire TTL cable up to	30cm in length.									
	An Eliwell-supplied TTL cable	e is recommended. Contact the Eliwell sales department for item availability.									
	3.2 Wiring diagrams										
	Circuit diagram key										
	SUPPLY	SB • SD • SC 63x 64x Power supply 12-24V~;									
	SUPPLY SUPPLY	SB • SD • SC 65x Power supply 12-24V~ / 24V … Auviliary 5V – 20mA may supply									
	• 12	Auxiliary 12V supply									
	 DO1DO4, DO6 	2A - 250Vac high voltage relay outputs									
	• DOTDO3 • N	SD • SC 63X 2A - 250Vac nign voltage relay outputs Neutral									
	• TC1	TRIAC 2A 250Vac high voltage output									
	• TC1, TC2	SD • SC 63x TRIAC 3A 250Vac high voltage output									
	 A01 A02 A03 A04 	Low voltage (SELV (g)) PWM analogue outputs									
	• A05	Low voltage (SELV (§)) 020mA / 420mA analogue outputs									
	• DO5	Open Collector low voltage output (SELV (§))									
	 D04, D05 D11D16 	No voltage digital inputs (°)									
	 Al1Al2, Al5 	NTC* / Digital Input configurable analogue inputs***									
	Al3Al4 CND	NTC / voltage, current** / Digital Input configurable analogue inputs***									
	GND LAN	Serial for terminal / SE600 (max 100m)									
	• TTL	TTL serial for connection to Multi Function Key / Device Manager									
	• RS-485	RS-485 Serial for connection to supervision system									
	*SEMITEC 103AT type (10KΩ	/ 25°C)									
	**420mA current or 05V	/ 010V / 01V voltage input or no-voltage digital input									
	(%) alasian average to a Crack	and the second									

(°) closing current for 0.5mA ground (§) **SELV**: (SAFETY EXTRA LOW VOLTAGE)

3.2.1 Wiring Diagrams

- /C RTC supplied as standard
 - Serial LAN Connection to terminal / SE6xx (max 100m)
- TTL Serial TTL for connection to Multi Function Key
- (§) SELV: (SAFETY EXTRA LOW VOLTAGE)

/C RTC supplied as standard

Serial LAN Connection to terminal / SE6xx (max 100m)

- TTL Serial TTL for connection to Multi Function Key
- (§) SELV: (SAFETY EXTRA LOW VOLTAGE)

- /C RTC supplied as standard
- Serial LAN Connection to terminal / SE6xx (max 100m)
- TTL Serial TTL for connection to Multi Function Key

• Serial LAN Connection to terminal / SE6xx (max 100m)

TTL Serial TTL for connection to Multi Function Key

3.2.2 Example of low voltage input/output connection

3.2.2.1 Example of current/voltage input connection

3.2.3 Example of low voltage inputs NTC/DI

3.2.3.2 Example of AO1 / AO2 connection

Exa	Example of SB600 (AO1) connection with 1 fan module CFS PWM or EXP211							Example of S	B600	(A()2) co PWM	nnec or E	tion XP21	with 1	1 fa	n mo	odule	CFS				
		SD S	C SE	600	Exan	nple	iden	tical					SD S	SC S	E 600	Exar	nple	iden	tical			
		SUPPLY	5V	DO5	GND	GND	AI5	AI4	AI3	AI2	AI1		SUPPL	Y 5V	DO5	GND	GND	AI5	AI4	AI3	AI2	AI1
		SUPPLY	12	A01	AO2	DI6	DI5	DI4	DI3	DI2	DI1		SUPPL	Y 12	- AO1	AO2	DI6	DI5	DI4	DI3	DI2	DI1
			Τ	Τ																		
		:																				
	₩3- € ≘α₩ <u>3</u> :											₩7- € !Ξ(1₩]]										

3.2.3.3 Example of AO3 - AO4 connection

Analogue output	Terminal no.	description
AO3	3	0-10V
AO3	G	GND
AO4	4	0-10V
AO4	G	GND

3.2.3.4 Example of AO5 connection

Analogue output	Terminal no.	description
AO5	5	020mA / 420mA
AO5	G	GND

3.2.3.5 Example of DO5 connection

Example of SB600 connection with EXP 211											
SD SC SE 600 Example identical											
l í											
	SUPPLY	5V	DO5	GND	GND	AI5	AI4	AI3	AI2	AI1	
	SUPPLY	12	A01	AO2	DI6	DI5	DI4	DI3	DI2	DI1	
		Т	L								
ļ											
- <mark>E</mark> ∈a⊮≩:											

3.2.4 Example of connection of high voltage outputs

Flex SA600 MSK464 20/247

3.3 Examples of network connections

3.3.1 Example of connection SB600 – SE600

3.3.2 Example of connection SD600/SC600 – SE600

3.3.3

Example of connection SC600 - SKP 10

Flex	SKW22(L)	description
AIR1		NTC integrated analogue input
	GND / black	GND / black
	Signal / Blue	Signal / blue
	+12Vdc /red**	12Vdc power supply from Flex
AIR2	Remote Probe	Probe AIR2 remote analogue input configurable as NTC*/ 420mA / DI

3.4

* SEMITEC 103AT (10Kohm / 25°C) type **the transducer can be powered from the +12Vdc terminal

SKW22 - SKW22L remote LCD terminal

3.5 SKP22 - SKP22L remote LCD terminal

4 TECHNICAL DATA

4.1 General specifications

	Standard	Min.	Max.
Power supply voltage Models 63x 64x	12-24V~		
Power supply voltage Models 65x	12-24V~ /24V		
Power supply frequency	50Hz/60Hz		
Consumption SB600 SD600 SC600	6VA / 4W		
Consumption SE600	5VA /3.5W		
Insulation class	2		
Working temperature	25°C	-20°C	55°C
Ambient operating humidity (non-condensing)	30%	10%	90%
Storage temperature	25°C	-40°C	85°C
Ambient storage humidity (non-condensing)	30%	10%	90%

Classification	
The product complies with the following	Directive 2006/95/EC
European Community Directives	Directive 89/108/EC
and complies with the following harmonised	EN 60730-2-6 / EN 60730-2-9
regulations	
Use	Operating (not safety) device for incorporation
Assembly	Panel or on DIN Omega bar support
Type of action	1.C 1.Y
Pollution class	2
Overvoltage category	To meet system needs
Nominal pulse voltage	2500V
Digital outputs	Refer to the label on the device
Fire resistance category	D
Software class	Α

4.2 I/O features

		SB S	C SD		Exp	ansions	SE
Type & Label	Description	636	646	655	632	646	655
Digital inputs DI1 DI2 DI3 DI4 DI5 DI6	6 no-voltage digital inputs Closing current for ground: 0.5mA	x	x	x	x	x	x
Digital outputs High voltage DO1 DO2 DO3 DO4*	4 relays 2A 250V~; *For 636 models D04 is available as Open Collector output (OC) Max. current 35mA @12Vcc Lifetime of outputs on relays at nominal capacity: 100,000 cycles	oc	x	x	D01 D02 D03	x	x
DO6	1 x 2A 250V~ relay; Lifetime of outputs on relays at nominal capacity: 100,000 cycles			x			x
Analogue output High voltage TC1	1 TRIAC 2A max 250V~ Resolution 1% Contactors may NOT be installed downstream from the Triac		x			x	
TC1 + TC2 (= AO2)	2 TRIAC 3A max 250V~ Resolution 1% Contactors may NOT be installed downstream from the Triac	x					
Analogue outputs O.C. PWM/PPM low voltage (SELV) AO1 AO2	2 outputs Open Collector PWM/PPM resolution: 2% Nominal range 016.9V (12V~ rectified) Closing at 12V ** Max. current 35mA (min. load 3400hm @12Vcc	AO2 = TC2 (TRIAC)	x	x	x	x	x
Analogue outputs low voltage (SELV) AO3 AO4	2 uscite 0-10V max 28mA*** @10V (min. load resistance 360 Ohm) Accuracy 2% f.s. Resolution 1%	x	x	x		x	x

		SB S	C SD		Exp	oansions	SE
Type and Label	Description	636	646	655	632	646	655
A05	1 x 420mA / 020mA output 2% full scale accuracy Resolution: 1% • output 0/420mA max. load (max load resistance 3500hm)***	x	x	x		x	x
Analogue inputs AI1 AI2 AI3 AI4 AI5	 3 configurable inputs: a) NTC 103AT 10kOhm temperature, measurement range -50°C ÷ 99.9°C; b) No voltage digital input 2 configurable inputs: a) NTC 103AT 10kOhm temperature, measurement range -50°C ÷ 99.9°C; b) Current input 420 mA /voltage input 0-10V/0-5V/0-1V Measurement range -50.0 ÷ +99.9; Accuracy: 1% full scale (2% full scale for 0-1V voltage input) Resolution: (a) 0.1°C (b) 0.1°C/bar Input impedance (b): 0-10V and 0-5V: 21KOhm 0-1V: 10KOhm 420mA: 1000hm c) No voltage digital input 	x	x	x	AI1 AI2 AI5	x	x
Open Collector PWM low voltage (SELV) digital output DO4*, DO5	2 Open Collector outputs **Max. current 35mA @12Vcc	x					
DO5	1 Open Collector output **Max. current 35mA @12Vcc	x	x	x	x	x	x

* For 636 models, DO4 is an open collector, TC2 equals AO2 (TC2=AO2) - see chapter Configuration Configuration of physical I/O (folder PAr/CL..Cr).

** Outputs AO1, AO2 and DO5 (typically connected to the device's auxiliary 12V output) cannot deliver more than 70mA total). Any other loads connected to the same 12V--- auxiliary output must also be taken into account

If the Echo SKP keypad is connected to the device, the current becomes 55mA

*** outputs AO3, AO4 and AO5 cannot deliver more than 40mA total.

4.3 **Mechanical specifications**

Terminals and connectors	1 8-way high voltage male connector For use in combination with the supplied female connector	All models
	1 20-way snap-on low voltage connector To be used with COLV0000E0100	All models
	1 JST 3-way LAN connector To be used with COLV000033200	All models
	1 JST 4 -way connector To be used with COLV000042100	All models
	1 JST 3-way connector To be used with COLV000035100	Models /S
Housing	Housing: PC+ABS plastic resin with V0 flammability rating	All models

4.4 **Display and LEDS**

Display and LEDS		•	4 digits or 3 digits + sign; 18 LEDs	All models except SC600 SE600
Keys	UP DOWN set esc	•	4 keys	All models except SC600 SE600

4.5 Serial

•

•

•

TTL	1 TTL serial for connection to CopyCard (MFK) or Personal Computer via interface module	All models
RS-485	RS-485 opto-isolated serial	Models /S
LAN	Remote terminal / SE600 (max 100m)	All models

Transformer 4.6

The instrument must be connected to a suitable current transformer with the following features:

Primary voltage:
depending on requirements of individual device and/or country of installation Secondary voltage: 12V~

- 50/60Hz Power supply frequency:
- Rating: 6VA min. (/S models), 5VA (all other models)

Mechanical dimensions 4.7

	Length (L) mm	Depth (d) mm	Height (H) mm	Notes
Front keypad	76.4	//	35	(+0.2mm)
Front (cover) SD600 SC600 SE600	70	//	45	(+0.2mm)
Dimensions SB600	86	76 connectors excluded	26	
Dimensions SD600 SC600 SE600	70.2	61.6 56.4 from Din bar to cover	87	4DIN
Hole for panel mounting	71	//	29	(+0.2mm/ -0.1mm)

4.8 Permitted use

This device is intended for controlling centralised air conditioning systems.

For safety reasons, it must be installed and used according to the instructions provided. In particular, parts carrying dangerous voltages must not be accessible under normal operating conditions.

The device must be adequately protected from water and dust with regard to the application, and must only be accessible using tools (with the exception of the front panel).

The device is suitable for use in household refrigeration appliances and/or similar equipment and has been tested for safety aspects in accordance with the harmonised European reference standards.

4.9 Improper Use

Any use other than that expressly permitted is prohibited.

The relay contacts supplied, and generally speaking, all outputs are of the functional type and subject to fault (since they are electronically controlled they are prone to short-circuiting or remaining open). Any protection devices specified in product standards or suggested by common sense for obvious safety requirements must be installed externally to the device.

Eliwell is not liable for damage due to:

- Unspecified installation/use and, in particular, in contravention of the safety requirements of established legislation or specified in this document.
- Use on equipment which does not provide adequate protection against electrocution, water and dust in the actual installation conditions.
- Use on equipment which allows toolfree access to dangerous components.
- Installation/use on equipment which does not comply with established legislation and standards.

4.10 Disclaimer

This document is the exclusive property of **Eliwell Controls srl** and may not be reproduced or divulged without the express authorisation of **Eliwell Controls srl**.

All possible care has been taken to ensure the accuracy of this document; nevertheless, **Eliwell Controls srl** cannot accept liability for any damage resulting from its use.

A	5 SYSTEM CONFIGURATION (FOLDER PAR/CF)								
	 Before doing anything, make sure the device is connected to a suitable external transformer. The following rules must be followed when connecting cards to each other and to the application: Loads that exceed the maximum limits set forth in this manual/product label must not be applied to outputs. When connecting loads, follow connection diagrams carefully. To avoid electric pairings, wire all SELV (°) utilities separately from high voltage ones. (°) SELV: SAFETY EXTRA LOW VOLTAGE Instrument configuration is determined by the values of the parameters associated with the inputs and outputs.								
	5.1 Conf	iguration of anal	ogue inputs						
SBA600 SDA600 SCA600 analogue inputs	There are a total of 5 analogue inputs referred to below as AiL1AiL5. Using the parameters, a physical resource (probe, digital input, voltage/current signal) can be "physically" associated with each type of input								
	5.1.1 Con	figuration of SE600	expansion analog	ue inputs					
SE600 analogue inputs	There are a total of 5 analogue inputs referred to below as AiE1AiE5. Using the parameters, a physical resource (probe, digital input, voltage/current signal) can be "physically" associated with each type of input								
Analogue Inputs SKW22(L)/SKP22(L)	5.1.2 Configuration of Terminals Analogue Inputs SKW22(L)/SKP22(L) There are a total of 2 analogue inputs referred to below as AIR1AIR2. Using the parameters, a physical resource (probe, digital input, voltage/current signal) can be "physically" associated with each type of input								
	Inputs can be	"physically" configur	ed as specified in the	e table below.					
Analogue inputs:				Value	ı				
configuration table	Parameter	Description	0	1	2	3	4	5	6
table	CL00	AiL1 analogue input type	Probe not configured	Probe configured as voltage-free digital input	NTC probe	//	//	//	//
	CL01	AiL2 analogue input type	Probe not configured	Probe configured as voltage-free digital input	NTC probe	//	//	//	//
	CL02	AiL3 analogue input type	Probe not configured	Probe configured as voltage-free digital input	NTC probe	4-20 mA	0-10 V	0-5 V	0-1 V
	CL03	AiL4 analogue input type	Probe not configured	Probe configured as voltage-free digital input	NTC probe	4-20 mA	0-10 V	0-5 V	0-1 V
	CL04	AiL5 analogue input type	Probe not configured	Probe configured as voltage-free digital input	NTC probe	//	//	//	//
	CEOO	AiE1 analogue	Probe	Probe configured as	NTC		11		//

not configured

Probe

not configured

Probe

not configured

Probe

not configured

Probe

not configured

0

Probe

not configured

Probe

not configured

probe

NTC

probe

NTC

probe

NTC

probe

NTC

probe

2 NTC

probe

NTC

probe

Value

of

voltage-free digital input

Probe configured as

voltage-free digital input

Probe configured as voltage-free digital input

Probe configured as

voltage-free digital input

Probe configured as

voltage-free digital input

1

//

Probe configured as

voltage-free digital input

See Configuration

Digital Inputs

//

//

4-20 mA

4-20 mA

//

//

//

0-10

V

0-10

۷

//

3

//

4...20mA

//

//

0-5 V

0-5 V

//

//

//

0-1 V

0-1 V

//

NOTE: // indicates that value is not present.

input type

AiE2 analogue

input type

AiE3 analogue

input type

AiE4 analogue

input type

AiE5 analogue

input type

Description

Air1 analogue

input type

Air2 analogue

input type

CE00

CE01

CE02

CE03

CE04

Parameter

Cr00

Cr01

Analogue input AI	Parameter	Range	Description
AiL3	CL10	CL1199.9	AiL3 analogue input full-scale value
AiL3	CL11	-50.0CL10	AiL3 analogue input start of scale value
AiL4	CL12	CL1399.9	AiL4 analogue input full-scale value
AiL4	CL13	-50.0CL12	AiL4 analogue input start of scale value
AiE3	CE10	CE1199.9	AiE3 analogue input full-scale value
AiE3	CE11	-50.0CE10	AE3 analogue input start of scale value
AiE4	CE12	CE1399.9	AiE4 analogue input full-scale value
AiE4	CE13	-50.0CE12	AiE4 analogue input start of scale value
Air2	Cr10	CR1199.9	Air2 analogue input full-scale value
Air2	Cr11	-50.0Cr10	Air2 analogue input start of scale value

The values read by analogue inputs can be calibrated using parameters CL20...CL24 / Cr20...Cr21

Parameter	Description	Unit of Measure	Range
CL20	AiL1 analogue input differential	°C	-12.012.0
CL21	AiL2 analogue input differential	°C	-12.012.0
CL22	AiL3 analogue input differential	°C / Bar	-12.012.0
CL23	AiL4 analogue input differential	°C / Bar	-12.012.0
CL24	AiL5 analogue input differential	°C	-12.012.0
CE20	AiE1 analogue input differential	°C	-12.012.0
CE21	AiE2 analogue input differential	°C	-12.012.0
CE22	AiE3 analogue input differential	°C / Bar	-12.012.0
CE23	AiE4 analogue input differential	°C / Bar	-12.012.0
CE24	AiE5 analogue input differential	°C	-12.012.0
Parameter	Description	Unit of Measure	Range
Cr20	Air1 analogue input differential	°C	-12.012.0
Cr21	Air2 analogue input differential	°C / Bar	-12.012.0

Study the following tables:

Table A – parameter association - analogue input configuration

Parameter	Description	Value	Description	Notes
CL30	AiL1 analogue input configuration	016	See table B	If CL00=1 (AiL1 configured as DI), set CL30=0
CL31	AiL2 analogue input configuration	016	See table B	If CL01=1 (AiL2 configured as DI) set CL31=0
CL32	AiL3 analogue input configuration	030	See table B	If CL02=1 (AiL3 configured as DI) set CL32=0
CL33	AiL4 analogue input configuration	030	See table B	If CL03=1 (AiL4 configured as DI) set CL33=0
CL34	AiL5 analogue input configuration	016	See table B	If CL04=1 (AiL5 configured as DI) set CL34=0
CE30	AiE1 analogue input configuration	016	See table B	If CE00=1 (AiE1 configured as DI), set CE30=0
CE31	AiE2 analogue input configuration	016	See table B	If CE01=1 (AiE2 configured as DI) set CE31=0
CE32	AiE3 analogue input configuration	030	See table B	If CE02=1 (AiE3 configured as DI) set CE32=0
CE33	AiE4 analogue input configuration	030	See table B	If CE03=1 (AiE4 configured as DI) set CE33=0
CE34	AiE5 analogue input configuration	016	See table B	If CE04=1 (AIE5 configured as DI) set CE34=0
Parameter	Description	Value	Description	Notes
CR30	Air1 analogue input configuration	016	See table B	
CR31	Air2 analogue input configuration	030	See table B	If CR01=1 (AIR2 configured as DI), set CR31=0

Table B – analogue input logical meaning & parameter values CL30...CL34 / CR30, CR31

AiL analogue input	AiL analogue input Remote terminal	Value	Description
Ail1 Ail2 Ail3 Ail4 Ail5	AIR1 AIR2	0	Input disabled
AiE1 AiE2 AiE3 AiE4 AiE5			
AiL1 AiL2 AiL3 AiL4 AiL5	AIR1 AIR2	1	Water/air inlet temperature
AiE1 AiE2 AiE3 AiE4 AiE5			internal exchanger
AiL1 AiL2 AiL3 AiL4 AiL5	AIR1 AIR2	2	Water/air outlet temperature
AiE1 AiE2 AiE3 AiE4 AiE5			internal exchanger
Ail1 Ail2 Ail3 Ail4 Ail5	AIR1 AIR2	3	Water outlet temperature
AiE1 AiE2 AiE3 AiE4 AiE5			internal exchanger circuit 1
Ail1 Ail2 Ail3 Ail4 Ail5	AIR1 AIR2	4	Water outlet temperature
AiE1 AiE2 AiE3 AiE4 AiE5			internal exchanger circuit 2

AiL analogue input	AiL analogue input	Value	Description
Ail 1 Ail 2 Ail 3 Ail 4 Ail 5	AIR1 AIR2	5	External exchanger temperature circuit 1
AiF1 AiF2 AiF3 AiF4 AiF5	/	5	
Ail 1 Ail 2 Ail 3 Ail 4 Ail 5	AIR1 AIR2	6	External exchanger temperature circuit 2
AiE1 AiE2 AiE3 AiE4 AiE5			
AiL1 AiL2 AiL3 AiL4 AiL5	AIR1 AIR2	7	Water inlet temperature
AiE1 AiE2 AiE3 AiE4 AiE5			recovery (or external) exchanger
AiL1 AiL2 AiL3 AiL4 AiL5	AIR1 AIR2	8	Water outlet temperature
AiE1 AiE2 AiE3 AiE4 AiE5			recovery (or external) exchanger
Ail1 Ail2 Ail3 Ail4 Ail5	AIR1 AIR2	9	External temperature
AiE1 AiE2 AiE3 AiE4 AiE5			
Ail1 Ail2 Ail3 Ail4 Ail5	AIR1 AIR2	10	Internal ambient temperature
AiE1 AiE2 AiE3 AiE4 AiE5			
AIL1 AIL2 AIL3 AIL4 AIL5	AIR1 AIR2	11	Domestic hot water temperature
AIET AIEZ AIE3 AIE4 AIE5		- 12	
AILT AILZ AIL3 AIL4 AIL5	AIRT AIR2	12	Compressor 1 discharge temperature
		10	NOTUSED
	AIRT AIRZ	13	NOT USED
		1.4	NOTUSED
	AIRT AIRZ	14	NOT USED
		15	
		15	NOT OSED
	AIR1 AIR2	16	Temperature display
AiE1 AiE2 AiE3 AiE4 AiE5	741(1741(2	10	
		17	NOT USED
		18	NOT USED
		19	NOT USED
		20	NOT USED
Ail3 Ail4	AIR2	21	High pressure input circuit 1
AiE3 AiE4			
Ail3 Ail4	AIR2	22	High pressure input circuit 2
AiE3 AiE4			
Ail3 Ail4	AIR2	23	Low pressure input circuit 1
Aie3 Aie4			
Ail3 Ail4	AIR2	24	Low pressure input circuit 2
AiE3 AiE4			
AIL3 AIL4	AIR2	25	Input for dynamic setpoint
AIE3 AIE4	4100	26	laternal cuchen reasons circuit 1
	AIK2	26	Internal exchanger pressure circuit i
		27	Internal exchanger pressure circuit 2
		27	internat exchanger pressure circuit 2
	ΔIR2	28	External exchanger pressure circuit 1
AIF3 AIF4	/ 11/2	20	External exchanger pressure circuit i
Ail 3 Ail 4	AIR2	29	External exchanger pressure circuit 2
AIF3 AIF4	/	25	
Ail3 Ail4	AIR2	30	Pressure display
AiE3 AiE4			

5.2 Digital Input Configuration

Low voltage (SELV)

There are a total of 6 voltage free digital inputs referred to below as DIL1...DIL6 and DIE1...DIE6. These can be integrated with AiL1...AiL5 if the latter are configured as digital inputs (via parameters CL50...CL5L4+Cr50 respectively).

Study the following tables:

Table A – parameter association - configuration of digital inputs

Parameter	Description	Value	Description	Notes
CL40	DIL digital input configuration 1	-58+58	See table B	
CL41	DIL digital input configuration 2	-58+58	See table B	
CL42	DIL digital input configuration 3	-58+58	See table B	
CL43	DIL digital input configuration 4	-58+58	See table B	
CL44	DIL digital input configuration 5	-58+58	See table B	
CL45	DIL digital input configuration 6	-58+58	See table B	
CL50	AiL analogue input configuration 1 when configured as digital input	-58+58	See table B	Set to 0 if AiL1 is NOT configured as a DI
CL51	AiL analogue input configuration 2 when configured as digital input	-58+58	See table B	Set to 0 if AiL2 is NOT configured as a DI
CL52	AiL analogue input configuration 3 when configured as digital input	-58+58	See table B	Set to 0 if AiL3 is NOT configured as a DI
CL53	AiL analogue input configuration 4 when configured as digital input	-58+58	See table B	Set to 0 if AiL4 is NOT configured as a DI
CL54	AiL analogue input configuration 5 when configured as digital input	-58+58	See table B	Set to 0 if AiL5 is NOT configured as a DI
CE40	DIE digital input configuration 1	-58+58	See table B	
CE41	DIE digital input configuration 2	-58+58	See table B	
CE42	DIE digital input configuration 3	-58+58	See table B	
CE43	DIE digital input configuration 4	-58+58	See table B	
CE44	DIE digital input configuration 5	-58+58	See table B	
CE45	DIE digital input configuration 6	-58+58	See table B	
CE50	AiE analogue input configuration 1 when configured as digital input	-58+58	See table B	Set = 0 if AiE1 is NOT configured as DI
CE51	AiE analogue input configuration 2 when configured as digital input	-58+58	See table B	Set = 0 if AiE2 is NOT configured as DI
CE52	AiE analogue input configuration 3 when configured as digital input	-58+58	See table B	Set = 0 if AiE3 is NOT configured as DI
CE53	AiE analogue input configuration 4 when configured as digital input	-58+58	See table B	Set = 0 if AiE4 is NOT configured as DI
CE54	AiE analogue input configuration 5 when configured as digital input	-58+58	See table B	Set = 0 if AiE5 is NOT configured as DI
Parameter	Description	value	Description	Notes
Cr50	AIR analogue input configuration 2 when configured as digital input	-58+58	See Table B**	Set to 0 if AIR2 is NOT configured as a DI

Digital inputs: configuration table

Table B - Digital inputs: configuration tablePolarity is defined as indicated below:

 Value
 Description

 +
 Positive
 Active when contact closed

 Negative
 Active when contact open

Value	Description	Notes
0	Input disabled	
±1	Remote STD-BY	Remote mode changeover: to obtain the correct sequence STD-BY – DHW, enable 2 D.I. and configure one as STB-BY and the other as DHW (±28) If you enable only 1 D.I. in STD-BY and the machine is in DHW mode, it may occur that the from D.I. the status transitions to HEAT
±2	Remote off	Local ON/OFF ineffective
±3	Remote Summer/Winter	
±4	Capacity step 1 request	
±5	Capacity step 2 request	
±6	Capacity step 3 request	
±7	Capacity step 4 request	
±8	Digital input heat step 1 request	See also digital temperature control
±9	Digital input heat step 2 request	See also digital temperature control
±10	Digital input heat step 3 request	See also digital temperature control
±11	Digital input heat step 4 request	See also digital temperature control
±12	Digital input cool step 1 request	See also digital temperature control
±13	Digital input cool step 2 request	See also digital temperature control

Value	Description	Notes
±14	Digital input cool step 3 request	See also digital temperature control
±15	Digital input cool step 4 request	See also digital temperature control
±16	Block compressor 1	
±17	Block compressor 2	
±18	Block compressor 3	
±19	Block compressor 4	
±20	Heat pump lock	See section
		Block heat pump (folder PAr/HP)
±21	Capacity control forced to 50%	See section
		Forced power stage (folder PAr/PL)
±22	Economy input	See section Operating modes - Temperature control (folder
+23	NOT LISED	
+24	General alarm	
+25	End of defrost C1	
+26	End of defrost C2	
+27	NOT LISED	
+28	Remote AS	
+29	NOT USED	
+30	High pressure pressure switch C1	
+31	High pressure pressure switch C2	
+32	Low pressure pressure switch C1	
±33	Low pressure pressure switch C2	
±34	Compressor 1 oil pressure switch	
±35	Compressor 2 oil pressure switch	
±36	Compressor 3 oil pressure switch	
±37	Compressor 4 oil pressure switch	
±38	NOT USED	
±39	External exchanger fan thermal switch C1	
±40	External exchanger fan thermal switch C2	
±41	Internal exchanger fan thermal switch	
±42	NOT USED	
±43	Compressor 1 thermoswitch	
±44	Compressor 2 thermoswitch	
±45	Compressor 3 thermoswitch	
±46	Compressor 4 thermoswitch	
±47	Internal circuit pump 1 thermal switch	
±48	Internal circuit pump 2 thermal switch	
±49	External circuit pump thermal protection	
±50	Internal exchanger electric heater 1 thermal switch	
±51	Internal exchanger electric heater 2 thermal switch	
±52	Auxiliary output alarm	
±53	NOT USED	
±54	NOT USED	
±55	Primary circuit flow switch	
±56	External circuit flow switch	
±57	NOT USED	
±58	MAIN	

NOTE: If more than one digital input in the table is configured with the same value, the function is activated when the input with the highest index is piloted.

5.3 Digital output configuration

See the section on Electric Connections for the number and capacity of relays/open collectors and for information on the symbols used on labels supplied with the device. High voltage outputs (relays) are identified as DO1, DO2, DO3, DO4 and DO6 **Digital Outputs**

- The low voltage (SELV), open collector output is called DO5 •

All digital outputs can be configured as outlined in the table below:

Table A – parameter association - output configuration	Table A –	parameter	association ·	- outp	ut configuration
--	-----------	-----------	---------------	--------	------------------

Parameter	Description	Value	Description	Notes
CL90	DOL1 digital output configuration	-53+53	See table B	Present in all models
CL91	DOL2 digital output configuration	-53+53	See table B	Present in all models
CL92	DOL3 digital output configuration	-53+53	See table B	Present in all models
CL93	DOL4 digital output configuration	-53+53	See table B	Present in all models
CL94	DOL5 digital output configuration	-53+53	See table B	Present in all models (Open Collector Output)
CL95	DOL6 digital output configuration	-53+53	See table B	Present in models with 5 relays
CL96	AOL1 digital output configuration	-53+53	See table B	See Table A – Analogue Outputs and Models (Applies if CL71=0, set CL80 appropriately)
CL97	AOL2 digital output configuration	-53+53	See table B	See Table A – Analogue Outputs and Models (Applies if CL72=0, set CL81 appropriately)
CE90	DOE1 digital output configuration	-53+53	See table B	Present in all models
CE91	DOE2 digital output configuration	-53+53	See table B	Present in all models
CE92	DOE3 digital output configuration	-53+53	See table B	Present in all models
CE93	DOE4 digital output configuration	-53+53	See table B	Present in all models
CE94	DOE5 digital output configuration	-53+53	See table B	Present in all models (Open Collector Output)
CE95	DOE5 digital output configuration	-53+53	See table B	Present in models with 5 relays
CE96	AOE1 digital output configuration	-53+53	See table B	See Table A – Analogue Outputs and Models (Applies if CE71=0, set CE80 appropriately)
CE97	AOE2 digital output configuration	-53+53	See table B	See Table A – Analogue Outputs and Models (Applies if CE72=0, set CE81 appropriately)

Table B - Outputs: configuration table Polarity is defined as indicated below:

	Value	Description
+	Positive	Active when contact closed
-	Negative	Active when contact open

Value	Description	Туре	Value	Description	Туре
0	Output disabled	Digital	±37	NOT USED	Digital
±1	Compressor 1	Digital	±38	NOT USED	Digital
±2	Compressor 2	Digital	±39	NOT USED	Digital
±3	Compressor 3	Digital	±40	NOT USED	Digital
±4	Compressor 4	Digital	±41	NOT USED	Digital
±5	Reversal valve circuit 1	Digital	±42	NOT USED	Digital
±6	Reversal valve circuit 2	Digital	±43	NOT USED	Digital
±7	NOT USED	Digital	±44	NOT USED	Digital
±8	NOT USED	Digital	±45	NOT USED	Digital
±9	Sanitary water valve	Digital	±46	NOT USED	Digital
±10	NOT USED	Digital	±47	NOT USED	Digital
±11	NOT USED	Digital	±48	NOT USED	Digital
±12	NOT USED	Digital	±49	NOT USED	Digital
±13	NOT USED	Digital	±50	NOT USED*	Digital
±14	Water pump 1 internal circuit	Digital	±51	NOT USED*	Digital
±15	Water pump 2 internal circuit	Digital	±52	NOT USED*	Digital
±16	Water pump external circuit	Digital	±53	NOT USED*	Digital
±17	NOT USED	Digital	±54	NOT USED	Digital
±18	Recirculation fan	Digital	±55	NOT USED	Digital
±19	Fan external exchanger Circuit 1	Digital	±56	Fan external exchanger circuit 1	Analogue
±20	Fan external exchanger Circuit 2	Digital	±57	Fan external exchanger circuit 2	Analogue

±21	NOT USED	Digital	±58	Water heater	Analogue
±22	Auxiliary output conditional on	Digital	±59	Water pump 1	Analogue
±23	Electrical heater 1 internal exchanger	Digital	±60	Water pump 2 modulating internal circuit	Analogue
±24	Electrical heater 2 internal exchanger	Digital	±61	NOT USED	Analogue
±25	Electrical heater external exchanger 1	Digital	±62	Analogue stage 1 for compressor	Analogue
±26	Electrical heater external exchanger 2	Digital	±63	Analogue stage 2 for Compressor	Analogue
±27	Auxiliary output	Digital	±64	NOT USED	Analogue
±28	Electrical heater Domestic Hot Water	Digital	±65	NOT USED	Analogue
±29	Running hours exceeded	Digital	±66	Analogue stage 1 for Compressor Inverter	Analogue
±30	Water heater	Digital	±67	NOT USED	Analogue
±31	Preheat	Digital	±68	NOT USED	Analogue
±32	EEV 1 ON command	Digital	±69	NOT USED	Analogue
±33	EEV 2 ON command	Digital	±70	NOT USED*	Digital
±34	Compressor 1 Inverter (only for single circuit and single compressor units)	Digital	±71	NOT USED*	Digital
±35	NOT USED	Digital	±72	NOT USED*	Digital
±36	NOT USED	Digital	±73	NOT USED*	Digital
			±74	NOT USED*	Digital
				*see LED configuration	

If multiple outputs have been configured to run the same resource, these outputs will be activated in parallel.

5.4 Configuration of analogue outputs

Analogue Outputs See the section on Electric Connections for the number and type of analogue outputs used and for information on the symbols used on labels supplied with the controller.

Table A2 – Analogue Outputs and Models

		Dangerous voltage		SELV			Moc base	lels 25		Moc expa	lels ansion	IS	
output	Label on display	636 models	Models 646	PWM O.C	010V	020mA 420mA	636	646	655	632	636	646	655
TC1	TCL1	3A 230V	2A 230V				•	•					
TC2	TCL2	3A 230V					•						
A01	AOL1			•			•	•	•				
AO2	AOL2			•				•	•				
AO3	AOL3						•	•	•				
AO4	AOL4						•	•	•				
AO5	AOL5					•	•	•	•				
TC1	TCE1	3A 230V	2A 230V								•	•	
TC2	TCE2	3A 230V									•		
A01	AOE1			•	•					•	•	•	•
AO2	AOE2			•	•					•		•	•
AO3	AOE3				•						•	•	•
AO4	AOE4				•						•	•	•
AO5	AOE5					•					•	•	•

TRIAC analogue outputs (TC1, TC2)

TRIACs are high voltage outputs generally used to drive fans or water pumps. The output can be configured for proportional operation (constant speed variation) or as ON/OFF.

Remote control switches downstream from the TRIAC are NOT permitted. The output can be configured as described in the table entitled "Analogue Output TC1 - AO1 AO2: configuration table"

Configuration of safety low voltage (SELV) analogue outputs

AO1 always available. If configured as digital, see parameter CL96/CE96 AO2 always available. If configured as digital, see parameter CL97/CE97 They can be configured as: PWM (via CFS modules) or Open Collector (ON/OFF).

AO3 – AO4 - low voltage (SELV) output to drive external modules to control fans / pumps / compressors. Can be used to drive 0-10V fans (via parameters CL61/CL62 – CE61/CE62) AO5 - safety low voltage (SELV) output to drive external modules to control fans / pumps / compressors. Can be used to drive 4-20mA loads or 0-20mA loads (via parameter CL60/CE60 / CL63/CE63)

To configure, see the table below. All analogue outputs can be configured as digital or proportional.

Table B – Analogue Outputs – Configuration parameters

Parameter Description Notes Output values Phase shift values to Phase shift TCL analogue output 1 pilot TRIAC with cut-CI 73 0 90 **CE73** Phase shift TCE analogue output 1 off in the event of inductive loads. **CL76** pulse length to drive TC1 TCL analogue output pulse length 1 5...40 units Triac Only for TCE analogue output pulse length 1 (347...2776 µs) **CE76** (1 unit = 69.4 µs). models See 63x 64x Table B **CL79** Outputs: TCL analogue output configuration 1 -53...+53 if digital (see polarity) configuration table, TCE analogue output configuration 1 56...66 if proportional paragraph on CE79 Configuration of Digital Outputs 0= 65x models See CE95 TCE1 **CE70** Enable TCE analogue output 1 see CE73 - CE76 -1= 64x models CE79 0= Output configured as If =0 see parameter digital CL96/CE96 **CL71** Enable AOL analogue output 1 (for pulse pilot) Enable AOE analogue output 1 **CE71** 1= Output configured as If =1 see parameters TRIAC CL74 – CL77 – CL80 CE74 – CE77 – CE80 Phase shift AOL analogue output 1 Active if CL71=1 **CL74** A01 0...90 **CE74** Phase shift AOE analogue output 1 / CE71=1 CL77 AOL analogue output pulse length 1 Active if CL71=1 5...40 units / CE71=1 (347...2776 µs) (1 unit = 69.4 µs).**CE77** AOE analogue output pulse length 1 See **CL80** AOL analogue output configuration 1 -53 +53 digital if Table B (see polarity) Outputs: **CE80** AOE analogue output configuration 1 56...66 if proportional configuration table 0= Output configured as If =0 see parameter CL97/CE97 digital Enable AOL analogue output 2 (for pulse pilot) **CL72** 1= Output configured as **CF72** Enable AOE analogue output 2 If =1 see parameters TRIAC CL75 - CL78 - CL81 CE75 - CE78 - CE81 CI 75 Phase shift AOL analogue output 2 Active if CL72=1 AO2 0...90 **CE75** Phase shift AOE analogue output 2 /CE72=1 Active if CL72=1 **CL78** AOL analogue output pulse length 2 5...40 units /CE72=1 (347...2776 µs) (1 unit = 69.4 µs). **CE78** AOE analogue output pulse length 2 See **CL81** if AOL analogue output configuration 2 -53 +53 digital Table B (see polarity) Outputs: CE81 AOE analogue output configuration 2 56...66 if proportional configuration table

Analogue output TC1 - AO1 AO2: configuration table

* in 636 models, AO2 can be used as TRIAC (TC2)

Low voltage (SELV) analogue output AO3-4-5: configuration table

 Parameter
 Description
 values
 Notes
CL60 CE60	AOL analogue output type 5 AOE analogue output type 5	0 = 4-20mA Current analogue output 1 = 0-20mA Current analogue output	See Analogue Output
CL61	AOL analogue output configuration 3	-53+53 if digital (see polarity)	Modulated piloting
CE61	AOE analogue output configuration 3	5666 if proportional	external relay
CL62	AOL analogue output configuration 4	-53+53 if digital (see polarity)	Modulated piloting
CE62	AOE analogue output configuration 4	5666 if proportional	external relay
CL63	AOL analogue output configuration 5	-53+53 if digital (see polarity)	Modulated piloting
CE63	AOE analogue output configuration 5	5666 if proportional	or on/off

The following can be driven: loads with power modulation (values from 56 to 66) or loads with on/off type switching using the Triac as a switch (TC1 AO1 AO2) the output as a 0-10V switch (AO3-4) the output as a 0/4...20mA switch (AO5)

6 USER INTERFACE (FOLDER PAR/UI)

The interface, comprising the front cover of the controller, allows you to perform all operations needed to use the device.

NOTE:

- The SCA600 module has no display. To work on the device use terminal SKP 10 or SKW22(L)/SKP22(L)
- The SE600 expansion module has no display.

6.1 Keys

Refer to models SBA600 SDA600 and SKP 10.

There are 4 keys on the front cover of the controller. Each key has (see the two tables below):

- A direct action (shown on the key itself).
- An associated function (indicated on the front cover of the controller, near the key). In the manual, this is shown in square brackets (e.g. [UP])
- A combined action using 2 keys. In the manual, this is shown in square brackets (e.g. [UP+DOWN])

6.1.1	Description	of keys an	d associated	functions
-------	-------------	------------	--------------	-----------

Кеу	Description key	Single press (press and release)	Key [associated function]	Long press [press and hold for about 3 seconds]	Menu / Comments
	UP	 Increase a value. Go to next label Modify Set Point (if UI25=1) 	£./**	[Activate Sanitary Water function)	Sanitary Water / Manual defrost depending on model Functions menu see Functions chapter (folder FnC)
*	DOWN	 Decrease a value. Go to previous label Modify Set Point (if UI25=1) 	⁰⁄₀	(Standby)	Standby / Local ON/OFF according to model
es	Esc(ape) Escape (without saving new settings)	 Exit without saving new settings Go back to previous level. 	mode	[Mode Change] See section on Changing operating mode.	Operating mode menu
se	Set Confirm (saving new settings)	 Confirm value / exit and save new settings Move to next level (open folder, subfolder, parameter, value) Open State Menu. 	disp	[Main display] See Main Display section.	[Main display menu]
	UP+ DOWN	Activate Time Bands			
			By parameter (s UI20-21-22-23-24) enabled or disable • 0 = Key • 1 = Key	ee parameters cha) the function [as: ed root enabled for the renabled for the fun	apter, parameters sociated] can be function ction

The following indications refer to the SBA600 user interface. Navigation is identical for SDA600 and SKP10

6.1.2 Stand-by

6.1.3 Description of keys – combined action

Symbol [function associated with combined pressing of the keys]	Combination Keys	Combined pressing of keys Press once (press and release)	[associated function]	[Menu] / Comments	
	*	UP + DOWN	[Activate/Deactivate]	See section on Time Bands Time Bands / Reset depending on model	
Prg 1	esc	[Esc + Set]	[Open programming menu]	[Programming menu]	

6.1.3.1 Manual alarm acknowledgement and reset

Alarm signals are displayed as flashing. Below is an explanation of how to acknowledge an alarm. The various error messages will be shown in folder AL (see States Menu)

6.2.2 LEDs: values and units of measurement

LED Unit of measure	Icons:	Description	Colour	Permanently on	Blinking
▲ * * [©] * ○ * ○ [©] °C 88:8:8 8.8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.	0	Clock (RTC) Time Bands	red	Shows current time (24hr format). Time Bands enabled	Set time Programming Time Bands
	°C	Degrees centigrade		/	/
	Bar	Pressure (Bar)		1	/
	%R.H.	Relative humidity transducer (% RH)		Not used	Not used
	ABC	Menu (ABC)		Menu navigation	/

6.2.3 LED: services

LED services		Description	Colour	Permanently on	Blinking	
▲ * * [©] * ○ * ○ * ○ * ○ * ○ * ○ Bar 88:88 Bar %RH. ABC	•	service	Amber	Configurable (°) See Parameters section. Ui folder Parameters UI00UI06	Configurable (°°) See Parameters section. Ui folder Parameters UI00UI06	

(°) permanently on: Service active (°°) blinking: UI00..UI06= 50...53 (capacity steps 1...4) indicates safety timing N.B.: In the case of LED configured as DHW valve, the LED blinks when AS mode is enabled but not active. Permanently on when serving a DHW request.

Default Configuration

LEDs for services are all configurable (see parameters chapter, folder Ui). The factory settings of the controller are listed in the table:

LED symbol on display	SBA600 LEDs	Default SBA600	Default front panel SBA600	icon	on
-	LED 1 (first LED from left)	Capacity step 1	1		
-	LED 2	Capacity step 2	2		
-	LED 3	Internal circuit water pump	\bigcirc		
-	LED 4	External circuit water pump	\bigcirc		
-	LED 5	Internal exchanger electric heater 1	2		
-	LED 6	Valve or DHW pump	1		
-	LED 7	Water heater	\bullet		

6.3 **First switch-on**

elivel elivel elivel elivel esc pre esc pre esc dip dip	
When Energy SBA600 is powered on for the first time, a lamp test is carried out to check its state and operation. The Lamp Test lasts for just a few seconds. For this short time, all LEDs and digits will flash at the same time.	After the lamp test, the following are displayed (depending on the default settings): Time Real setpoint Parameter setpoint Value of the analogue input selected (AIL1AIL5) In the example, the main display is the real set point

6.4 Access to folders - menu structure

Folders are organized into menus.

Access to said folders is defined by the keys on the front cover (see relative paragraphs). In the paragraphs that follow (or chapters indicated), we will explain how to enter each individual menu.

There are 4 menus:

.

- \rightarrow see the "Main Display Menu" chapter.
- \rightarrow see the "Operating Mode Menu" chapter.
- \rightarrow see the "States Menu" chapter. \rightarrow see the "Programming Menu" chapter.

see Parameters chapter.

• States Menu Programming Menu

Main Display Menu

- Operating Mode Menu

There are 4 folders / sub-menus in the Programming Menu:

- Parameters Menu (folder Par)
- Functions Menu (folder Fnc)
 - see Functions chapter.
- Password PASS • •
- EU alarm codes

6.4.1 Main display Menu

"Main Display" means what the controller on the default display screen, i.e. when no keys have been pressed.

	Ai	AIL1	AIL2	AIL3	AIL4	AIL5			
		AIE1	AIE2	AIE3	AIE4	AIE5			
		Air1	Air2						
Main Dicolay	E1(§)	1rE1	1rE2	-	-	1rE5	1rE6	1rE7	1SP4
Main Display		2rE1	2rE2	-	-	2rE5	2rE6	2rE7	2SP4
	rtC	HH:MM							
	SetP	SetP							
	Setr	Setr							

In Energy SBA600, the main display can be customized to suit personal requirements. The various displays can be selected from the "disp" menu, which can be opened by pressing and holding the [set] key for more than three seconds. The main display can be selected from:

- Analogue inputs AiL1, AiL2, AiL3, AiL4, AiL5, AiE1, AiE2, AiE3, AiE4, AiE5, Air1, Air2
- If configured as digital inputs:

- 0 or 0.0 = input not active (i.e. input short circuited to ground)

- 1 or 0.1 = input active (i.e. input open)
 - analogue inputs 1AI1..1AI4, 2AI1..2AI4 (one of the probes made available by XVD1 or XVD2 of the relative ٠ probe is configured)
 - 1rE1..1rE7,1SP4, 2rE1..2rE7,2SP4 (one of the resources made available by XVD1 / XVD2)
 - rtC,
 - Set-point \rightarrow SetP= set by parameter, Setr= real with possible decalibrations; .

NOTES

E1(§) see parameters UI10/UI11 values 20...35

If CP01 - Number of circuits = 1 the resources relative to XVD 2 will not be displayed (plant with single circuit)

A step by step account of how to proceed is provided below.

6.4.2 "Operating Mode" Menu

Instructions are provided below on how to change the operating mode. There are three different operating modes: Stand-by (StbY) mode HEAT mode

COOL mode

Domestic hot water (AS) mode

For example, let's say you want to change from StbY to COOL mode. To change the operating mode, press and hold the mode key for at least 2 seconds. PS The main display is set as rtc (current time).	A blinking menu will open containing the values StbY (standby), HEAt (heating), COOL (cooling) and AS (domestic hot water).
After selecting the preferred operating mode, press the set key.	You will be automatically returned to the main display and you will see that the Stby LED that was previously on has gone off and the COOL LED has come on.

6.4.3 "States" Menu

The value of resources can be viewed in the states menu. For some resources, a "dynamic" view is possible:

• For example, when declared as not present / probe not configured <u>(see System Configuration chapter (folder Par/CL), parameter CL01=0</u>), analogue input AIL2 will not be displayed.

For example the hours of functioning of compressor 2 - CP02 – not available on single compressor machines

Resources can be present / not present depending on the model (e.g. dOL6 is present on SBA655 only).

Label								Visibility	Description	Modification
Ai	AIL1	AiL2	AIL3	AIL4	AIL5			Dynamic	Analogue inputs LOCAL	//
Ai	AIE1	AiE2	AIE3	AIE4	AIE5			Dynamic	Analogue inputs EXTENDED(§)	//
Ai	Air1	Air2						Dynamic	Analogue inputs TERMINAL	//
of	diL1	diL2	diL3	diL4	diL5	diL6	//	Dynamic	Digital inputs LOCAL	//
of	diE1	diLE2	diE3	diE4	diE5	diE6	//	Dynamic	Digital inputs EXTENDED(§)	//
AO	tCL1	AOL1	AOL2	AOL3	AOL4	AOL5	//	Dynamic	Analogue outputs LOCAL	//
AO	tCE1	AOE1	AOE2	AOE3	AOE4	AOE5	//	Dynamic	Analogue outputs EXTENDED(§)	//
dO	dOL1	dOL2	dOL3	dOL4	dOL5	dOL6	//	Dynamic	Digital outputs LOCAL	//
dO	dOE1	dOE2	dOE3	dOE4	DOE5	dOE6	//	Dynamic	Digital outputs EXTENDED*(§)	//
CL	HOUr	dAtE	YEAr						Clock	YES
AL	E000						E090	Dynamic	Alarms	//
AL	E100 E200						E115 E215	Dynamic	XVD1 Alarms XVD2 Alarms	//
SP	Value	//	//	//	//	//	//		Setpoint (set)	YES
\$r	Value	//	//	//	//	//	//		Real setpoint	//
Hr	CP01	CP02	CP03	CP04	PU01	PU02	PU03	Dynamic	Tens of hours of operation compressor/pumps	YES

(§) only if SE600 expansion module present

As shown in the table, the setpoint SP and time can be modified as well as displayed.

6.4.3.1 Inputs/Outputs Display (AiL, diL, tCL1/AOL, dOL)

***For digital inputs / analogue inputs configured as digital, the value will be:

- 0 = input not active (for digital inputs this equals an open input, for analogue inputs configured as digital, this equals an input short circuited to ground)

- 1 = input active (for digital inputs this equals an input short-circuited to ground, for analogue inputs configured as digital, this equals an open input)

Press the esc key to go back to the main display.

6.4.3.2 Setting the clock (CL)

Energy SBA600 is equipped with a clock (RTC) that makes it possible to manage the alarms log, just like a programmable timer thermostat.

We will now show you how to set the time: you will also use the same procedure to set the date and year.

6.4.3.3 Alarm Display (AL)

Press the set key from the main display.	Label Ai appears on the display. Use the UP and DOWN keys to browse the other labels until you find the AL label.		
Press the "set" key to display the label of the first active alarm (if present)	In this case, the first alarm is E001. Scroll using the "UP" and "DOWN" keys to find other active alarms. 		
The XVD alarms are managed locally by each driver and they are signalled and recorded by the master SBA controller in the same folder as the E0xx alarms The alarm codes are divided as follows	E1xx for driver XVD1 E1xx for driver XVD2		

6.4.3.4 Example of how to set the setpoint (SP)

For example, we will modify the setpoint in COOL mode from 12.0 degrees centigrade to 12.6 degrees centigrade.

Setpoint edit function enable from main screen

Parameter Ui25 allows you to enable Set Point modification on the main display with the UP and DOWN keys. For example, we will modify the setpoint in COOL mode from 12.0 degrees centigrade to 12.6 degrees centigrade.

Parameter UI25=1 (folder Par/Ui/UI25) must be set. See Parameters section (folder PAr)

6.4.4 Programming menu:

Menu	Label								description	notes
Parameters	PAr	CL	Cr	CF	Ui	St		Al	the parameters	
Functions	FnC	dEF	tA	tA	tA	St	СС	EUr	Functions	See the "Functions" chapter (folder FnC).
Password	PASS								Password	
EU	EU	Eu00								

6.4.4.6 Parameters (folder PAr)

Modifying a parameter

Instructions are provided below on how to change a machine parameter. In this case, we will take the parameter configuration folder CL01 and parameter CL01 as an example (folder PAr/CL/CL01).

6.4.5 Setting a password (Par/PASS folder)

Levels of visibility

There are four levels of visibility that can be set by assigning appropriate values to each parameter and folder, <u>only via</u> <u>serial communication, software</u> (DeviceManager or other communication SW) <u>or programming key</u> The levels of visibility are:

Value 3 = parameter or folder always visible

- Value 2 = **manufacturer level;** these parameters can only be viewed by entering the manufacturer's password (see parameter Ui28) (all parameters declared as always visible, parameters visible at the installation engineer level and manufacturer's level will be visible).
- Value 1 = **installation level**; these parameters can only be viewed by entering the installation password (see parameter Ui27) (all parameters declared as always visible, and parameters visible at the installation engineer level will be visible).
- Value 0 = parameter or folder NOT visible.
- 1. Parameters and/or folders with a level of visibility <>3 (password-protected) will be visible only if the correct password is entered (installer or manufacturer) by means of the following procedure
- 2. Parameters and/or folders with a level of visibility = 3 are always visible even without a password: in this case, the following procedure is not necessary.

To view parameters visible for the given password, open folder PASS (press esc and set together [esc+set] from the main display and search the folder using the up/down keys) and set the PASS value.

6.4.6 Alarm events (Par/EU folder)

OPERATING MODES – TEMPERATURE CONTROL (FOLDER PAR/TR)

Temperature control parameters can be viewed and configured in folder tr (see User Interface and Parameters section).

Energy SBA600 controls the main temperature regulator setpoint by dynamically modifying its value using special algorithms and events to maximise plant efficiency and output.

The action on the setpoint can be:

- Direct: modifies the main setpoints
- Indirect: modifies by using the sum of the values (positive or negative) called the setpoint differentials with the principal setpoints for the Cool and Heat modes.

There are several setpoint differentials:

- Dynamic setpoint differential on dedicated input or external temperature
- Economy function setpoint differential
- Adaptive function setpoint differential (see section in question)

In the same way (by means of the same direct and indirect actions) the temperature regulator hysteresis can be dynamically controlled. This only affects the compressor capacity steps; the other steps, such as water heater and electric heaters, have parameter-set hysteresis.

The main hysteresis differentials for the compressors are:

• Adaptive function hysteresis differential (see section in question)

The results of the direct and indirect actions on the principal setpoints and hysteresis are the real setpoint and hysteresis.

In general, we can say that the main temperature control is based on these 4 values:

- 1. Real Cool setpoint
- 2. Real Heat setpoint
- 3. Real Cool hysteresis (compressors only)
- 4. Real Heat hysteresis (compressors only)

The main temperature regulator calculates the capacity to be delivered, both in Heat and Cool mode. The capacity is expressed a number of steps (hot or cold) to deliver.

7.1 Temperature regulator setpoint and hysteresis

7.1.1 Setpoint and hysteresis from parameter value

The parameters used to set the main working setpoints, one for each operating mode, are shown below:

Parameter		
COOL HEAT		Description
tr10	tr20	Temperature regulator setpoint in Cool / Heat
tr11	tr21	Temperature regulator minimum setpoint in Cool / Heat
tr12	tr22	Temperature regulator maximum setpoint in Cool / Heat
tr13	tr23	Temperature regulator hysteresis in Cool / Heat

For setpoint and hysteresis there exist <u>direct</u> modification actions (direct action on the principal values, such as modification via COM1) or <u>indirect</u> modifications, summing differentials, to obtain the **real** setpoint and hysteresis values.

7.1.2 Real setpoint and hysteresis

The real setpoints and hysteresis are calculated from the parameters described above and summing the total differentials calculated in a specific way from the components described above.

- Real setpoint Heat = Main setpoint Heat + Setpoint differential Heat
- Real setpoint Cool = Main setpoint Cool + Setpoint differential Cool

Setpoint differential = Dynamic setpoint differential on dedicated input and/or external temperature + Economy function setpoint differential +/- Adaptive function setpoint differential

- **Real** hysteresis Heat = Main hysteresis Heat + **Hysteresis differential Heat**
- Real hysteresis Cool = Main hysteresis Cool + Hysteresis differential Cool

Hysteresis differential = Adaptive function Hysteresis Differential

7.1.2.1 Setpoint differential: dynamic differential

See dynamic setpoint section (folder PAr/dS)

7.1.2.2 Setpoint differential: Economy differential

Enabling

The function is enabled only if a digital input has been configured as Economy input (at least one of CL40...CL45, CL50...CL54=22)

When the digital input is enabled, the setpoint is increased by a differential equal to the value of parameter **tr15** or **tr25** depending on the current operating mode (Cool or Heat):

The activation of Economy mode is indicated by the Economy LED (if so configured)

7.1.2.3 Setpoint and hysteresis differentials: Adaptive function See Adaptive section (folder PAr/Ad)

7.2 Temperature regulator

The SBA600 has five types of temperature control that can be selected with tr00 Temperature control type.

- **Proportional:** Calculates the power the unit must supply in relation to the distance of the air/water temperature from the setpoint
 - o tr00=0 Proportional temperature control see diagrams A and B
- Differential: Calculates the power the unit must supply in relation to difference in temperature between two
 analogue inputs
 - tr00=1 Differential temperature regulator see diagrams C and D
 - Digital (condenser unit)
 - o tr00=2 Digital temperature control
- **INVERTER proportional** Calculates the capacity the unit must supply in relation to the distance of the air/water temperature from the setpoint
 - o tr00=3 Proportional INVERTER control thermoregulation see diagrams A' and B'
 - **INVERTER differential** Calculates the capacity the unit must supply in relation to the temperature difference between two analogue inputs
 - tr00=4 INVERTER control differential thermoregulation

Temperature control parameters can be viewed and configured in folder tr (see User Interface and Parameters section).

7.2.1 Temperature control probes

Table A Control probe selection

Temperature	COOL	HEAT	Description	Probe 1	Probe 2
control					
Control	tr02	tr03	Probe selection for temperature control in Cool/Heat modes	See table B	N.O.
Differential	tr04	tr05	Select probe for differential temperature control in Cool/Heat modes	See table B	See table B

Table B Control probes

Value	Probe 1	Probe 2
0	Internal exchanger water/air inlet temperature (CL30CL34=0)	
1	Internal exchanger water/air outlet temperature (CL30CL34=1)	
2	Circuit 1 and 2 internal exchanger water outlet average temperature Average ((CL30CL34=2), (CL30CL34=3))	External temperature NTC input
3	External exchanger inlet water temperature (CL30CL34=6)	(CL30CL34=8)
4	External exchanger outlet water temperature (CL30CL34=7)	
5	Circuit 1 and 2 external exchanger average temperature Average ((CL30CL34=4), (CL30CL34=5))	

*if one of the probes is in error or not configured, the average value will indicate a probe error

7.2.2 Proportional temperature control

This is a type of control that activates the capacity steps as a function of the divergence of the actual temperature from the real setpoint.

Homogeneous or capacity control compressors

The steps (heating or cooling) are discrete and there are a limited number of them (max 4 for SB devices).

The number of steps (resources) requested is linked to the difference between the control temperature and the **real** setpoint; the greater the difference, the larger the number of steps (resources) used to reach the setpoint. The temperature interval between application of one capacity step and the next depends on the proportional band and

the number of resources available (see Compressors section).

Temperature control is usually dependent on the inlet/outlet water/air temperature of the internal exchanger. Installations with double internal exchanger can control the temperature as a function of the average of the two temperatures measured at the exchanger outlets.

In some applications (e.g. machines with water reversal in Heat mode) it may be necessary to use the **external** (recovery) **exchanger** inlet/outlet water temperature for temperature control.

Various temperature control probes can be selected for Heat and Cool modes using the parameters given in Table B Control probes

7.2.3 Proportional capacity step temperature control in Cool / Heat mode

Temperature control is enabled in Heat mode only if *Enable heat pump* tr01 = 1 Case tr00=0

Parameter		Description
COOL	HEAT	Description
tr02	tr03	Select thermoregulation probe in Cool / Heat
tr14	tr24	Insert steps/compressors differential in Cool / Heat
Setp	oint	Real setpoint in Cool / Heat
Hysteresis		Real control hysteresis in Cool / Heat

N.B.: The real hysteresis may not be greater than the differential. In this case the hysteresis is considered equal to the differential.

7.2.4 INVERTER temperature control in Cool / Heat mode

Temperature control is enabled in Heat mode only if *Enable heat pump* tr01 = 1 Case tr00=3

	Parameter		Description
	COOL	HEAT	
	tr14	tr24	Insert steps/compressors differential in Cool / Heat
	tr30	tr40	Temperature controller hysteresis with inverter in Cool / Heat
	tr31	tr41	Temperature controller band with inverter in Cool / Heat
Speed	tr32	tr42	Minimum speed with inverter in Cool / Heat
Speed	tr33	tr43	Maximum speed with inverter in Cool / Heat
	tr34	tr44	Insert Inverters/compressors differential in Cool / Heat

N.B.: The real hysteresis may not be greater than the differential. In this case the hysteresis is considered equal to the differential.

Cooling

N.B.: the sum tr30+tr31 must be less than tr34

Heating

N.B.: the sum tr40+tr41 must be less than tr44

If this is not the case, the hysteresis + band value will be equal to the differential value.

7.2.5 Notes on inverter Management

Activation of the compressors is determined by the specified analogue signal, but also by a corresponding digital permissive, taken from the standard available digital outputs.

Digital and analogue signals both affect the inverter, and activation of the compressor is determined by said signals, but also by the regulatory mechanisms and parametrisations of the inverter interposed between the controller and the compressor. For example, the inverter typically influences the activation and deactivation modes of the compressors.

Consequently, on the basis of the type of inverter and the type of compressor, the resulting management can be more or less efficient and more or less appropriate for protecting the specific compressor employed.

To further improve management of the compressors and obtain benefits in terms of overall efficiency, it may be appropriate to "modulate" the digital permissive in specific situations, such as, for example, at the time of stopping (because the setpoint has been reached) and during defrosting.

Single circuit and single-compressor units

In the case of 1 circuit 1 compressor, and only in this case, there is a dedicated digital output available denoted **Inverter Compressor 1**

Stage	Digital output	Digital Compressor 1 Inverter
	Compressor 1	and analogue output Compressor Inverter
	$(CL9095/CE9095 = \pm 1)$	$(L96/9//LE96/9/ = \pm 34)$
Starting for	Starts in accordance with	No change, it is typically the inverter that (in accordance with its
temperature control	the standard temperature	settings) determines gradual starting of the compressor
requirements	regulator	
Stopping due to	Stops in accordance with	Digital output: remains on (for time St06 - Delay time for
fulfilment of	the standard temperature	switching of Heating to Defrost cycle inversion valve, then
temperature control	regulator	switches off the same as the standard output) to allow inverter to
demand	-	reduce its speed before switching it off
		Analogue output: assumes value 0 (below minimum inverter
		threshold)
Alarms		
Dedicated alarms (*)	Output off	No change, in the case of dedicated alarms it is good practice to
		switch off the compressor
OFF / Stdby		
Instrument OFF (*)	Output off	No change, compressor and inverter switch off (=0)
Instrument STD BY	Output off in compliance	Digital output: remains on (for additional time St06 - Delay time
	with delay intervals	for switching of Heating to Defrost cycle inversion valve,
		then switches off the same as the standard output)
		Analogue output: assumes value of tr32 - Inverter minimum
		speed in Cooling or tr42 Inverter minimum speed in Heating
		to allow the inverter to bring the compressor to the minimum
		speed before switching it off

(*) assumes priority over any active alarms

Characteristics		
Stage	Compressor 1	Compressor 1 Inverter
	(CL9095/CE9095 = ±1)	(CL96/97/CE96/97 = ±34)
Defrost		
Defrost start	Behaviour dependent on parameters St06/St07	Diagram A
		→Digital output: remains on. → <u>Analogue output</u> : normally regulates up to the start of defrosting when it assumes a value equal to tr42 Inverter minimum speed in Heating to allow the inverter to bring the compressor to minimum speed
		After time St06 - Delay time for switching of cycle inversion valve from Heating to Defrosting the inversion valve is reversed and, after an additional time St07 - Delay time for switching of cycle inversion valve from Defrosting to Heating the analogue output is brought to the maximum value tr43 - Inverter maximum speed in Heating
Defrost end	Behaviour dependent on parameters St06/St07	Diagram B
		dF23 - Drip time \neq 0 and greater than St06 (dF23 and St06 are counted in parallel).
		→ <u>the digital output</u> is switched off after time St06 → <u>the analogue output</u> assumes value 0 and afterwards a value equal to tr42 - Inverter minimum speed in Heating to allow the inverter to bring the compressor to minimum speed Compressori shutdown since digital output will be closed after St06 (<df23) td="" time<=""></df23)>
		After time dF23 - Drip time the inversion valve is reversed and, after an additional time St07 - Delay time for switching of cycle inversion valve from Defrosting to Heating the analogue output is brought to the value requested by the temperature regulator
		\rightarrow <u>the analogue output</u> is brought to the value requested by the temperature regulator after dF23 (>St06) + St07
		Diagram C
		dF23 - Drip time = 0 or lesser than St06 (dF23 and St06 are counted in parallel).
		→ <u>Digital output</u> : remains on. → <u>the analogue output</u> is brought to the value requested by the temperature regulator after St06 + St07
Mode Change		
Mode Change	Behaviour dependent on parameter St05	St05 - Cycle inversion valve switching delay time = 0, no change, the mode changeover in progress is performed while keeping the compressor running.
		St05 - Cycle inversion valve switching delay time \neq 0 , the output remains on for an additional time St06 - Delay time for switching of cycle inversion valve from Heating to Defrosting Set St05>St06 to be certain that the compressor is stopped when the valve is reversed
		In the mode change from heating/cooling the analogue output assumes the value tr32 – Minimum speed with Inverter in Cool In the mode change from heating/cooling the analogue output assumes the value tr42 - Minimum speed with Inverter in Heat It is set to 0 at turning off the digital output.

Note

Pay attention to the use of parameter **St06** -**Delay time for switching of cycle inversion valve from Heating to Defrosting** as a sort of post-off of the **Compressor 1 Inverter** output in certain situations), whose value must be selected in accordance with the application (inverter and its parametrisation).

7.2.6 Activation of the XVD electronic expansion valve driver

If at least one capacity step is required by the compressor(s) on one of the two circuits, an ON command will be transmitted to the driver for the XVD electronic expansion valve relative to the circuit in question. If, on the other hand, the circuit does not require cooling or heating capacity (all compressors off) for any reason (e.g. alarm associated with the compressor), an OFF command will be transmitted to the relative XVD.

7.3 ENVELOPE control

Envelope control requirements

In the case of **1 circuit 1 compressor**, and only in this case, temperature control is available on a dedicated digital output also with ENVELOPE control.

Enabling

The envelope control functions are enabled by means of parameters:

Parameter	Description
	Enable discharge temperature limitation control
ri00	0= disabled; 1= enabled
	Select compression ratio control mode
	0= Compression ratio control disabled
	1=Compression ratio control enabled, minimum and maximum values
	2=Compression ratio control enabled, minimum value
ri01	3=Compression ratio control enabled, maximum value
	Compressor running time in safety
ri12	If different from zero enables oil recovery function

7.3.1 Discharge temperature limitation

Limitation of the discharge temperature with reduction of compressor rpm

Enabling

ri00 - Enable discharge temperature limitation control = 1

This logic cuts in to limit the value of discharge temperature to the threshold value defined by the parameters

	Parameter	Description
reference value	ri20	Discharge temperature limit zone 1b
Discharge	ri21	Discharge temperature limit zone 1a - 2
temperature	ri22	Discharge temperature limit zone 1c - 3
	ri16	Compressor speed correction
	ri34	Discharge temperature correction period
	ri63	Evaporation pressure zone 1a/1b
Hysteresis	ri64	Evaporation pressure differential 2
	ri65	Evaporation pressure zone 1b/1c

The discharge temperature is compared to the reference value, which will be ri20, ri21 or ri22, on the basis of the evaporation pressure value.

If the real discharge temperature exceeds the reference value, the compressor Inverter speed and ri16 are reduced and the resulting value is "frozen" for time ri34.

Subsequently the control is performed with a frequency defined by the same parameter ri34, with possible further reductions of ri16 at each instance.

If the discharge temperature returns to below the defined threshold value, the speed is restored as determined by the temperature control (offset zero setting) at that time.

Determination of the reference value:

Parameter	Description
ri63	Evaporation pressure zone 1a/1b
ri64	Evaporation pressure differential 2
ri65	Evaporation pressure zone 1b/1c

• when the evaporation pressure falls below the value defined by parameter ri63 -> maximum discharge temperature value ri21;

• pressure that rises above value ri63+ri64 -> ri20;

• pressure that rises above value ri65 -> ri22;

• pressure that falls below value ri65-ri64 -> maximum discharge temperature ri20.

7.3.2 Compression ratio control

The control function of the compression ratio is enabled by the parameter **ri01 - Compression ratio control mode selection**

Parameter	Description
ri14	Initial transient for compression ratio control
ri30	Minimum compression ratio
ri31	Maximum compression ratio
ri32	Minimum compression ratio range
ri33	Maximum compression ratio range
ri55	Superheating setpoint correction period/sampling time

The compression ratio given by ((High pressure value +1 bar)/(Low pressure value +1 bar)) is compared with parameter ri30 minimum compression ratio and ri31 maximum compression ratio in order to maintain it between these two values. The logic utilised is as follows:

- after the initial transient defined by ri14, from starting of the compressor;
- with sampling time ri55 (for "synchronism" with the other controls of the command signal that use the same period as the scanning time) the compression ratio is calculated;
- if the result is less than ri30 a correction is introduced to increase the compressor control signal by the value defined by parameter ri16 and the resulting value is "frozen" for time ri55;
- if compression ratio is more than ri31 a correction is introduced to reduce the compressor control signal by the value defined by parameter ri16 and the resulting value is "frozen" for time ri55;
- if the compression ratio is between ri30 and ri30+ri32 or between ri31-ri33 and ri31 no action is taken ("neutral zones") and the resulting value is frozen for time ri55;
- if the compression ratio is between ri30+ri32 and ri31-ri33, the speed is restored as determined by the temperature control (offset zero setting) at that time.

7.3.3 Oil recovery

Parameter	Description
ri10	Compressor safety speed for oil recovery
ri11	Compressor safety speed
ri12	Compressor running time in safety

To guarantee correct recovery of oil in the circuit if the compressor is working at rotation speeds below ri10 for a maximum time ri13, the control signal is forced to ri11 for a period equivalent to ri12.

7.3.4 ENVELOPE control regulation priority

The oil recovery function assumes priority over all the other regulations that act on the compressor Inverter on the condition that the compressor is running.

The other two functions (discharge temperature and compression ratio) have priority over normal regulation and if there are conflicting actions the action that tends to reduce the compressor Inverter speed will prevail. For a capacity increase it is necessary that none of the controls constrain such an increase.

7.3.5 Temperature control differential

Differential temperature control is enabled with parameter **tr00** *Temperature control type*. I.e. tr00=1 (differential) / tr00=4 (INVERTER differential) The aim of differential temperature control is to maintain a constant difference between the external temperature and the temperature of the air/water used for heating/cooling. The temperature differential in question is defined by

temperature control value = Probe 1 – Probe 2

where **Probe 2** is the external temperature.

See Control Probes Table

Installations with double internal exchanger can control the temperature as a function of the average of the two temperatures measured at the exchanger outlets. The same applies to the external exchangers.

7.3.5.1 Differential temperature control in Cool / Heat mode

Temperature control is enabled in Heat mode only if **tr01**: *Enable heat pump* = 1.

Param	Parameter Description			
COOL	HEAT	Description		
tr04	tr05	Select probes for temperature control differential in Cool / Heat		
tr14	tr24	Insert steps/compressors differential in Cool / Heat		
Setpo	oint	Real setpoint in Cool / Heat		
Hysteresis		Real control hysteresis in Cool / Heat		

N.B.: The real hysteresis cannot be greater than the differential. In this case the hysteresis is considered equal to the differential.

7.3.6 Digital temperature control

The function is enabled if parameter *tr00*. *Temperature control type* = 2.

In the case of digital temperature control, the capacity step request depends on the state of specific digital inputs, typically driven by external thermostats, rather than analogue variables.

The operating mode can also be selected via a digital input.

N.B.: Safety timings, settings (compressor ON delay, pump ON, ..) and alarms are active as usual.

The digital input configuration depends on the type of thermostat used in the application. We list below the meanings that can be associated with the digital inputs in question.

Type 1 thermostat

Value DIL1 to DIL5 / AIL1 to AIL5	Description
±8	Digital input heat step 1 request
±9	Digital input heat step 2 request
±10	Digital input heat step 3 request
±11	Digital input heat step 4 request
±12	Digital input cool step 1 request
±13	Digital input cool step 2 request
±14	Digital input cool step 3 request
±15	Digital input cool step 4 request

Type 2 thermostat

Value DIL1 to DIL5 / AIL1 to AIL5	Description
±3	Remote Summer/Winter
±4	Capacity step 1 request
±5	Capacity step 2 request
±6	Capacity step 3 request
±7	Capacity step 4 request

For further details, see the section on System Configuration (folder PAr/CL-Cr-CF) / section on Configuration of digital inputs (DIL1 to DIL5 and AIL1 to AIL5) / Table B - Digital inputs: configuration table

N.B.:

- If two digital inputs are configured as heat step request and cool step request activating both at the same time generates a *configuration error*, for further details see the alarms table;

- If a digital input has been configured as heat request and the digital input for summer/winter is in the summer position, this generates a *configuration error*,

- Temperature control <u>depends directly</u> on the activation of digital inputs which therefore <u>must</u> be activated in a logical sequence. For example, capacity steps must be activated and deactivated in the fixed sequence 1-2-3-4 and 4-3-2-1.

	8 OPE	RATING	STATES (FOLDER PA	R/ST)					
	Once the E pressure co Operating r When Ener	nergy SBA nditions de mode para gy SBA600	600 plant has been configure etected by the probes and the meters can be viewed and co is not in OFF or StdBy statu	ed it is read e temperatur onfigured in s, it is either	y to control t re control func folder St (see in heating or	he services o ctions defina e User Interf cooling mo	on the basis ble by means face and Para de	of the temperature and s of specific parameters. meters sections).	
Operating states	There are 3	8 possible o 5t00=0 C 5t00=1 H 5t00=2 H	perating states that can be cool only COOL leat only HEAT leat and cool HEAT +	set by paran COOL	neter St00- W	orking moo	les selectior	1.	
Working modes	The workin • f	g modes co rom the ke o l o l c rom appro o i o F	an be selected: eyboard - if keys are enabled JI21 - Enable MODE functi JI23 - Enable STANDBY fu on or off priately configured digital ir .e. Remote ON/OFF Remote STD-BY	d in paramet on from ke inction fror nputs:	ers: y Enables/disa n key Enable:	ibles mode s s/disables O	election fror N/OFF key f	n a key or switching the device	
	NOTE: Rem and the oth If you enab to HEAT	note mode ner as DHW ole only 1 [changeover: to obtain the (/ (±28) D.I. in STD-BY and the machi	correct sequ	ence STD-BY N mode, it ma	– DHW, ena ay occur tha	ible 2 D.I. an it the from D	d configure one as STB 0.1. the status transitions	
							St00		
					0		1	2	
			Cooling		COOL		HEAT	HEAT+COOL	
			Heating		× NA		NA Y	X	
			Standby (Stdby)		X		X	x	
	Working		Remote Standby (Stdby)		х		Х	х	
			OFF		х		Х	х	
	mod	les	Remote off		x		Х	X	
			AS (see section on Domestic Ho	nt Water)	NA		Х	Х	
			Remote AS						
			see section on Domestic Hot Water)		NA		Х	X	
	If different	If different states are requested at the same time, the following priorities are assigned (in increasing order):							
			Current working state (ate (current mode)		after request		
		Priority	COOL	Н	EAT	HEAT	+COOL	•	
		1	Digital input	Digita	al input	Digita	l input		
			(S)	Config ON/(OFF (8)	Config ON/C)FF (8)	Remote OFF (§)	
			ON/OFF key enabled	ON/OFF	key enabled	ON/OFF k	ey enabled		
		2	(press and hold	(press	and hold	(press a	and hold	OFF	
			DOWN key)	DOW	/N key)	DOW	N key)		
		3	Digital input configured as Standby	Digita configured	al input d as Standby	config	ured as ndby	Standby	
	ACTION		Mode key enabled	Mode key enabled				Mode selected by	
		4	(press and hold ESC key)	(press	and hold	1	IA	user (see mode,	
						Mode ke	v enabled	Standby	
		4'	NA		NA	(*)	(*)	
		5	NA	1	A	Select n	node (**)	(**)	
		6	NA	l l	NA	Mode ke (press a ESC	ey enabled and hold key)	Mode selected by user (see mode, changeover key)	
	(§) In this c (*) it will r ESC key (M (**) it will ESC key (M	ase the ke not be pos ode chang not be po ode chang	y [local ON/OFF] has no effe sible to switch from COOL eover function)) ssible to switch from HEAT eover function))	ect on the op mode to F mode to C	Derating mode IEAT mode (H COOL mode (G	e HEAT label COOL label	not visible b not visible b	y pressing and holding	

8.1 Automatic changeover

The automatic changeover function is enabled by parameter St01- Enable changeover from analogue input

The Cool/Heat modes are selected by means of two different differentials set by parameter (St03 - Differential for change automatic mode in Heat for heating mode and St04 - Differential for change automatic mode in Cool for cooling mode); in the neutral zone (between the two setpoints) the mode can also be set by pressing a key (if enabled). See the graph below for more details;

8.1.1 Example of automatic changeover based on water temperature

(*) If St01= 1 see parameters St02

(**) The real setpoints may differ from the values of parameters tr10 and tr20 – see Operating modes – Temperature control (folder PAr/tr)

N.B.: St04 is added to COOL setpoint; St03 is added to HEAT setpoint.

N.B.: St03+St04 < HEAT setpoint - COOL setpoint, or the sum of differentials must never be more than HEAT setpoint - COOL setpoint

8.2 **Operating states table**

Operating states and associated functions/algorithms enabled/disabled for each one are listed in the table below. • Indicates function enabled Example The Hot Start function can be enabled ONLY in HEAT mode

Function	Cooling COOL	Heating HEAT	Std-By and remote Std-By	OFF and remote OFF
User Interface	•	•	•	• (°)
Temperature controller	•	•		
Operating mode selection	•	•	•	
Compressor	•	•	•	
Internal circuit water pump	•	•	•	
Recirculation fan	•	٠		
External exchanger fan	•	٠	•	
External circuit water pump	•	•	•	
Internal circuit electric heaters	•	•	•	
External circuit electric heaters	•	•	•	
Auxiliary output	•	•	•	
Water heater		•	•	
Defrost		٠		
Dynamic setpoint	•	•		
Economy	•	•		
Adaptive function	•	•		
Antifreeze with heat pump	•	•	•	
Power limitation	•	•		
Record running time	•	•	•	٠
Reset manual alarms	•	•	•	•
Manual defrost		•		
MFK	٠	•	•	•
Alarm log	•	•	•	•
Diagnostics	•	•	•	•
Serial communication	•	•	•	•

(°) In this case the button [local ON/OFF] has no effect on the operating mode

8.3 Reversal valve management

The change of state between chiller and heat pump requires the switching of the reversal valve.

In order to balance pressures in the circuits temporary inversion of valve status is performed prior to starting of the compressors in accordance with parameter **St08**.

Energy Flex makes it possible to set the valve switching mode ("slow"/"fast" switching) on the basis of the type of plant, by setting parameter **St05**.

Parameters St06/St07 instead control transition at start and end of defrost.

INVERTER Compressor Note

Parameter **St06** is also used for inverter control of a BLDCM compressor to define the post-stopping time of the **Compressor 1 Inverter** output in certain situations: the value of this parameter must be selected in accordance with the application (inverter and inverter parametrisation).

Parameter	Changeover / transition	Changeover
St05	Reversal valve switching delay	COOL - HEAT
St06	Reversal valve switching from Heat to Defrost delay	HEAT – defrost
St07	Reversal valve switching from Defrost to Heat delay	Defrost - HEAT
St08	Reversal valve activation time for pressure release	temporary inversion of valve state

If switching time **St05** is other than zero, inversion of the valve for Heat-Cool or Cool-Heat changeover occurs only with the compressors off ("**soft inversion**" mode). The compressors are switched off and on according to set rules and times. This is a prudent mode but one that can guarantee the required efficiency and rapidity.

8.3.1 Changeover from Cool to Heat and vice versa

- The operation is described below diagrams A...D.
- Operation in defrost is described in the related sections.
- Note that the mode changeover with St05=0 occurs also with the compressors running and operation is identical also in anti-freeze mode with a heat pump

Diagram	Parameter	Changeover	Antifreeze with heat pump
Α	St05 different	COOL - HEAT	//
В	from 0	HEAT - COOL	//
c	S+05 - 0	COOL - HEAT	C
D	5105 - 0	HEAT - COOL	D

Parameter	Description
St05 different from 0	Reversal valve switching delay
CP20	Minimum off/on for same compressor
CP23	Minimum on/on time for same compressor
CP24	Minimum off/off time for different compressors

8.3.2 Changeover from Cool to Antifreeze and vice versa

8.3.3 Heat – defrost mode changeover

dF23

Diagram	Parameter	Changeover
G	St06 different from 0	HEAT – defrost
н	St07 different from 0	Defrost - HEAT

Drip time

8.3.4 Circuit pressure release

If parameter St08 – Reversal valve activation time for pressure discharge is

- set to a value different from zero
- none of the other control sequences described above are in progress, each time the compressors are switched on the reversal valve is temporarily inverted.

This results in improved balance in the circuits and ensures better restart of the compressors themselves

When the time **St08** has elapsed the valve returns to the previous position.

This activation of the valve always occurs exclusively with the compressors off,

The time interval is cancelled with immediate effect if new conditions arise that call for stopping of the compressors and immediate reset of the valve in the prior position.

8.4 Cycle inversion and changeover of operating mode in XVD drivers

When the cycle in the refrigerant circuit is inverted it is very likely that the superheating regulation obtained by means of the XVD drivers will have very different performance specifications. This may be the case, for example, of the water/air circuits in which the exchangers, internal and external, are very different.

It may therefore be necessary to use 2 settings of the various regulation parameters (PID, superheating setpoint,...).

Hence operating mode command "1"=HEAT on activation of the inversion valve switching to HEAT mode, or operating mode command "0"=COOL on deactivation of the inversion valve at the time of return to cooling mode, will be transmitted to the XVD modules (if present).

The XVD modules can be set to disregard this command by setting the same parameters vector for the two operating modes (parameters 1E21, 1E22 and 2E21, 2E22).

More specifically, also to better explain the management of the vectors associated with the different operating modes, when 1E21 and 1E22 are set to 0, for both HEAT/COOL modes the values 1E30...1E53 will be used as specified in the parameters map of the SBA controller (transmitted to the XVD module via LAN like the other shared parameters, and overwritten on parameters dE30...dE53).

In contrast, when 1E21 and 1E22 assume values other than 0 (typically the permitted values are 12...16), for HEAT/COOL modes the values dE30...dE53 will be used as specified in vectors 12...16 of the parameters map of the XVD module. The same occurs for the second XVD module, if present (parameters 2E21 and 2E22...).

COMPRESSORS (FOLDER PAR/CP)

9

Compressor parameters can be viewed and configured in folder CP (see User Interface and Parameters chapters). The parameters are:

- CP00, CP01 to define the type and number of compressors in the installation;
- CP03..CP10 to set timer intervals.

The Energy SBA600 is able to control "Reciprocating", "Scroll" and "Screw" compressors in a range of configurations. The Energy SBA600 can control up to two refrigerant circuits, with one or two evaporators. The Energy SBA600 can control from one to four capacity steps, at most two per refrigerant circuit.

- The Energy SBA600 can also drive inverters for compressors by means of the following analogue outputs
 - Analogue stage 1 for Compressor
 - Analogue stage 2 for Compressor

The type of compressors management depends on the configuration of the analogue outputs;

The Energy SBA600 has 3 analogue outputs, 2 with voltage output 0-10V and one with current output 0-20 mA or 4-20 mA. Of the three outputs, a maximum of 2 can be configured as analogue outputs to control a compressor inverter; depending on the number of outputs configured only one or both the analogue stages (equivalent to a capacity step) are available.

NB: compressor management via inverter is only suitable for systems with non capacity-controlled compressors.

Safety time intervals can be set for the activation of compressors and capacity steps to prevent damage. Special on/off sequences can be programmed to optimise the use of the available compressors and cooling capacity.

General conditions of operation

In **Off** status the compressors are stopped immediately and always (even when the safeties are active). In Stand-by the compressors are normally OFF; during the transition from On to Standby, they are stopped in accordance with their timings. In Stand-by, the compressors are activated in anti-freeze with heat pump mode.

In **On**, in addition to the main control specified in subsequent paragraphs, the following situations are also possible (<u>with</u> <u>priority</u> given to the main control):

the compressors are switched off immediately in case of compressor shut-down alarms (see alarms table).

9.1 Types of compressor

Compressors may be controlled in a variety of ways according to their number, size and construction. Parameter **CP00** indicates the **type of compressor**:

Value CP00	Description
0	Non capacity-controlled compressors
1	Reciprocating compressors with capacity control
2	Screw compressors with capacity control

Configuring digital outputs as compressor:

The compressor or compressors, or the compressor and its capacity control is/are connected to one of the available relay outputs **D01...D04, D06 or to the open collector output D05**, setting the following parameters:

• CL90...CL95= ±1...±4 for compressor 1...4

9.1.1 Non capacity-controlled compressors (CP00 = 0)

This is the simplest case, the single compressor is switched on/off via a single digital output. If several compressors are present they can be of the same or a different capacity and switched on according to the cooling capacity requirements of the installation.

Compressor without capacity control: **CP00** = 0. N.B.: Set **CP03**=0

Capacity	Compressor
0	Off
100%	On

4 Identical compressors without capacity control: **CP00** = 0

Capacity	Compressor 1	Compressor 2	Compressor 3	Compressor 4
0	Off	Off	Off	Off
25%	On	Off	Off	Off
50%	On	On*	Off	Off
75%	On	On*	On*	Off
100%	On	On*	On*	On*

* In this case, the starting sequence is fixed. This may not always be the case.
Installations with inverter: since only two analogue outputs are available to drive compressors, if the installation has more than two compressors it must utilise mixed analogue and relay management; in this case the analogue capacity steps are always the "higher" steps, i.e. those that are furthest from the setpoint. Refer to the paragraph

Compressors Configuration / **Permitted configurations** in the case of compressors without capacity control (**CP00** = 0) for the various combinations and configurations permitted based on the type of system, construed as the number of compressors and the number of circuits

9.1.2 Capacity controlled compressors (CP00 = 1,2)

The construction characteristics of these compressors enable them to modulate their cooling capacity output by means of capacity steps. Each compressor is switched on or off by a single digital output, but other digital outputs control its capacity in the same order as the cooling capacity required by the installation. The compressor is always switched on or off without any capacity steps active.

There are two methods of activating capacity steps: for multiple cylinder reciprocating compressors, for screw compressors.

In the first case the capacity step is obtained by short circuiting the suction and discharge valves of the cylinders, in screw compressors it is obtained by diverting the discharge flow at various positions along the screw. The activation logic for the capacity step relays is different in each case, see the following table:

Reciprocating compressors with 3 capacity steps: **CP00** = 1 3 capacity steps are provided, therefore the compressor can deliver 0%, 25%, 50%, 75% or 100% of its cooling capacity

Capacity	Compressor	Step 1	Step 2	Step 3
0	Off	Off	Off	Off
25%	On	On	On	On
50%	On	On	On	Off
75%	On	On	Off	Off
100%	On	Off	Off	Off

N.B.: The compressor control timings are different from those of the capacity steps. See Compressor intervals for more details.

N.B.: note that with **CP00** = 2, starting of the compressor (necessarily at 25% of its cooling capacity) occurs by activating two relays <u>simultaneously</u>.

9.2 Compressor configuration

The SB600 device can control from one to a maximum of four steps on a single circuit, or up to two steps per circuit for a total of two circuits.

The installation is configured with the parameters

- CP01 Number of circuits
- CP02 Number of compressors per circuit
- CP03 Number of capacity steps of compressor

Multicompressor configurations always use compressors of the same type/construction.

Multicircuit installations always employ symmetrical circuits.

Permitted configurations:

In the case of non capacity-controlled compressors (CP00= 0)

	CP00 = 0	Non capacity-controlled compressors				
(set CP03 =0)		CP02 = 1	CP02 = 2	CP02 = 3	CP02 = 4	
uits	CP01 = 1	Compressor 1(§)	Compressor 1 (*) Compressor 2 (**) (§)	Compressor 1 Compressor 2 Compressor 3	Compressor 1 Compressor 2 Compressor 3 Compressor 4	
Circ	CP01 = 2	Compressor 1(*)	Compressor 1 Compressor 2	Netallowed	Not allowed	
		Compressor 2(**)	Compressor 1 Compressor 2	Not allowed		
	N.B.: Set CP03=0					

(§) Capacity step replaced by analogue stage 1 if a single analogue output is configured as compressor

(*) Capacity step replaced by analogue stage 1 if 2 analogue outputs are configured as compressor

(**) Capacity step replaced by analogue stage 2 if 2 analogue outputs are configured as compressor **N.B.**: asymmetrical or unbalanced distributions of inverter controls for compressors are not permitted

- 1)
- In the case of capacity controlled compressors (CP00 = 1 and 2) with 1 capacity step per compressor (CP03 =

CP00 = 1 and 2 CP03 = 1		Compressors with 1 capacity strep				
		CP02 = 1	CP02 = 2	CP02 = 3	CP02 = 4	
uits	CP01 = 1	Compr 1, Step 0 Compr 1, Step 1	Compr 1, Step 0 Compr 1, Step 1 Compr 2, Step 0 Compr 2, Step 1	Not allowed	Not allowed	
Circu	CP01 = 2	Compr 1, Step 0 Compr 1, Step 1 Compr 2, Step 0 Compr 2, Step 1	Not allowed	Not allowed	Not allowed	

KEY: (Compr. = compressor)

In the case of capacity controlled compressors (Type of compressor = CP00 = 1 and 2) with 2 capacity steps per compressor (Number of capacity steps per compressor CP03 = 2)

CP00 = 1 and 2 CP03 = 2		Compressors with 2 capacity steps				
		CP02 = 1	CP02 = 2	CP02 = 3	CP02 = 4	
cuits	CP01 = 1	Compr 1, Step 0 Compr 1, Step 1 Compr 1, Step 2	Not allowed	Not allowed	Not allowed	
Cir	CP01 = 2	Not allowed	Not allowed	Not allowed	Not allowed	

In the case of capacity controlled compressors (CP00: Type of compressor = 1 and 2) with 3 capacity steps per compressor (CP03: Number of capacity steps of compressor = 3)

CP00 = 1 and 2 CP03 = 2		Compressors with 3 capacity steps				
		CP02 = 1	CP02 = 2	CP02 = 3	CP02 = 4	
rcuits	CP01 = 1	Compr 1, Step 0 Compr 1, Step 1 Compr 1, Step 2 Compr 1, Step 3	Not allowed	Not allowed	Not allowed	
Ci	CP01 = 2	Not allowed	Not allowed	Not allowed	Not allowed	

9.3 **Compressor time intervals**

.

Compressor and capacity step on/off states must be "time limited" to ensure the mechanical and electrical safety of the equipment.

The SBA600 provides a set of safety parameters for protection of compressors and capacity steps.

In some cases these parameters are not considered, such as during defrosting, to guarantee the required machine performance. In other cases the safety times may influence or modify the compressor starting logic.

-cx101
ecx10]
ec]

9.3.1 Minimum time between stops/starts for the same compressor

Defined by parameter CP20: Minimum on/off time for same compressor is the minimum time that must elapse between one switch-off and the next start-up. This is expressed in seconds x 10 and is active even after a reset.

9.3.2 Minimum time between start/start for the same compressor

Defined by parameter CP21: Minimum on/on for same compressor is the minimum time that must elapse between one start and the next. This is expressed in seconds x 10 and is active even after a reset.

9.3.3 Minimum compressor on time

Parameter **CP22**: *Minimum compressor on time* defines the minimum time between a compressor start and compressor stop. It is expressed in seconds x 10.

9.3.4 Minimum on-on for different compressors

Parameter **CP23:** *Minimum compressor on/on time for different compressors* defines the minimum time lag between starting of two different compressors. If requested, a compressor can be started only after this time has elapsed since the previous compressor was stopped. This is expressed in seconds and is active even after a reset.

9.3.5 Minimum off-off time for different compressors

Parameter **CP24**: *Minimum off/off time for different compressors* defines the minimum time lag between stopping of two different compressors If requested, a compressor can be stopped only after this time has elapsed since the previous compressor was stopped. This is expressed in seconds and is active even after a reset.

9.3.6 Minimum compressor on time for increase in capacity control

Parameter **CP25:** *Minimum compressor on time for splitting increment* defines the minimum time between capacity increases (steps) associated with capacity control. It is expressed in seconds.

9.3.7 Minimum compressor on time for decrease in capacity control

Parameter **CP26**: *Minimum compressor on time per splitting decrease* defines the minimum time between capacity decreases (steps) associated with capacity control. It is expressed in seconds.

Note. CP25 and CP26 assume priority over CP23 and CP24

Note: When safety time intervals "overlap", the longest one prevails.

9.3.8 Minimum on-off time in defrost mode

In defrost mode and during antifreeze with heat pump, times CP23, CP24, CP25 and CP26 are disregarded and replaced with parameter CP27: Defrost compressor/step delay minimum is the single minimum time for increase or release of a generic capacity step.

In other words, this safety timing applies both between compressors, between capacity steps, and between compressors and capacity steps.

All other safety timings are ignored in this phase. This speeds up the start and end of defrost cycles, or at least, controls their duration.

9.3.9 Other timings

Compressors are also subject to other timings related to the operational status of other services such as water pumps, cycle inversion valves, etc. For details, see the chapters devoted to such services.

9.4 Compressor on/off sequence

9.4.1 Availability of resources

A resource is available if it can be used (switched on/off).

A compressor (or its capacity control, if applicable) is available if

- it is not blocked due to an alarm (see alarms section)
- it is not blocked by safety timings (see compressors section)
- it is not blocked by the configuration (see compressors section)
- there are no blocks caused by temperature control (e.g. heat pump block, capacity limitation, etc.)

In checking the availability of resources, the sequence Compressors \rightarrow Circuits is always followed.

When selecting (activating/deactivating) resources the opposite sequence is followed: Circuits \rightarrow Compressors (selection of the evaporator coincides with selection of the relative circuit).

A circuit is said to be saturated when it is delivering all the capacity steps available from its compressors. A circuit is said to be active or on if at least one compressor is running, and off if none of the compressors is running. The current activation level of a particular circuit is defined as the total number of capacity steps that the compressors are supplying at the time (for example, a circuit that has 2 compressors with 1 capacity step has a maximum activation of 4 levels/steps).

A compressor is said to be saturated when it is supplying its maximum number of deliverable steps (for example, a compressor with 3 capacity steps can supply at most 4 activation levels/steps). A compressor is said to be active or on if it has at least one active step. The current activation level of a compressor is defined as the total number of capacity steps that it is supplying at the time (for example, a compressor with 2 capacity steps can supply up to 3 activation levels/steps).

9.4.2 Resources management

If the number of active steps satisfies the current request, it is not modified.

If the temperature regulator requests activation/deactivation of a capacity step, the availability of the compressors and circuits is first analysed in order to manage the services on the basis of two possible logics, <u>saturation</u> and <u>balancing</u>. The procedure is to first select the best circuit and then the best compressor in that circuit.

Saturation: The saturation policy attempts to distribute resources equally over the smallest possible number of services compatible with the constraints imposed by other requirements, for example compressor safety timings. The resulting allocation is intended to have the largest possible number of compressors switched of and the largest possible number of circuits deactivated at any one time.

Balancing: The balancing policy attempts to distribute resources equally over the largest possible number of services compatible with the constraints imposed by other requirements, for example compressor safety timings. The resulting allocation is such as to have compressor and circuit output levels equalized as far as possible at all times (in other words, the smallest number of compressors and circuits off).

There are two parameters that make it possible to establish circuit (and evaporator) activation separately as well as activation of the compressors for each circuit;

- CP10: Enable circuit balancing
- CP11: Enable compressor balancing

Value CP10 CP11	Description CP10	Description CP11
0	Saturation (circuits)	Saturation (compressors)
1	Balancing (circuits)	Balancing (compressors)

9.4.3 Resource selection criterion

When the two management selections are applied (saturation and balancing), it may become necessary to choose between resources available at the same conditions (for example, when switching on the very first service of all). This selection must therefore also take into account factors such as hours of operation and fixed on/off sequences. The hours of operation of a circuit is the <u>sum of the operating hours of its compressors</u>.

Hours of operation:	When making a choice the strategy is to select the circuit or compressor that has the fewest running hours when switching on, and the one with most running hours when switching off. This strategy ensures that all resources are used equally.
Fixed sequence:	On(1-2-3-4), Off(4-3-2-1) In this case, selection of the circuit or compressor follows a fixed sequence (assuming the resources are available). This option uses the resources in a preset manner, which can be useful in case of steps of different capacity or when managing secondary backup resources in special circumstances.
Fixed sequence INVERTER compressor:	On(1-2-3-4), Off(4-3-2-1) Only usable option in the case of single-circuit configuration with at least one compressor managed by INVERTER
Running time:	This option applies on when there is a single circuit with two compressors (without capacity control) or two circuits with two compressors each, and uses the compressor resources (in this case, non-homogeneous) in a manner that is equal to the load. If the effective operating time <u>of the circuit</u> (TE, time between starting the first compressor and stopping the last compressor during the previous cycle) <u>is less</u> than the time set by parameter, on the next request from the temperature regulator (for that specific circuit) the first compressor resource to be activated will be the one with the lowest index ("resource 1") and then resource 2; if the effective operating time of the circuit <u>is greater</u> than the time set by parameter, on the next request from the temperature regulator the first compressor resource to be activated will be the one with the highest index ("resource 2") and then resource 1;

There are two parameters that serve to establish, independently, the circuits selection criterion and the compressors selection criterion for each circuit:

• CP12: Circuit selection criterion

• CP13: Compressor selection criterion

Value	Description CP12	Description CP13
0	Hours balancing	Hours balancing
1	Sequence On 1,2; Off 2, 1	Sequence On 1,2,3 and 4; Off 4,3,2 and 1
2	//	Operating time

9.4.4 Selecting the circuit/evaporator

Parameter **CP10:** *Enable circuit balancing* is only relevant if there are 2 circuits. If set to 0 (saturation) first all the capacity steps of one circuit are activated, followed by those of the other circuit. If set to 1 (balancing), the capacity steps are activated in such a way that both circuits deliver the same cooling capacity, or such that the difference is no more than one step. The choice of circuit depends on parameter **CP12: Circuit selection criterion**

CP12	Saturation CP10 = 0	Balancing CP10 = 1
Hours of operation CP12 = 0	When switching on, the circuit with the least hours of operation is selected (with compressors available for starting) up to saturation, then the second circuit is activated. When switching off, first the circuit with the fewest active capacity steps is switched off (with compressors available for switch-off), or (for an equal number of active capacity steps) the one with the more running hours.	When switching on, the procedure starts with a step of the circuit with the fewest running hours (with compressors available to start), this is then balanced with a step from the other circuit and so forth until both circuits are saturated. When switching off, the opposite sequence is followed, giving priority to the circuit with most running hours (with compressors available for switch-off).
Fixed sequence On(1,2) Off(2,1) CP12 =1	When switching on, the first circuit is used up to saturation, after which the second circuit is activated. When switching off, first the entire second circuit is switched off, followed by the first circuit.	When switching on, the procedure starts with a step of the first circuit, this is then balanced with a step from the second circuit and so forth until both are saturated. When switching off, the opposite sequence is followed.

9.4.5 Selecting the compressor or capacity step

Parameter **CP11:** *Enable compressor balancing* is relevant only if there are 2 compressors with capacity control in the same circuit (which for the SBA600 remains single, since it cannot control a second compressor with the same characteristics). Selecting 0 (saturation) all the capacity steps of one compressor are first activated, followed by those of the other compressor. Selecting 1 (balancing), the capacity steps are activated in such a way that both circuits deliver the same cooling capacity, or such that the difference is no more than one step. The choice of compressor depends on parameter **CP13:** Compressor selection criterion. Parameter **CP14:** Compressor operating time for on sequence is used if the running time in the previous cycle is used as

the selection criterion.

CP13	Saturation CP11 = 0	Balancing CP11 = 1
Hours of operation CP13 = 0	When switching on, the available compressor with the fewest running hours is started and operated up to the saturation point, after which the other compressors are started. When switching off, first the available compressor with the least capacity steps active is selected, or (for an equal number of capacity steps active) the one with the most running hours.	When switching on, the procedure starts with the first capacity step stage of the compressor with least hours of operation, then the first step of the next compressor until all compressors are operating, then the second steps, etc. When switching off, the procedure switches off the capacity steps of the available compressors with the same logic, with priority awarded to those with the most running hours.
Fixed sequence On(1,2,3,4) Off(4,3,2,1) CP13 = 1	When switching on, the first compressor is started up to saturation, after which the second compressor is started, and so forth. When switching off, first the compressor with the highest index is deactivated until it is completely stopped, and so forth.	When switching on, the procedure starts with the first capacity step of the first compressor, then the first capacity step of the second compressor until all compressors are running, then the second capacity steps, and so forth. When switching off, the capacity steps are switched off with the same logic, starting from the one with the highest index.
Operating time CP13 = 2	CP11 is irrelevant inasmuch as selection by capacity controlled compressors in the same If the effective operating time of the <i>circuit</i> is <u>next</u> temperature regulator request the start will be used. In the case of two circuits with two compress the stop sequence will be Off(4,3), independe In contrast, if the operating time is greater th Off(1,2).	operating time <u>is not envisaged</u> if there are 2 circuit. s less than the time set in parameter CP14, at the sequence On(1,2) and the stop sequence Off(2,1) sors each, the start sequence will be On(3,4) and ently for the two circuits. nan CP14 the next sequences will be On(2,1) and

10 INTERNAL CIRCUIT PUMP (FOLDER PAR/PI)

The **SBW600** controls one or two hydraulic pumps on the internal exchanger water circuit. Control may be digital or analogue, and depends on a number of system variables such as temperature controller status, external exchanger fan speed and internal exchanger water temperature.

For systems with two pumps, these are connected in parallel, and at most one is operational at a time.

Internal circuit water pump parameters can be viewed and configured in folder PI (see User Interface and Parameters chapters).

The following must be configured:

Digital control

- at least one digital output as internal circuit water pump 1, using the parameters CL90...CL97 / CL80-CL81 if digital / CL61...CL63 if digital = ±14.
- **at least one digital output as internal circuit water pump 2, using the parameters CL90...CL97 / CL80-CL81 if digital / CL61...CL63 if digital = ±15.

Analogue control

- at least one analogue output as modulating internal circuit water pump 1, using the parameters CL80-CL81 if analogue / CL61...CL63 if analogue = ±59.
- **at least one analogue output as modulating internal circuit water pump 2, using the parameters CL80-CL81 if analogue / CL61...CL63 if analogue = ±60.

** in the case of two pumps

The configurable outputs for digital pump control are relays, whereas in modulating operation they are the internal triac (for direct control) or the pulse outputs (for external triacs) and the analogue outputs.

10.1 Configuration of internal circuit water pump

Enabling

The controller is enabled by setting parameter (**Pi00 -Select internal circuit water pump operating mode**) not equal to 0.

Control of the second pump is enabled only if parameter (Pi05 - Maximum internal circuit water pump changeover start time is not equal to 0.

Table 1

	Parameter	Description	value		
			0	1	2
l pump	P100	Select internal circuit water pump operating mode	Pump disabled	Continuous operation (Always ON)	on request (pump on when compress or on)
			0	Not equal t	o 0
ll pump	P105	Maximum internal circuit water pump changeover start time	Pump disabled	after this time (in minutes) the active pump is switched off and replaced by the second pump if available.	

Table 2

	Par	Description		value	
			0	1	2
antifreeze heater	PI10	Enable internal circuit water pump on when antifreeze heaters active	Internal circuit water pump disabled	Internal circuit water pump enabled	//
Boiler	PI11	Enable internal circuit special water pump	No enabling	Enable pump when the boiler is on	Enable modulating pump on the basis of the difference between internal exchanger water/air inlet temperature and Internal exchanger water/air outlet temperature. See configuration of analogue inputs

General conditions of operation

At any given time, only one of the pumps may be operating, so that we will talk below of "the pump", rather than "the pumps".

- In Off the internal circuit pump is immediately and always off (even if post-pumping is underway).
- In **Standby** the internal circuit pump is normally off; during the transition from On to Stand-by, the pump is switched off in accordance with its timings (e.g. post-pumping). In Standby, the pump is activated in: antilock, antifreeze with water pump, antifreeze with internal heater, antifreeze with heat pump.
- In **On**, further to the principal regulation specified in the following paragraphs, the following situations (with priority over the principal regulation itself) may occur:
- In *Defrosting* the internal circuit pump is always on (at maximum speed if of the modulating type);
- The pump is forced on (at maximum speed if of the modulating type) if *antifreeze with water pump* is active, which is also active in Standby;
- The pump is forced on (at maximum speed if of the modulating type) if *antilock* is active, which is also active in Standby;
- The pump is forced on (without delays) if the internal heater is on in integration mode, both to prevent damage to the exchanger and to ensure that the heat is effectively dispersed/used.
- The pump be forced on (at maximum speed if of the modulating type) if *antifreeze with* internal circuit heater is active, depending on parameter **Pi10:** *Enable internal circuit water pump on when antifreeze heaters active* (also active in Standby);
- The pump may be forced on (without delays and at maximum speed if modulating) if the *boiler* is active, depending on parameter **Pi11**: *Enable internal circuit special water pump*, with **Pi11** = 0, if only the boiler is active and the pump is enabled on request, the pump is normally off;
- The pump is influenced by the Sanitary Water regulator if the value of parameter AS00 is 4 or 6 e.g. with systems provided with the Sanitary Water pump rather than the Sanitary Water valve. This influence is due to the fact that the two pumps cannot both be ON at the same time; see the section on Sanitary Water
- The pump is switched off immediately in case of pump block alarm (see alarms table and flow switch paragraph).

Note: If an automatic reset flow switch alarm occurs, the pump is kept on to allow it to be reset; if the alarm becomes manual reset, the pump is switched off.

Note: The minimum pump off/on period is fixed at 10 seconds. This applies to both pumps individually.

10.1.1 Control of the second pump

The system's two pumps are connected in parallel, and at most one is operational at a time.

At each activation request the pump with least operating hours is activated, if available, i.e. if there is no thermal switch alarm.

If it is not available, the other pump is activated.

If the active pump is active for longer than the time given in parameter **Pi05** - **Maximum internal circuit water pump changeover start time**, it is switched off and the other is turned on (if available, otherwise the timer is set to zero and the same pump keeps running).

10.2 Continuous operation

Case Pi00= 1.

10.2.1.1 Internal circuit pump digital control in Cool / Heat

One of the two digital outputs is always active.

10.2.1.2 Internal circuit pump analogue control in Cool / Heat

One of the two analogue outputs is always active and controlled in continuous mode.

The modulating operation of the internal circuit water pump is either active or not depending on the external exchanger fan speed. In the case of two circuits, we take the average speed of the two fans.

Paramet	er		
COOL	HEAT	Description	
PI02		Internal circuit water pump pick-up time.	
PI30	PI40	Minimum speed internal circuit water pump in Cool / Heat	
PI31	PI41	Maximum speed internal circuit water pump in Cool / Heat	
PI34	PI44	Fan speed setpoint to modulate internal circuit water pump in Heat	
PI35	PI45	Fan speed hysteresis to modulate internal circuit water pump in Heat	
Control sensor		Internal exchanger water/air outlet temperature or the difference between Internal exchanger water/air inlet temperature and Internal exchanger water/air outlet temperature	

Modulating function in Cool / Heat mode

The internal circuit modulating pumps connected to the analogue outputs are switched on at maximum speed (relative to the current mode of operation) for a period given in parameter **Pi02 - Internal circuit water pump pick-up time**. After this time, the pump is run at the speed requested by the controller.

Parameter		
COOL	HEAT	Description
PIO	2	Internal circuit water pump pick-up time.
PI30	PI40	Minimum speed internal circuit water pump in Cool / Heat
PI31	PI41	Maximum speed internal circuit water pump in Cool / Heat
PI32	PI42	Minimum internal circuit water pump speed setpoint in Cool/Heat
PI33	PI43	Internal circuit water pump proportional band in Cool / Heat
Control sensor		Internal exchanger water/air outlet temperature or the difference between Internal exchanger water/air inlet temperature and Internal exchanger water/air outlet temperature

Note The pump runs at minimum speed if the compressors are off.

Note A probe must be configured as *Internal exchanger water/air outlet temperature* and if two probes are so configured, the average is taken.

Note: If Pi00=2 e.g. if the difference between

- Internal exchanger water/air inlet temperature and
- Internal exchanger water/air outlet temperature

is considered, it is not permitted to have two output probes.

10.3 Operation on call

Case **Pi00=** 2.

10.3.1.1 Internal circuit pump digital control in Cool / Heat

One of the two digital outputs is active in parallel with the compressor. The internal circuit pump is activated when the main temperature controller calls the first step. The compressor starts after the delay given in parameter **Pi20**: *Delay internal circuit water pump on and compressor on* (Pre-pumping). Once the last power stage of the compressor is off, the pump is switched off after the delay given in **Pi21**: *Delay compressor off - internal circuit water pump off* (Post-pumping).

Note: Post-pumping is also observed in standby mode.

10.3.1.2 Internal circuit pump analogue control in Cool / Heat

The two analogue outputs are activated in the same situations in which the digital outputs are activated (with pre / postpumping) but allow for analogue control, with modulating operation according to the diagrams in the previous paragraphs for continuous operation (modulation as a function of the internal exchanger water/air outlet temperature probe value or the **average** of the two).

Note. The pump runs *at minimum speed* if the compressors are blocked by alarms.

10.3.1.3 Operation on call: periodic pump activation

The function is **enabled** of **Pi22** is not equal to 0, and allows water to be driven round the circuit at regular intervals for improved temperature control (the real water temperature in the circuit can always be measured periodically), with consequent energy savings.

Use **parameter Pi22**: *Maximum pump of time in operation on call* to establish a maximum time for the pump to stay off after which it is forced on (so long as there are no block alarms, and at maximum speed if modulating) for the minimum time defined in **Pi03**: *Minimum pump on time*.

Note: This function is disabled in standby.

Note: The activation of the compressor could also be delayed by other safety timings, this means that the pre-pumping time could be longer (never shorter).

10.4 Pump antilock mode

This function prevents any mechanical faults due to extended disuse.

The antilock function is active when:

- enabled by parameter (PI01 Internal circuit water pump idle time due to antilock > 0). See table 3 ٠ •
 - always active, except for OFF (local and remote) unless alarms switch off the pump

If the pump stays off for longer than or equal to **Pi01:** *Internal circuit water pump idle time due to antilock,* the controller forces it on (at maximum speed if modulating) for the time set in parameter **Pi03:** *Minimum pump on time.*

Table 3

Antilock	Parameter	Description	Value	
			0	>0
	PI01	Internal circuit water pump idle time due to antilock	Function disabled	Function enabled
Diagram E	P103	Minimum internal circuit water pump start time	Time in sec	conds x 10

Diagram E Pump antilock

Note: the broken line indicates the second pump, if present

10.5 Antifreeze operation with pump

The antifreeze function runs when:

enabled by parameter Pi50 -Select probe for internal circuit + water pump antifreeze.

See table 4

• always active, except for OFF (local and remote) and Stdby (local and remote) <u>unless alarms switch off the</u> <u>pump</u>

Table 4 - Pi50

Value	Probe
0	No probe (pump in antifreeze disabled)
1	Internal exchanger water/air inlet temperature
2	Internal exchanger water/air outlet temperature
3	Internal exchanger water outlet temperature circuit 1
4	Internal exchanger water outlet temperature circuit 2
5	Circuit 1 and 2 internal exchanger water outlet minimum temperature
6	External temperature

Diagram F Antifreeze operation with pump

Note. If the probe selected for antifreeze with the internal circuit pump is in error, the machine is blocked.

11 RECIRCULATION FAN (FOLDER PAR/FI)

The recirculation fan parameters are visible and can be set up in folder FI (see User Interface and Parameters chapters).

The following must be configured:

at least one digital output as recirculation fan using parameters CL90...CL97 / CL80-CL81 if digital / CL61...CL63 if digital = ±18.

Enabling

The controller is enabled by setting parameter (Fi00 -Select recirculation fan operation) not equal to 0.

Table 1 - Parameter Fi00

	Parameter	Description	value		
			0	1	2
Enabling	Fi00	Select recirculation fan operation	Recirculation fan disabled	Recirculation fan continuous operation	Recirculation fan operation on temperature controller call

General conditions of operation

- In **Off** the recirculation fan is immediately off (even when post-ventilation in underway).
- In **Standby** teh fan is off, in accordance with established timings (e.g. post-ventilation). ote: the fan remains on until all of the compressors have been switched off
- In On, further to the principal regulation specified in the following paragraphs, the following situations (with priority over the principal regulation itself) may occur:
 - In defrost, the recirculation fan is off (as per parameter Fi03: Post-ventilation time in Heat mode);
 - if at least one of the internal exchanger heaters is on, the fan is *forced* on (<u>absolute priority</u>); after the last heater has been turned off, parameter **Fi03**: *Post-ventilation time in Heat mode* applies;
 - if alarm **Er30**: Internal circuit antifreeze alarm, is active, the fan is forced on;
 - the recirculation fan is immediately switched off in case of a blocking alarm (see alarms table)

11.1.1 Continuous operation

Case Fi00 = 1.

The digital output recirculation fan, is always on except in the conditions specified in the general conditions of operation section.

11.1.2 Operation on call

Case Fi00 = 2.

Activation of the recirculation fan depends on the status of the compressors (not of the compressor temperature controller), of the temperature measured by the internal exchanger water/air inlet temperature probe, and the real temperature controller setpoint (Heat or Cool).

The fan is switched on only is at least one compressor is running and the exchanger inlet air temperature is adequate.

Note. if the Internal exchanger water/air inlet temperature is in error (or has not been configured), recirculation fan activation depends exclusively on the compressor status.

11.1.2.1 Recirculation fan in Heating / Cooling

Control is dependent on the real setpoint as shown

Parameter		
COOL	HEAT	Description
Fi01	Fi02	Recirculation fan hysteresis in Cool / Heat
Setpoint		Real setpoint in Cool / Heat
Control probe		Internal exchanger water/air inlet temperature

11.2 Post-ventilation

In Heat mode, the fan is switched off after a delay set in parameter **Fi03**: *Post-ventilation time in Heat mode* after the internal circuit integration heaters have been switched off.

This post-ventilation time allows for the heat generated by the heaters to disperse, thus preventing damage or fire.

12 EXTERNAL EXCHANGER FAN (FOLDER PAR/FE)

The **SBA** controls (via digital outputs) the ventilation of the air condensation units of the two chiller/heat pump temperature control circuits.

Alternatively, it can control ventilation in a modulating mode, via analogue outputs .

The configurable outputs for digital pump control are relays, whereas in modulating operation they are the internal triac (for direct control) or the pulse outputs and the analogue outputs (indirect control).

External exchanger fan parameters can be viewed and configured in folder **FE** (see User Interface and Parameters chapters).

The following must be configured:

at least one digital output as external exchanger fan with parameters CL90...CL97 / CL80-CL81 if digital / CL61...CL63 if digital = ±19 (circuit 1)/ ±20 (circuit 2).

Enabling

The controller is enabled by setting parameter FE00 - External exchanger fan mode selection not equal to 0.

Table 1 - Parameter FE00

	Parameter	Description	Value		
			0	1	2
Enabling	FE00	External exchanger fan mode selection	Ventilation disabled	Continuous operation (Always ON)	Operation on call (ON when compressor ON)

General conditions of operation

- In**Off** the fans are switched off immediately and always (even when the cut-off bypass is active).
- In **Standby** the fans are normally switched off; during the transition from On to Standby, the fans are switched off in accordance with their timings (e.g. bypass on current cut-off). If **FE11**=2 the fans are active at the same time as the external exchanger heaters in antifreeze mode.
- In **On**, further to the principal regulation specified in the following paragraphs, the following situations (with priority over the principal regulation itself) may occur:
- In *Defrost* the behaviour of the fans depends on parameter **FE11**: *Enable special open system intercooler fan on* (see below for details);
- if the external exchanger heaters are on (or if at least one is on in the case of 2 heaters), the fans are activated if FE11=2. In the case of two circuits, the fans of both circuits are activated;
 - the external exchanger fans <u>are switched off immediately</u> in case of fan shut-down alarms (see alarms table)

Parameter			
COOL	HEAT	Description	
FE30	FE50	Minimum speed external exchanger fan in Cool / Heat	
FE31	FE51	Average speed external exchanger fan in Cool / Heat	
FE32	FE52	Maximum speed external exchanger fan in Cool / Heat	
Setpoint		Real setpoint in Cool / Heat	
Control probe		External exchanger water/air inlet temperature	

External exchanger fan on pick-up

The external circuit modulating pumps connected to the analogue outputs are switched on at maximum speed (relative to the current mode of operation) for a period given in parameter **FE01**: *External exchanger fan pick-up time*. After this time, the pump is run at the speed requested by the controller.

External exchanger fan control input

Control is achieved with the value of the analogue input configured with parameters **FE33**: Select probe for external exchanger fan regulation in Cool and **FE53**: Select probe for external exchanger fan regulation in Heat.

Parameters table FE33 and FE53

Value	Description	Regulation	
0	No probe	On or On/Off	
1	External exchanger temperature (circuit 1 and 2)	Direct	
2	High pressure input (circuit 1 and 2)	Direct	
3	Low pressure input (circuit 1 and 2)	Reversal	
4	External exchanger pressure (circuit 1 and 2)	Direct	
5	Internal exchanger pressure (circuit 1 and 2)	Reversal	
6	Internal exchanger water/air inlet temperature Direct		
7	Internal exchanger water/air outlet temperature Direct		

If the plant has two circuits, the fans on the two external exchangers are controlled independently, on separate probes: both circuits must have analogue inputs configured for this purpose. If not, ventilation will always be active. Analogue inputs for ventilation control

Description	U.M.
External exchanger temperature circuit 1	°C
External exchanger temperature circuit 2	°C
High pressure input circuit 1	Bar
High pressure input circuit 2	Bar
Low pressure input circuit 1	Bar
Low pressure input circuit 2	Bar
External exchanger pressure circuit 1	Bar
External exchanger pressure circuit 2	Bar
Internal exchanger pressure circuit 1	Bar
Internal exchanger pressure circuit 2	Bar
Internal exchanger water/air inlet temperature	°C
Internal exchanger water/air outlet temperature	°C

12.1.1 Continuous operation

Example **FE00**= 1.

Ventilation is activated, independently of the state of the compressors on the basis of the value of the analogue input configured for control.

The parameter FE21- External exchanger fan preventilation time must be set to 0.

Note: If an analogue input is not configured <u>or if the configured analogue input is in error</u>, ventilation is always active (<u>at maximum speed</u> if modulating).

12.1.1.1 External exchanger fan digital control in Cool / Heat

Parameter			
COOL	HEAT	Description	
FE33	FE53	Select external exchanger fan control probe in Cool/Heat	
FE34	FE54	Minimum external exchanger fan speed setpoint in Cool / Heat	
FE38	FE58	External exchanger fan cut-off hysteresis in Cool / Heat	
FE39	FE59	External exchanger fan cut-off differential	
Control probe		External exchanger water/air inlet temperature	

Analogue input control:

External exchanger temperature High pressure input External exchanger pressure circuit Analogue input control: Low pressure input

Internal exchanger pressure

Taraffecei				
COOL	HEAT	Description		
Control probe		Select probe for external exchanger fan control in Cool/Heat		
FE33 FE53				
FE34	FE54	Minimum external exchanger fan speed setpoint in Cool / Heat		
FE35	FE55	Maximum external exchanger fan speed differential in Cool / Heat		
FE38 FE58 External exchanger fan cut-off hysteresis in Cool / Heat		External exchanger fan cut-off hysteresis in Cool / Heat		
FE39	FE59	External exchanger fan cut-off differential		
Control probe		Select external exchanger fan control probe in Cool/Heat		

12.1.2 Operation on call

Case FE00 = 2.

Ventilation is activated, on the basis of the value of the analogue input configured for control and <u>depending on the</u> <u>situation (eg. fan start or shutdown)</u>, based on thermoregulator or compressors state.

If output inverter compressor 1 is configured, compressor status is considered as the state of this output (circuit 1 only).

Note: If an analogue input is not configured <u>or if the configured analogue input is in error</u>, ventilation is activated exclusively on the basis of the state <u>of the compressors (at maximum speed</u> if modulating).

12.1.2.3 External exchanger fan digital control in Cool / Heat

External exchanger fan control is activated at the moment in which the main temperature controller calls the first step of the temperature control circuit (to which the external exchanger belongs).

The compressor starts after the delay given in parameter **FE21**: *External exchanger fan preventilation time*. **Note:** compressor activation may be delayed by other *safety timings*.

Furthermore, the digital outputs are controlled by parameter **FE34**: *External exchanger fan minimum speed setpoint in Cool* as for continuous operation, with the following exception: after the compressor is activated (meaning the first compressor or power stage of the circuit in question), for the delay given in parameter **FE20**: *Bypass time for external exchanger fan cut-off* the fans <u>are forced on</u> even if the controller is requesting cut-off.

Pre-ventilation is used in Cool to prevent high temperatures on the exchanger when the compressor is switched on. The cut-off bypass prevents extreme temperatures on the exchanger.

Note: if there are alarms blocking the compressors, external exchanger fan control remains active even with the compressors off.

Note: The activation of the compressor could also be delayed by other safety timings, this means that the pre-ventilation time could be longer (never shorter).

Note: if there are alarms blocking the compressors, external exchanger fan control remains active even with the compressors off.

12.1.2.4 External exchanger fan analogue control in Cool

The analogue outputs are activated exactly as the respective digital outputs (with pre-ventilation and cut-off bypass) and are modulated, except for the cut-off bypass period (where the fans are activated <u>at minimum speed</u> if the controller requests cut-off), according to parameter **FE34:** *External exchanger fan minimum speed setpoint in Cool* as for continuous operation.

If there is no request for steps the fan is normally off.

12.1.2.5 External exchanger fan analogue control in Heat

The analogue outputs are activated exactly as the respective digital outputs (with cut-off bypass) and are modulated, except for the cut-off bypass period (where the fans are activated <u>at minimum speed</u> if the controller requests cut-off), according to parameter **FE54**: *External exchanger fan minimum speed setpoint in Heat* as for continuous operation. If there is no request for steps the fan is normally off.

12.2 Fan control in defrost

Fan activation in defrost mode is useful because pressure at the external exchanger can reach alarm levels if the exchanger is not totally de-iced. To prevent a high pressure alarm in this situation, the fans are run (at minimum speed if modulating).

The behaviour of the external exchanger fan during defrost is determined by FE11: Enable special open system intercooler fan on, in which the fans run at maximum speed.

If the machine has two temperature control circuits, the status of the fan is dependent on the defrost condition of its respective circuit.

On completion of defrosting the fan resumes operation as requested by its controller.

- If **FE11** = 0, the fan is forced off throughout defrosting. If **FE11** = 1, the fan is off or on at minimum speed (digital output active) depending on the analogue input • configured for control of the fan in defrost and parameter FE12: External exchanger fan on setpoint in defrost in the following way:

FE12: External exchanger fan on setpoint in defrost FE13: External exchanger fan on hysteresis in defrost

FE14: Select probe for external exchanger fan regulation in defrost

Parameter table FE14

Value FE14	Description
0	No probe
1	External exchanger temperature (circuit 1 and 2)
2	High pressure input (circuit 1 and 2)
3	External exchanger pressure (circuit 1 and 2)

Note: if there are two temperature control circuits, each must have a probe configured for this purpose. If no analogue input is configured or if the configured input is in error, ventilation is always at minimum during defrost (maximum in coil drainage).

Note: At the end of defrost, the fans are switched on (at maximum speed if modulating) for the time set in parameter dF23: Coil drainage time, before the reversing valve switches.

Fan control with single condensation 12.3

Parameter FE10: Enable single condensation configures 2 circuit machines with single condensation.

if FE10 = 0 the two fans are independent and depend on the condensation pressure/temperature and the state of the compressors on the individual circuits.

If FE10 = 1 the 2 (in reality 2 digital and 2 analogue) external exchanger fan outputs operate in parallel at the maximum output value of the two controllers for the two circuits.

13 EXTERNAL CIRCUIT PUMP (FOLDER PAR/PE)

The parameters for the external circuit water pump can be viewed and configured in folder PE

At least one digital output must be configured as External Circuit Water Pump

Enabling

The external circuit water pump can be enabled by parameter (PE00 - External circuit water pump mode selection≠0)

Parameter	rameter Description		Value			
		0	1	2	3	
PE00	External circuit water pump mode selection	Pump Disabled	Continuous operation (Always ON)	In response to a request from the temperature regulator	Operation synchronised with external exchanger fans	

On the basis of **PE00** the external circuit pump can function

- continuously
 - In response to a request from the temperature regulator
 - or in synchrony with the external exchanger fans.

General conditions of operation

- In **Off** the pump is always off
- In **Stand-by** the pump is normally off; however, it is started together with the external exchanger heating elements in antifreeze mode (if **PE00=1** or 2).
 - If **PE00=3** the pump is started only if the external exchanger fans are started.
- In On the pump is always on if PE00 = 1.
 If PE00=2 the external circuit water pump is switched on when requested by the temperature regulator.
 If PE00=3 the External Circuit Water Pump is activated "in parallel" with the external exchanger heaters: i.e. the pump is activated if the external exchanger fan is activated (single-circuit systems), or if at least one of the two fans is activated (dual-circuit systems).

N.B.:

- The pump is <u>switched off immediately</u> in the event of pump trip alarm (see alarms table).
- If an automatic reset flow switch alarm occurs, the pump is kept on to allow it to be reset; if the alarm becomes manual reset, the pump is switched off.
- The minimum time between the pump switching off then switching back on again is fixed and set at 10 seconds.

13.1 Operating modes

13.1.1 Continuous operation

Case **PE00** = 1.

See General conditions of operation

13.1.2 In response to a request from the temperature regulator

Case **PE00** = 2.

See General conditions of operation

In addition

- The compressor is switched on with a set delay (PE02) after the internal circuit water pump switches on.
- The internal circuit water pump is switched off with a delay (**PE03**) after the temperature regulator enters the OFF state or after machine standby.

Table 2 (par. PI02-PI03)

Parameters	Description
PE02	External circuit pump switch-on - compressor switch-on delay
PE03	Compressor switch-off - external circuit pump switch-off delay

► Time

Time

TERM: temperature regulator	COMPR: compressor
WP: external circuit water pump	Time: time in seconds
PE02: External circuit pump switch-on -	PE03: Compressor switch-off –
compressor switch-on delay	external circuit pump switch-off delay

13.1.3 Operation synchronised with external exchanger fans

Case **PE00** = 3.

and a

Diagram A

See General conditions of operation

The External Circuit Water Pump is activated "in parallel" with the external exchanger heaters: i.e. the pump is activated if the external exchanger fan is activated (single-circuit systems), or if at least one of the two fans is activated (dual-circuit systems).

13.2 Pump anti-lock (anti-sticking) mode

This function prevents any mechanical faults when the pump has been idle for an extended period.

The anti-lock function is activated when:

- it has been enabled via parameter (PE04 External circuit water pump antilock function enabling = 1). See Table 3
- It is always active except when OFF (local and remote) and on Stand-by (local and remote) <u>unless an alarm</u> <u>switches off the pump</u>

If the pump is off for a time equal to or greater than the value in parameter **PE05**: *External circuit water pump off time for antilock*, the regulator forces it on (at maximum speed if modulating) for the time set in parameter **PE06**: *External circuit water pump ON time for antilock*. See Table 2 and diagram **P**

See Table 3 and diagram B

Table 3, parameters PE04..PE06

Anti-lock	Parameter	Description	Value		
			0	1	
	PE04	External circuit water pump antilock function enabling	Function disabled	Function enabled	
Diagram B	PE05	External circuit water pump OFF time for antilock	Time in hours		
Diagraffi B	PE06	External circuit water pump ON time for antilock	Time in s	seconds	

N.B.: PE05 is in hours, PE06 is in seconds

13.3 Antifreeze operation with pump

The antifreeze function runs when:

enabled via parameter (**PE07 – Antifreeze function enabling with external circuit water pump** =1). See Table 4. always on in any machine operating state except local or remote OFF, <u>unless alarms block the pump</u>

To ensure the efficient operation of the pump, the following must be configured correctly an analogue input, configured as NTC external temperature input a digital or analogue output, configured as pump

Table 4 parameter PE07...PE09

	Parameter	Description	Value		
			0	1	
	PE07	Antifreeze function enabling with external circuit water pump	Function disabled	Function enabled	
Diagram C	PE08	External circuit water pump set point control for antifreeze			
Diagram C	PE09	External circuit water pump hysteresis control for antifreeze			

The pump is running if **External circuit exchanger water temperature < PE08** The pump is running if **External circuit exchanger water temperature > PE08+PIE09.**

Diagram C - antifreeze function with pump

14 INTERNAL EXCHANGER ELECTRIC HEATERS (FOLDER PAR/HI)

Device **SBA600** controls internal exchanger heaters 1 and 2, which act both for the antifreeze function (typically in machines with water-type internal exchanger) and integration for the heat pump/heating function (air and water).

Parameters for internal exchanger heaters can be viewed and configured in folder HI: Internal exchanger electric heater parameters (see sections User Interface and Parameters).

Antifreeze/integrated use heaters should be connected to a relay output (°) DO1..D04, D06 (see). • The heaters are active only if the relative enabling parameter HI00, HI02=1 (see table)

(°) The configurable heater control outputs are all and exclusively outputs with ON/OFF control. The heaters can be used in a variety of ways depending on the type of installation. There may be one or two internal exchangers and one or two circuits.

In the case of a single exchanger on a single / double circuit: in antifreeze, defrost and integration the electric heaters are driven in "equivalent" mode.

In the case of a double exchanger on a double circuit: in antifreeze and defrost the two heaters are driven differently in accordance with the variable conditions of the relative refrigerant circuit; however, in integration they are driven in "equivalent" mode.

To obtain the greatest application configurability:

- the number of antifreeze heaters and integration heaters can be set independently;
- the control analogue output can be determined individually;
- the heaters (1 or 2) can be used only for antifreeze, only for integration/heating, or for both functions at the same time.

Heaters Parameter		Description	Value		
			0	1	
Antifreeze (Standby mode)	HI00	Enable internal exchanger heater regulator in standby for antifreeze	Heaters disabled Heaters		
See Heaters in defrost paragraph	HI01	Enable force heaters on during defrost	See parameters table Hi01		
Antifreeze	HI10	Select probe for antifreeze internal exchanger with heater 1	- See parameters table Hi10 and Hi11		
Antifreeze	HI11	Select probe for antifreeze internal exchanger with heater 2			
Integrated use	HI20	Enable integrated use of internal exchanger heaters	See paramete	rs table Hi20	

14.1 Internal antifreeze heater

Enabling

The internal exchanger antifreeze heaters are enabled with parameters

- HI10 Select probe for antifreeze internal exchanger with heater 1
- HI11 Select probe for antifreeze internal exchanger with heater 2

General conditions of operation

- In Off the internal exchanger antifreeze heaters are switched off immediately and remain off.
 - In Stand-by the internal exchanger antifreeze heaters are active if so set in parameter **Hi00**: *Enable internal exchanger antifreeze heaters in standby.*
- In **On**, in addition to the main control specified in subsequent paragraphs, the following situations are also possible (with priority given to the main control itself):
 - In *Defrost* the internal circuit heaters are controlled by parameter **Hi01**: *Enable forcing heaters on during defrost*. See dedicated paragraph
- The internal circuit heaters are turned off immediately during heater block alarms (see alarms table).

N.B.: There are no safety times for heater on/off

14.1.1 Internal circuit antifreeze heater control

Parameters table Hi10 and Hi11

Value Hi10 / Hi11	Probe
0	No sensor (antifreeze heater disabled)
1	Internal exchanger water/air inlet temperature
2	Internal exchanger water/air outlet temperature
3	Circuit 1 internal exchanger water outlet temperature
4	Circuit 2 internal exchanger water outlet temperature
5	Circuit 1 and 2 internal exchanger water outlet minimum temperature

N.B.: depending on settings, the heaters can be turned on together (using the same probe) or separately (using different probes).

N.B.: The machine is blocked in the event of a control probe error

14.2 Configuration of integration heaters

Enabling

With parameter **Hi20**: Select heater mode for internal exchanger in integration mode to activate the regulator for heaters in integration mode.

Either 1 or 2 heaters will be controlled, depending on the value of parameter **Hi26**: *Primary intercooler heater 2 switch-on setpoint differential in integration:* 1 heater if **Hi26** = 0, 2 heaters if **Hi26** \neq 0.

General conditions of operation

- In Off the integration heaters are switched off immediately and always.
- In Stand-by the integration heaters are switched off immediately and always (note that since there are two regulators controlling the same heaters, the same heaters may stay on in Standby if so required by the antifreeze heater regulator).
- In On, in addition to the main control specified in subsequent paragraphs, the following situations are also possible (with priority given to the main control itself):
- In *Defrost* the internal circuit heaters are controlled by parameter Hi01 *Enable force heaters on during defrost*.
 See dedicated paragraph
- The internal circuit heaters are switched off immediately in the case of heater block alarms.
- In DHW mode regulation occurs on the *real* DHW setpoint in place of the *real* Heat setpoint
- In Anti-Legionnaire's Disease DHW mode regulation occurs on the DHW setpoint for Anti-Legionnaire's Disease instead of the *real* Heat setpoint

Operating mode

The integration heaters are active <u>only in Heat mode</u>; regulation is based on the setpoint obtained by *subtracting* a differential from the *real* Heat setpoint.

This differential can be calculated in a variety of ways by configuring parameter **Hi20**: Select heater mode for internal exchanger in integration mode.

Parameter table Hi20

Value Hi20	Description
0	Integration heaters disabled
1	Integration heaters with setpoint differential proportional to external temperature
2	Integration heaters with setpoint differential in steps on external temperature
3	Integration heaters with setpoint differential fixed

14.2.1 Integration heater differential

The integration heater regulation setpoint is calculated by subtracting a differential from the real Heat setpoint.

Integration heater setpoint = real Heat setpoint – integration heater differential

The Integration Heater Differential is calculated in a variety of ways: proportional, step, or fixed.

N.B.: When the heat pump is blocked, the differential for heaters in integrated assumes a fixed value equivalent to the value of parameter **Hi23**: *heater differential in integration mode with heat pump lock*. This serves to better control the heating capacity steps of the integration heaters in special circumstances.

14.2.2 Integration heater regulation

Regulation occurs on the Integration Heaters Setpoint calculated with the Integration Heaters Differential as explained in the preceding paragraph. The expression step here refers to activation of internal exchanger heater 1 or 2. The analogue input used for regulation is the main temperature controller probe for Heat mode.

Depending on the value of **Hi26**: *Primary intercooler heater 2 switch-on setpoint differential in integration* it can be decided whether or not to activate the second heater in integration.

Note: if activating both heaters "simultaneously" is of interest (using two outputs to keep the thermal cut-outs separate), simply award a small value to **Hi26** although a value <u>other than 0</u> and greater than hysteresis **Hi25** (hysteresis cannot be larger than the differential value, otherwise the hysteresis value considered will coincide with the differential value).

14.3 Heaters in defrost mode

Parameter Hi01: Enable force heaters on during defrost makes it possible to characterise operation of the internal exchanger heaters during defrost and dripping. One or both of the heaters can be forced on, or heater 1 can be linked to defrosting circuit 1 and heater 2 to circuit 2

Parameter table Hi01

Value	Description
0	Free operation (no forcing)
1	Heater 1 forced on
2	Both heaters forced on
3	Heater 1 forced on for defrost circuit 1, heater 2 for defrost circuit 2 (double exchanger)

N.B.: For cases with values 1 and 2, the heaters are switched on if at least one of the two circuits is in defrost or drip status (typically used in case of single exchanger).

15 EXTERNAL EXCHANGER ELECTRIC HEATER PARAMETERS (FOLDER PAR/HE) – ELECTRIC HEATERS

The external exchanger heater parameters can be viewed and modified in folder **HE** (see User Interface and Parameters chapters).

The following must be configured:

at least one digital output as external exchanger 1 heater with parameters CL90...CL97 / CL80-CL81 if digital / CL61...CL63 if digital = ±25.

at least one digital output as external exchanger 2 heater with parameters CL90...CL97 / CL80-CL81 if digital / CL61...CL63 if digital = ±26.

See chapter System configuration (folder PAr/CL-Cr-CF) / Configuration of digital outputs

The **SBW600** controls external exchanger heaters 1 and 2 with antifreeze function (as heat pumps with water external exchanger).

The heater control outputs are all and exclusively those outputs with ON/OFF control.

The heaters can be used in a variety of ways depending on the type of system. We can have one or two external exchangers (one or two circuits).

For greatest configurability:

the number of antifreeze heaters can be set;

the control analogue input can be determined individually.

Enabling

The external exchanger heater 1 antifreeze probe is enabled and selected with parameter HE10 - Select probe for antifreeze external exchanger + heater 1.

The external exchanger heater 2 antifreeze probe is enabled and selected with parameter HE11 - Select probe for antifreeze external exchanger + heater 2.

General conditions of operation

In Off the external exchanger antifreeze heaters are immediately and always off.

In Standby the external exchanger antifreeze heaters are active if so configured with (HE00 - Enable external exchanger antifreeze heaters in Stand-By).

In **On**, further to the principal regulation specified in the following paragraphs, the following situations (<u>with priority</u> over the principal regulation itself) may occur:

The external circuit heaters are immediately turned off during heater block alarms.

Note: There are no safety times for heater on/off.

Table A - external exchanger heater parameters

heaters	Parameter	Description	Value					
			0		1	1		
External exchanger (Standby mode)	HE00	Enable external exchanger heater regulator in standby for antifreeze	Heaters disabled Heat		Heaters en	iters enabled		
Heaters	Parameter	Description	Value					
			0	1	2	3	4	
External exchanger Enable heater 1	HE10	Select probe for antifreeze external exchanger + heater 1	No probe (antifreeze	External exchanger average	External exchanger	External exchanger	External	
External exchanger Enable heater 2	HE11	Select probe for antifreeze external exchanger + heater 2	heater disabled)	temperature circuit 1 and 2	inlet water temperature	outlet water temperature	temperature	
Heaters	Parameter	Description	Value					
External exchanger	HE12	External exchanger heater switch on setpoint for antifreeze	Range defined by parameters HE14 HE13 Hysteresis defined by parameter HE15					

External exchanger heaters Regulation is performed as shown in the figure:

HE10	Analogue input - see table A		
HE11	1 Analogue input - see table A		
HE12	2 Setpoint - see table A		
HE13	3 Maximum external exchanger heater regulator setpoint for antifreeze		
HE14	Minimum external exchanger heater regulator setpoint for antifreeze		
HE15	External exchanger heater regulator hysteresis for antifreeze		

Note: depending on the settings, the heaters can be turned on together or separately. Note: In case of control probe error, the machine is blocked.

16 AUXILIARY OUTPUT (FOLDER PAR/HA)

Auxiliary output parameters can be viewed and configured in folder HA (see User Interface and Parameters chapter).

The following must be configured

at least one digital output as Auxiliary Output with parameters CL90...CL97 / CL80-CL81 if digital / CL61...CL63 if digital = ±32

The auxiliary output controller can be used, for example, to control heaters in units with air cooling to evaporate the condensation water.

Enabling

The parameter (HA00 - Select probe for auxiliary output regulator) is used to enable the auxiliary output regulator.

Table A - meaning of parameter HA00:

Value HA00	Probe			
0	0 No probe (auxiliary output disabled)			
1	1 External temperature			
2	2 External exchanger temperature circuit 1			
3	External exchanger temperature circuit 2			
4	External exchanger inlet water temperature			
5	External exchanger outlet water temperature			
6	NOT USED			

General conditions of operation

- In **Off**, the auxiliary output is always switched off immediately.
- In Standby, the auxiliary output is always switched off immediately.
- In **On**, as well as the main regulation function specified in the paragraphs below, the following situation is also possible (with <u>priority</u> over the main regulation): the auxiliary output is always switched off immediately when it is subject to a blocking alarm.

N.B.: There are no safety times for activation and deactivation of the auxiliary output.

Auxiliary heaters

Regulation occurs as shown in the diagram:

N.B.: In case of a probe error, the output is switched off/disabled.

16.1.1 Auxiliary output regulation conditional on defrosting

Regulation of the defrosting conditional auxiliary output is the same as regulation of the normal auxiliary output, except for the fact that it is activated only at the start of a defrost cycle (either of the two possible circuits) and it is forced to off after a time equal to 3 times parameter **dF22- Maximum defrost time.**

17 BOILER (FOLDER PAR/BR)

Via a suitably configured digital output device **SB600** controls the pump or the permissive signal for a water heater or boiler to supply hot water which can be used for heating or as a back-up for the heat pump (hot water).

The outputs configurable to control the water heater are all exclusively the outputs with ON/OFF piloting.

Device SA600 also controls an analogue output (value = ± 58)

There are different types of plant and therefore different ways to use the water heater, especially in residential applications.

17.1 Water heater configuration

The water heater is used as a heating capacity step both for chillers and heat pumps.

Combined with the integration/heating elements and the compressors (in heat pump mode), the water heater produces hot water on the internal hydraulic circuit.

For maximum configurability, the water heater parameters and other system component parameters can be set separately. You can thus determine when to use the water heater capacity step for heating and when to inhibit water heater operation.

In both modes, heating and integration, the water heater setpoint can be set as a differential (fixed or proportionally variable depending on the ambient temperature) with respect to the real setpoint in heating mode.

N.B.: Normally, when there is no heat pump (in heating mode), the differential is set as fixed and at zero (the regulation setpoint is the same as the real heating mode setpoint).

N.B.: by setting the Water heater maximum dynamic differential to 0, the setpoint coincides with the real heating setpoint.

Enabling

With parameter br00: Select water heater operation different from zero to enable the water heater regulator.

General conditions of operation

- In **Off** the water heater is switched off immediately and always.
- In Stand-by the water heater is switched off immediately and always.
- In **On**, as well as the main regulation function specified in the paragraphs below, the following situation may also occur (with priority over the main regulation):
- The water heater is switched off immediately in case of a water heater tripping alarm (see alarms table).
- In Domestic Hot Water mode the water heater regulates in relation to the *real* DHW setpoint instead of the *real* Heat setpoint.
- In DHW mode for Anti-Legionnaire's Disease operation the water heater regulates in relation to the Anti-Legionnaire's Disease DHW setpoint instead of the *real* Heat setpoint

N.B.: There are no protection times for water heater on/off cycles.

Operating mode

The water heater regulator is active only in Heat mode; regulation is based on the setpoint obtained by subtracting a differential from the *real* Heat setpoint.

The water heater differential can be calculated in several ways, selectable by configuring the parameter *Select Water Heater* Mode **br00**.

Table for parameter **br00**:

	Value br00	Description			
	0	Water heater disabled			
	1	Water heater with differential			
		Setpoint proportional to ambient temperature	Diagrafii A		
	2	Water heater with differential	Diagram B		
		Setpoint in steps dependent on external temperature	Diagrafii D		
	2	Water heater with differential	Diagram C		
	5	Fixed setpoint			

17.1.1 Water heater Differential

Water heater regulation is performed on a setpoint calculated by subtracting a differential from the real Heat setpoint.

Water heater setpoint = Real Heat setpoint – Water heater differential

In case of <u>heat pump block</u>, the Water heater differential assumes the fixed value of parameter **br03**: *water heater differential with heat pump block*. This serves to improve the control of the water heater capacity step in special cases.

Water heater differential proportional to ambient temperature Example br00= 1 Diagram A

	Parameter	
Control sensor	//	External temperature
Setpoint	br01	Water heater dynamic differential setpoint
	br02	Maximum water heater differential br02
	br04	Water heater differential proportional band
Hysteresis	br05	Water heater regulator hysteresis

N.B.: In case of an error of the external probe, the differential value is set to br02 or br03 (both fixed) depending on circumstances.
17.1.2 Water heater regulation

Hysteresis

The regulation uses the Water heater setpoint calculated with the water heater differential as explained in the previous paragraph.

In parallel, an analogue output can be activated on the water heater, which will be modulated as follows:

br05

Water heater regulator hysteresis

18 **DEFROST (FOLDER PAR/DF)**

Defrost parameters can be viewed and configured in the dF folder (see User Interface and Parameters sections).

Defrosting is only possible in HEAT mode.

It is used to prevent ice from forming on the surface of the external exchanger.

Ice builds up on the external exchanger more often as a result of cold external air containing a high degree of humidity. This considerably reduces the thermodynamic efficiency of the machine and can also result in damage to the machine itself

Enabling

Defrosting is enabled if:

it is enabled via parameter (dF00 - Enable defrost function =1,2)

Parameter table dE00

Value	Description	
0	Defrosting disabled	
1	Simultaneous defrost (only for dual-circuit systems)	
2 Independent defrost (for single circuit plants and double circuit plants with separate condensation)		

General conditions of operation

- In **Off** defrosting is disabled.
- In Stand-by the defrost function is disabled.
- In On, as well as the main regulation function specified in the paragraphs which follow, the following situation is • also possible (with priority over the main regulation): the defrost request is inhibited/cancelled if antifreeze with heat pump is active.

Types of defrost

SBW600 manages both single defrosting of the single or double external exchanger, and independent defrosting of the exchangers of the two refrigerant circuits.

In the first case, single defrosting, the two circuits defrost at the same time when at least of them requires it. This mode is applied to machines with single condensation (parameter FE10: Enable single condensation = 1). The circuit which completes defrosting first, before it resumes normal operation, waits (with compressors off) for the other circuit to complete defrosting.

N.B.: In the case of single condensation, two start probes must be configured (on for circuit 1 and one for circuit 2) along with two 2 defrost end probes. The times for starting defrosting are nonetheless independent.

In the case of independent defrosting each circuit defrosts separately.

The start and end of the defrost cycle depends on the values of the probes and the parameter settings described below;

Defrost	Parameter	Description	
	dF01	Enable maximum power for non-defrost circuit	
	dF10	Select probe to enable interval count between defrost cycles	
Ctort	dF11	Setpoint for enable interval count between defrost cycles	
Start	dF12	Setpoint to clear cumulative time between defrost cycles	
	dF13	Cumulative time between defrost cycles	
	dF14	Minimum interval between defrost cycles	
	dF20	Select probe to disable defrost	
Output	dF21	Disable defrost setpoint	
Output	dF22	Maximum defrost time	
	dF23	Drip time	
	dF30	Maximum dynamic defrost differential	
Setpoint dF31 Defrost dynamic differential setpoint		Defrost dynamic differential setpoint	
	dF32	Defrost proportional band dynamic differential	

Defrosting is done in heat mode, by reversing the cooling cycle, switching the position of the cycle inversion valve and operating the circuit in chiller mode.

In Defrost mode, switching of the inversion valve occurs with the same methods as those envisaged for the mode changeover (see Inversion valves management section), with the time set by parameter ST05 - Reversal valve switching delay, and with compressor stopping and starting times that are unique and specific for defrosting (parameter CP27 -Defrost compressor/step delay minimum).

In multi-circuit systems, defrosting can be run separately (*independently*) or at the same time (*single*) for the various cooling circuits, depending on the general operational requirements of the plant.

Analogue inputs for defrosting start/end

Defrosting can be started in relation to the pressure or temperature measured by the probe selected in parameter dF10: Select probe to enable interval count between defrost cycles.

Defrosting can be ended in relation to the pressure or temperature measured by the probe selected in parameter **dF20**: **Select probe to disable defrost.**

In the case of a double circuit, each circuit must have an analogue input configured for the requested function.

Defrosting function analogue inputs

Description
External exchanger temperature circuit 1
External exchanger temperature circuit 2
High pressure input circuit 1
High pressure input circuit 2
Low pressure input circuit 1
Low pressure input circuit 2
External exchanger pressure circuit 1
External exchanger pressure circuit 2

Parameters table dF10 and dF20

Value	Description	
0	No probe	
1	External exchanger temperature (circuit 1 and 2)	
2	High pressure input (circuit 1 and 2)	
3	Low pressure input (circuit 1 and 2)	
4	External exchanger pressure (circuit 1 and 2)	

18.1 Defrost

18.1.1 Start defrost

Defrosting can be started in relation to the pressure or temperature measured by the probes selected in parameter *Select* probe to enable interval count between defrost cycles **dF10**.

If there is a probe error or no probe is configured, start of defrosting depends solely on the effective operating time of the compressors and the parameter *Cumulative time between defrost cycles* **dF13**.

Between two successive defrost cycles there must elapse a minimum time interval equivalent to the parameter *Minimum* time between two defrost cycles dF14.

N.B.: If **dF00** = 2 in plants with two circuits, the minimum time between two defrost cycles is applicable to both circuits, so defrosting cannot occur on both circuits simultaneously

The conditions required for starting defrosting of a circuit are as follows:

- When the pressure or temperature detected by the start defrost probe on the circuit drops below the value of the start defrost setpoint and the circuit is supplying at least one power step, the cumulative defrost delay counter is started, the value of which can be set with parameter **dF13**: *Cumulative time between defrost cycles*.
- The start defrost setpoint is a <u>dynamic</u> value calculated on the basis of parameter **dF11**: Setpoint for enable interval count between defrost cycles (see specific paragraph).
- When the pressure or temperature read by the defrost start probe for the circuit returns above the value of the defrost start setpoint of the circuit is no longer delivering any power steps, the cumulative defrost delay count is stopped.
- The count is reset to zero after a defrost cycle or after a reset (e.g. power down).
- The counter for cumulative time for defrost start is reset also in the case wherein the temperature or pressure of the probe configured as a defrost <u>entry</u> probe of the circuit rises above the value set in parameter **dF12**: *Setpoint to clear cumulative time between defrost cycles*
- When the defrost start cumulative time counter ends (i.e. the time specified in the parameter elapses), the circuit activates a defrost cycle.

Given the above, the <u>start time</u> for the defrost cycle corresponds to the time at which the count ends (before valve reversal).

Note: In the case of mode changeover, the count is <u>suspended but not reset</u>. In this way, at the next mode changeover (e.g. from OFF or Standby to Heat), the count resumes from its preceding value.

In the case of *independent* defrosting or a single circuit, defrosting starts only when the compressor safety times are reset, and the conditions for starting defrosting are satisfied (the circuit is delivering at least one power step, etc.).

In the case of *single* defrosting, defrosting starts only when the compressor safety times <u>of both circuits</u> are reset and the conditions for starting defrosting on the requesting circuit are satisfied. The two circuits defrost in a fully harmonised manner.

The defrost stage starts with the sequence of switching of the inversion valve of the circuits in question with a procedures similar to those of the mode changeover (see the paragraph Inversion valves management).

The pause time after switching of the inversion valve before restarting of the compressors at maximum capacity is equivalent to St07 - Reversal valve switching from Defrost to Heat delay.

NB.

If the parameters

St06 - Reversal valve switching from heat to Defrost delay = 0 and

St07 – Reversal valve switching from Defrost to heat delay = 0

Inversion of the valve occurs on the fly ("fast inversion") also with the compressors running, without any form of safety.

18.1.2 Defrost cycle

After cycle reversal the compressors are all on (max. available capacity). If there is an alarm which inhibits operation of one or more compressors, defrosting proceeds anyway (as in the case of defrosting during a simple stop). In the case of independent defrosting of the two circuits, with parameter dF01: Enable maximum capacity of circuit not in defrost the capacity of the alternative circuit (the one not being defrosted) can be forced to maximum for compensation purposes.

18.1.3 End defrost and coil drainage

Defrost terminates:

In accordance with

in accordance with	
temperature /pressure:	if the temperature or pressure of the probe configured as the circuit defrost exit probe
	increases above the value set in parameter dF21 : <i>Disable defrost setpoint</i> .
Due to duration:	if defrosting does not end due to temperature or pressure within the maximum time set in
	parameter dF22: Maximum defrost time.
By digital input:	if the Circuit 1 Defrost End and Circuit 2 Defrost End digital inputs are configured and active

If the probe is in error or not configured, defrosting may end in the two other modes (time and digital input)

The end of defrosting is always independent for each circuit, depending on the analogue or digital end defrost inputs for the circuit in question.

The defrost exit stage starts with the switching sequence of the circuit inversion valve with procedures similar to those envisaged for entry into defrosting (St06), apart from the dripping stage. The compressors are stopped observing only the time set with parameter Cp27 Defrost compressor/step delay minimum. Before the valve reverses, coil drainage runs for a period given in df23. In this phase the compressors stay off and the external exchanger fan of the circuit is run at maximum power.

After the drip stage, if performed, if time St06 is less than dF23, switching of the valve is immediate and circuit defrosting is terminated.

The end of the defrosting phase corresponds to the moment the valve is reversed.

After inversion of the valve the compressor will restart after time St07.

Note: after the end of defrosting, the compressor safety times are no longer regulated by CP27 (the compressor start sequence of the circuits after defrosting observes normal timings).

N.B.: If all parameters St06, St07 and dF23 are set to zero, inversion of the valve occurs "on the fly" ("fast inversion"), also with the compressors running, without any form of safety.

In the case of *single* defrosting on two circuits, the compressors are available for temperature control only if both circuits have stopped defrosting.

In the case of *independent* defrosting the compressors of the circuit that has finished defrosting will be immediately available to the temperature regulator.

The circuit for which compensation is active (if either) is controlled by the Heat temperature controller on termination of defrosting.

18.2 Start defrost setpoint

In very dry and cold climates, it is good to be able to vary the reference temperature for the start of defrosting as a function of the external temperature.

This regulator compensates, in a linear manner, the defrosting start temperature or pressure with a positive or negative differential value according to the external temperature.

The real defrost start setpoint is calculated by adding this dynamic differential to the value of parameter **dF11**: *Setpoint* for enable interval count between defrost cycles.

Enabling

The controller is enabled by setting parameter **dF30**: *Maximum dynamic defrost differential* to a value other than 0. Also, an analogue input must be configured as external temperature.

Defrost	Parameter	Description External temperature	
External temperature			
Differential	dF30	Maximum defrost dynamic differential	
Setpoint	dF31	Defrost dynamic differential setpoint	
	dF32	Defrost dynamic differential proportional band	

N.B.: In case of error of the external probe, the differential value is set to zero (compensation disabled).

18.3 Defrost alarm management

For the actuation of loads during alarms, see the diagnostics section.

To summarise, and specifically for defrosting, if probe errors or alarms occur which lock the compressors, the start defrost and end defrost cycles are already defined and are typically based on parameter timings. E.g. if during defrosting the compressors are made unavailable by alarms, defrosting will terminate when the maximum time expires. It may terminate differently if the compressors become available again during the defrosting cycle.

18.4 Manual defrost

EnergySBW600 provides the facility to force defrosting manually by means of a long press of the [UP] key. Manual defrost is possible when:

- **dF00** = 1,2
- UI20 -Enable defrost function from key
- if the external exchanger temperature/pressure is below the value set in parameter
- dF01 Enable maximum power for non defrost circuit
- Defrost starts in the sequence described in the section Start Defrost.
 - The defrost LED is blinking.

End defrost takes place as described in the section about "End Defrost"

18.5 Power failure during defrost

If a power failure occurs during a defrost cycle, the procedure will be cancelled. All timings will be cancelled and restarted.

Modification based on the dynamic setpoint input with positive offset

E

N.B

The dynamic setpoint input <u>must be</u> a voltage input (V) or a current input (I); it cannot be an NTC temperature probe, i.e. **CL02/CL03= 3,4,5 or 6**.

The Min and Max values of the graphs are associated with the Min (start of scale value) and Max (full-scale value) values of the input itself, in other words

- Min = CL11 for AI3; CL13 for AI4
- Max = CL10 for AI3; CL12 for AI4

Negative Offset

Modification in accordance with the input for dynamic setpoint with negative offset

20 ADAPTIVE (FOLDER PAR/AD)

Chillers generally contain a water accumulation tank.

The purpose of these tanks is to create sufficient thermal inertia to stop the compressor from repeatedly switching on and off in periods in which the temperature requirements in the area to be cooled are relatively few (switching repeatedly on and off will reduce the life time of compressors).

A water accumulator increases the thermal capacity and provides the inertia required to extend running time. Nevertheless, water accumulation is also a substantial cost and also adds to the minimum dimensions of the machine.

Adaptive function parameters can be viewed and configured in the Ad folder (see chapters on User Interface and Parameters).

By adjusting the setpoint and hysteresis, the Adaptive function simulates electronically the inertia of a water accumulator, meaning it can be used less.

Enabling

Use parameter Ad00 - Select no accumulation mode

when set not equal to zero enables the function and enables selecting the amount to which the adaptive function temperature differential is to be added or subtracted.

		0	1	2	2
Ad00	Select no accumulation mode	Accumulation disabled	Setpoint	Hysteresis	Setpoint + hysteresis

General conditions of operation

- In Off the adaptive function is disabled.
- In Stand-by the adaptive function is disabled.
- In On the adaptive function is enabled.

MT minimum time and ET real time

Note that compressor on/off times must respect safety time delays:

The function analyses actual running time of the compressor (ET) comparing it with the preset minimum running time (MT).

Minimum time | The minimum time (MT) is set in parameter Ad06 - Reference compressor on time for adaptive accumulation

МТ

	Parameter	Description
МТ		
	Ad06	Reference compressor on time for accumulation offset

Real time ET Real running time (ET) is recorded automatically by the device

Type of plant	ET	
Single circuit 2 / 4 compressors / Segmented compressors	Count [first compressor on / first partialization, last resource switched off]	
Double circuit	Count	
1 / 2 compressors /	[first compressor on / first partialization, last resource switched off]	
Segmented compressors	Independently of the circuits	
Ordinany compressor	Count	
Orumary compressor	[compressor on, compressor off]	

20.1 Adaptive function with setpoint modification

ET<MT example If ET<MT:

when the compressor switches off, the operating setpoint is changed to a value equal to the adaptive offset (AO) according to the formula below:

AO=((MT - ET)* Ad01)/10 + Ad02

Where:

Ad01	Accumulation offset constant	
Ad02	Accumulation offset differential	

Adaptive function Setpoint modification in cooling	 COOLING MODE ET<mt example<="" li=""> If the real running time (ET) is less than the minimum time(MT), each time the compressor switches off, the adaptive offset is subtracted from the setpoint. </mt> 		
	<pre>Cycle 0:</pre>		
Adaptive function Modification of setpoint in heating HEATING MODE Same as heating example. The offset is ADDED to the setpoint: • SET(0) = SET (HEAT) • SET(1) = SET(HEAT)+AO(1) • SET(2) = SET(HEAT)+AO(2) ···· Note that in both modes, the compressor on temperature is the same for each operating cycle, even when function is activated. This extends the zone between the setpoint and on temperatures, reducing the number of times the compress on and off and thereby reducing any overlap with safety times			
	Cooling mode Adaptive function with setpoint modification (Ad00=0) Setpoint modification after calculation of AO1		
	SET + Hyst SET + Hyst SET		
	SET1 = SET(1), SET2=SET(2)		

20.3 Adaptive function with setpoint and hysteresis modification

20.4 Setpoint regression

ET \geq MT example If ET \geq MT:

If the cycle time is long enough (and greater than MT), regression of the real setpoint occurs: for each interval of Ad05 (from the start of the cycle), the setpoint is modified by the value set in Ad02.

- in cooling, the setpoint (real for cycle N) is increased:
 - after Ad05: SET(N) + Ad02 after 2*Ad05: SET(N) + 2*Ad02
 - and so on until the maximum value (setpoint / hysteresis)
- in heating, the setpoint is reduced as above, down to the minimum value (setpoint / hysteresis)

Hence for long cycle times, the "adaptive" function balances out making the cycle times compatible with compressor timings.

Parameter	Description	Parameter
Ad01	Accumulation offset constant	See Modify setpoint offset calculation formula
Ad02	Accumulation offset differential	See Modify setpoint offset calculation formula
		See Setpoint regression
Ad03	Block accumulation offset setpoint in cooling mode	See Protection in cooling mode
Ad04	Block accumulation offset setpoint in heating mode	See Protection in heating mode
Ad05	Compressor on time for accumulation offset regression	See setpoint regression
Ad06	Reference compressor on time for accumulation offset	See MT

20.5 Protection

COOL

If the outlet temperature < Ad03 during general cycle n, the controller performs the following actions:

Switches off the compressor (or compressors)

Clears the adaptive offset AO(n) = 0; the next cycle recommences with the original setpoint and hysteresis

This adjustment can be considered a precursor of the antifreeze alarm (the cycle stops without generating an alarm) should the adaptive function lead to a very low real setpoint.

We recommend you set Ad03 > AL12 Internal circuit antifreeze alarm regulator setpoint

HEAT

If the outlet temperature > Ad04 during general cycle n, the controller performs the following actions: Switches off the compressor (or compressors)

Clears the adaptive offset AO(n) = 0; the next cycle recommences with the original setpoint and hysteresis

This adjustment can be considered a precursor of the high pressure alarm (the cycle stops without generating an alarm) should the adaptive function lead to a very high real setpoint.

To set Ad06, we recommend you refer to the high pressure safety devices in use (pressure switch configuration, type of refrigerant used, and so on)

Note: if the plant is of the two circuit type and two water temperature sensors are configured on circuit 1 and 2 primary output, consider the minimum of the two values.

21 ANTIFREEZE PARAMETERS WITH HEAT PUMP (FOLDER PAR/AF) - ANTIFREEZE

Anti-freeze parameters can be viewed and configured in folder AF (see User Interface and Parameters chapters).

The anti-freeze function with heat pump serves to prevent breakdowns due to internal heat exchanger icing (typically in machines with water-type internal heat exchangers). **SBW600** enables control of machines with one or two cooling circuits and one or two internal heat exchangers. The anti-freeze function with heat pump is controlled separately for each cooling circuit.

The function is always active in any machine operating state, i.e. cooling, heating and standby. Anti-freeze function with heat pump is enabled via parameter (AF00 - Select antifreeze probe with circuit 1 heat pump \neq 0) via parameter (AF01 - Select antifreeze probe with circuit 2 heat pump \neq 0)

The Heating LED flashes when this function is active.

Mode change is disabled when this function is enabled. Defrosting is disabled when this function is enabled.

Analogue inputs for anti-freeze function with heat pump

The analogue inputs used for regulation are selected distinctly for each cooling circuit, using parameters

AF00 - Select antifreeze probe with circuit 1 heat pump

AF01 - Select antifreeze probe with circuit 2 heat pump

Note: For machines with a single circuit AF01 - Select antifreeze probe with circuit 2 heat pump must be set = 0.

Value AF00 / AF01	Probe	
0	No probe (anti-freeze function with heat pump disabled)	
1	Internal exchanger water/air inlet temperature	
2	Internal exchanger water/air outlet temperature	
3	Circuit 1 internal exchanger water outlet temperature	
4	Circuit 2 internal exchanger water outlet temperature	
5	Circuit 1 and 2 internal exchanger water outlet minimum temperature	

General conditions of operation

In **Off** the anti-freeze function with heat pump is disabled.

In **Stand-by** the anti-freeze function with heat pump is enabled, as in On.

In **On**, further to the principal regulation specified in the following paragraphs, the following situation (<u>with priority</u> over the principal regulation itself) may occur: anti-freeze function with heat pump <u>inhibited</u> during defrosts.

NOTE:

The valve reverses with a delay ST05 - Reversal valve switching delay.

Furthermore, during the anti-freeze phase, the compressors run at maximum power and are turned off and on with reference only to the delay **CP27 - Defrost compressor step/delay minimum**

Heat pump activation

The function is enabled (°) if the temperature measured

Circuit 1: by the anti-freeze with heat pump probe for circuit 1 < **AF02 - Anti-freeze regulator setpoint with heat pump**

Circuit 2: by the anti-freeze with heat pump probe for circuit 2 < **AF02 - Anti-freeze regulator setpoint with heat pump**

(°) the heat pump is activated if previously switched off; if previously activated, it remains active

22 SANITARY WATER AND ANTI-LEGIONNAIRE'S DISEASE (FOLDER PAR/AS)

Small/medium installations (typically residential installations) require "integrated" management of sanitary water (also referred to as ACS) by means of the <u>heat pump</u> system (for heating and cooling the interior environment). In practice, this involves controlling the sanitary water temperature (ACS temperature) in a dedicated accumulator.

The switch between 'normal' mode (heating/cooling) and ACS mode can occur in 2 ways, depending on the type of system:

- With ACS Valve: the flow will be diverted from the heating/cooling circuit to the ACS accumulator
- With ACS Pump: the heating/cooling circuit pump will be switched off and the ACS accumulator pump switched on

Type of system

The type of system is configured using parameter AS00 - Select ACS mode

Enabling

When parameter **AS00 - Select ACS mode** is different from zero, the regulator is *enabled*. The possible values of parameter **AS00** are:

- 0 = Disabled
- 1 = Enabled only heat pump for sanitary water system with sanitary water valve
- 2 = Enabled only sanitary water heater
- 3 = Enabled sanitary water heat pump and heater system with sanitary water valve
- 4 = Enabled only heat pump for sanitary water system with sanitary water pump
- 5 = Enabled only sanitary water heater
- 6 = Enabled sanitary water heat pump and heater system with sanitary water pump

Refer also to the following table where the AS00 values are indicated in relation to the type of system used

	Par.	Description	value			
			0	1 or 4	2 or 5	3 or 6
Enabling	A500	Select ACS mode	disabled	Heat pump	only sanitary water heater	Heat pump + sanitary water heater
· · ·						
system		Sanitary water valve		AS00 = 1 system with sanitary water valve		AS00 = 3 system with sanitary water valve
		Sanitary water pump		AS00 = 4 system with sanitary water pump		AS00 = 6 system with sanitary water pump

Notes.

.

- The term heat pump actually denotes <u>the entire machine</u> (e.g. *including the* integrated internal exchanger heaters, if any)
- Since the behaviour of the sanitary water heater is independent from the type of system, the values 2 and 5 determine the same device behaviour.
- When parameters Anti-legionnaire's disease event duration, Monday Tuesday etc. AS25, AS26... are different from zero (at least one must be) the Anti-legionnaire's disease function is *enabled*. Furthermore the RTC must be present and enabled for operation (it must not be faulty and/or not set, for further details refer to the specific alarms)

General conditions of operation

- In Off the regulator is *switched off* immediately and continuously.
- In **Standby** the regulator is on, with exclusive reference to activation of the ACS antifreeze heater.
- In **On**, in addition to the main control specified in subsequent paragraphs, the following situations are also possible (with priority given to the main control itself):
 - If there is an *error* in the sanitary water temperature *sensor*, the compressor associated with that sensor is disabled
 - The ACS valve / pump is immediately switched off in the event of valve / pump shutdown alarms
 - The ACS heater is immediately switched off in the event of heater shutdown alarms
 - On start-up of SBW600 (power on or reboot from OFF or Stdby), ACS mode is inhibited for 120 seconds in order to prevent multiple settings competing on start-up, with impulsive activations of the loads (e.g. internal pump).

Sanitary Water Setpoint

Regulation occurs on the <u>actual</u> ACS Setpoint.

The Actual Setpoint is determined by the following contributing factors:

- At start-up of the instrument, the Sanitary Water Setpoint = AS01 ACS setpoint
 If Time Bands are active (1E00 Enable time band operation = 1) the San
- If Time Bands are active (**tE00 Enable time band operation** = 1) the Sanitary Water Setpoint will be
- determined by the ACS Set Point of the corresponding event / profile (see Time Bands section (folder PAr/tE))
 If AS11 ACS set point dynamic constant is different from zero then the Dynamic ACS Setpoint function is activated on the Sanitary Water Setpoint

22.1 Sanitary Water in HEAT mode

Sanitary water consent

In Sanitary Water mode, the machine's operation is governed by the **request/consent** concept. Consent may be given (with resulting switchover from normal mode to the mode determined by the Sanitary Water regulator) *if and only if all* of the following conditions are satisfied:

- Sanitary Water Setpoint not reached (a function of the temperature of the ACS accumulator See diagram A
- the time AS10 ACS minimum deactivation/activation time has elapsed
- NO Anti-Legionnaire's Disease period is in progress*
 - *example: Saturday 21.30. AS40 different from 0; AS41 = 22, AS42 = 0

This request, which was described above, takes priority over the "normal" ACS heating request.

Par.	Description		
AS04	ACS hysteresis		
AS01	ACS setpoint		
AS02-AS03	Note: using the parameters:		
	AS02 - ACS minimum setpoint		
	AS03 - ACS maximum setpoint		
	It is possible to limit the maximum and minimum configuration values of AS01		
Setpoint	Actual ACS Setpoint		
Control sensor	Sanitary water temperature		

Regulation, machine in

HEAT

- In the event of a sanitary water heating request:
 - the machine remains in Heat Pump mode (and maintains the same control sensor that it uses in normal Heat mode) but modifies the control setpoint from actual Heat Setpoint to AS01 -ACS Setpoint (ACS) with AS05 ACS disengage setpoint differential
 - the ACS valve / pump is activated with the following actions:
 - o machine with ACS valve: the ACS valve is activated without switching off the internal pump
 - machine with ACS pump: the ACS pump is activated at the same time as the internal pump is switched off; to prevent flow switch alarms, it is necessary to re-enter the time AL14 - Flow switch alarm bypass

ACS heater: see corresponding paragraph

ACS disengage

Once the machine has been "disengaged" to heat the sanitary water for Anti-Legionnaire's disease, it will continue to do so until *at least one* of the following conditions is satisfied:

- tACS accumulator sensor reaches the actual ACS setpoint see figure B
- the Heat control sensor (which typically is not the ACS accumulator sensor) reaches a certain value, equal to the
 AS01 -ACS Setpoint (ACS) plus a specifiable differential, which takes account of the temperature difference that
 may exist between the ACS accumulator and the position of the Heat control sensor, parameter AS05 see
 figure C
 - the time set using parameter AS09 ACS maximum activation time has elapsed
- an Anti-Legionnaire's Disease period is starting

When normal mode and the actual Heat (or Cool) setpoint are restored, except in the event of request/consent for machine operation in ACS for Anti-Legionnaire's Disease – see corresponding paragraph All considerations regarding the actions adopted during switchovers apply.

If normal operating mode is restored, *the* ACS valve / pump is switched off with the following actions:

- machine with ACS valve: the ACS valve is switched off, the internal pump will continue to function if required for normal operating mode
- machine with ACS pump: the internal pump is activated at the same time as the ACS pump is deactivated; to prevent flow switch alarms, it is necessary to re-enter the time AL14 Flow switch alarm bypass

22.1.1 Sanitary water heater in Heat/Cool mode *

* behaviour independent from mode

Sanitary water heat regulation occurs on the actual ACS setpoint, with • fixed differential AS07 - ACS heater differential

hysteresis AS06 - ACS heater hysteresis, as shown in the figure

The analogue input used for regulation is exclusively the sanitary water temperature Once enabled, the ACS heater is independent (setpoint differential aside, it does not influence and is not influenced by the machine's other regulators, and the concepts relating to ACS consent do not apply to it)

Differential AS07 is cancelled if the unit is in Heat Pump Lock

22.2 Sanitary Water, Cool mode

Control sensor

In the event of an **ACS heating** request, the machine <u>switches temporarily from Chiller to Heat Pump</u> (for Heat Pump operation see HEAT Mode), and remains in this mode until it is "disengaged", when normal Cool mode is restored, with actual Cool Setpoint.

Sanitary water temperature

In this case, special attention must be paid to the switchovers, since both the reversal valve (already discussed in the corresponding section) and the ACS valve / pump must respect the times indicated below:

Diagram	Par.	Mode Change	
Α	St05 different	COOL - ACS	
В	from 0	ACS - COOL	
С	C+05 - 0	COOL - ACS	
D	5105 = 0	ACS - COOL	

Par.	Description	
St05 different from 0	Reversal valve switching delay	
CP20	Minimum off/on for same compressor	
CP23	Minimum on/on time for same compressor	

Par.	Description
CP24	Minimum off/off time for different compressors

The switchover occurs with the following measures:

- machine with ACS valve: the ACS valve is activated after the time St05 Reversal valve switching delay from the valve switchover (to switch-on of the first compressor, unless other safety timings further delay said compressor), without switching off the internal pump. If in normal mode the compressors are switched off, the internal exchanger water pump can also be switched off (e.g. operation enabled on request): in this case the pump will switch on at the same time as the ACS mode is activated, resulting in the delayed switch-on of the compressors due to the need for pre-pumping.
- machine with ACS pump: the ACS pump is activated after the time St05 Reversal valve switching delay from the valve switchover (to switch-on of the first compressor, unless other safety timings further delay said compressor): the internal pump is switched off at the same time; to prevent flow switch alarms it is necessary to re-enter the time AL14 Flow switch alarm bypass

Par.	Description	
St05 different from 0	Reversal valve switching delay	
CP20	Minimum off/on for same compressor	
CP23	Minimum on/on time for same compressor	
CP24	Minimum off/off time for different compressors	

The switchover occurs with the following actions:

- machine with ACS valve: the ACS valve is deactivated after the time St05 Reversal valve switching delay from the valve switchover (to switch-on of the first compressor, unless other safety timings further delay said compressor), without switching off the internal pump (this water pump may be switched off according to normal mode logic (e.g. operation enabled on request and compressors off).
- machine with ACS pump:: the internal exchange pump is activated after the time St05 Reversal valve switching delay from the valve switchover (to switch-on of the first compressor, unless other safety timings further delay said compressor), the ACS is switched off at the same time; to prevent flow switch alarms it is necessary to reset the time AL14 - Flow switch alarm bypass.

22.2.1 Dynamic ACS setpoint

The Dynamic ACS Setpoint function consists of modifying the *actual* ACS setpoint according to the system's thermal efficiency.

In fact, it may occur that (e.g. due to incorrect dimensioning of the system) the machine never manages to reach the actual ACS setpoint.

Based on previous considerations, in this case the machine would exit ACS mode either due to timeout expired (AS09 - ACS maximum activation time) or due to Heat control setpoint reached (AS01 + AS05).

The Dynamic ACS Setpoint function calculates and updates the maximum sanitary water temperature which the system can achieve under those particular conditions. In this way, the system is in any case "guaranteed" to exit from ACS mode due to attainment of the ACS Setpoint.

Enabling

This function is *enabled* by setting parameter **AS11 - ACS setpoint dynamic constant** to a value different from zero. You must also configure all of the following analogue inputs as:

- water delivery temperature.
- water return temperature.
- ACS temperature

The Dynamic ACS Setpoint function will calculate the new ACS setpoint as the minimum value between

- Actual Setpoint
- (*) ACS maximum water temperature achievable as a function of the system
- Where (*) is a function of the parameters
- AS11 ACS setpoint dynamic constant

AS12 - ACS system maximum temperature

22.3 Sanitary water regulation, AS mode

During operation in Heat or Cool mode, the controller/machine (heat pump) meet ACS (or ACS for AL) heating needs if there is a request and provided the necessary conditions are met, otherwise they meet system needs (Heat or Cool).

AS mode is useful in the event that (e.g. due to the current season or the type of system) <u>it is not necessary</u> to meet system needs. In other words in AS mode, the controller/machine (heat pump) are only activated if there is a need for ACS (or ACS for AL) heating, according to the same process as that described previously, otherwise there is no actuation.

The above indications also apply to defrost (must be managed as normal!).

22.4 Anti-Legionnaire's Disease

The Anti-Legionnaire's Disease function eliminates Legionnaire's disease bacteria, which reside in water sources; these bacteria are typically destroyed if the water temperature rises above 60°C for a certain period of time.

Anti-Legionnaire's Disease period

An anti-legionnaire's disease period can be activated on each day of the week with a configurable start time and duration:

Description	Duration of event (0= disabled) Par.	Event (start) hour Par.	Event (start) minutes Par.	
day 1 (Monday)	AS25	AS26	AS27	
day 2 (Tuesday)	AS28	AS29	AS30	
day 3 (Wednesday)	AS31	AS32	AS33	
day 4 (Thursday)	AS34	AS35	AS36	
day 5 (Friday)	AS37	AS38	AS39	
day 6 (Saturday)	AS40	AS41	AS42	
day 7 (Sunday)	AS43	AS44	AS45	

Note.

The Anti-Legionnaire's disease period (duration of event) must be of suitable length, otherwise there is the risk that **AS20** - **ACS setpoint for anti-legionnaire's disease** is never reached. If so an Er48 Anti-legionnaires alarm will raise up. The automatic alarm reset when the setpoint will be reached.

ACS setpoint for anti-legionnaire's disease

Regulation always occurs on the ACS setpoint for anti-legionnaire's disease AS20

ACS consent for anti-legionnaire's disease

In the same way as for the "normal" ACS regulator, the **request/consent** concept applies to **machine operation in ACS for Anti-Legionnaire's Disease**. Consent may be given (with resulting switchover from normal mode, or from ACS mode, to the mode determined by the ACS regulator for Anti-Legionnaire's disease) *if and only if all* of the follow conditions are satisfied:

- Anti-Legionnaire's disease period in progress*
- *example: Saturday 22.30. AS40 different from 0; AS41 = 22, AS42 = 0
- ACS setpoint for Anti-Legionnaire's Disease not reached (a function of the temperature of the ACS accumulator
 See diagram A
- the time AS23 ACS minimum deactivation/activation time for anti-legionnaire's disease has elapsed

This request, which was described above, <u>takes priority</u> over the "normal" **ACS heating request**.

AS22 - Maximum ACS setpoint for anti-legionnaire's disease It is possible to limit the maximum and minimum configuration values of			
Control sensor	ACS water temperature		

Notes

Consent is not subject to compliance with safety times*, since the aim is to bring the ACS to the temperature specified for Anti-Legionnaire's Disease, with priority over everything else.

*times controlled by defining Anti-Legionnaire's disease periods using parameters AS25...AS45

Typically AS20 - ACS setpoint for anti-legionnaire's disease > AS01 - ACS setpoint which means that the machine will switch to managing ACS heating for Anti-Legionnaire's Disease as soon as the Anti-Legionnaire's Disease period starts (all the more so if the machine was in Cool mode).

Regulation

HEAT

the machine operates in much the same way as for the ACS case, except that a different setpoint is adopted: in the event of a request for ACS heating for Anti-Legionnaire's disease:

- the machine remains in Heat Pump mode (and maintains the same control sensor that it uses in normal Heat mode) but modifies the control setpoint from Actual Heat Setpoint to AS20 ACS setpoint for antilegionnaire's disease with the same AS05 - ACS disengage setpoint differential
 - the ACS valve / pump is activated (or remains active) with the same actions as those indicated in the ACS case.

COOL

the machine operates in a similar way, it must switch from chiller to PdC and vice versa.

All considerations made with regard to actions adopted during switchovers apply.

ACS Disengage for Anti-Legionnaire's Disease

Once the machine has been "engaged" to heat sanitary water for Anti-Legionnaire's disease, it will continue to do so until *at least one* of the following conditions is satisfied:

- the ACS accumulator sensor reaches the ACS setpoint for Anti-Legionnaire's disease, parameter AS20 see figure B
- the Heat control sensor (which typically is not the ACS accumulator sensor) will reach a certain value, equal to the ACS Setpoint for Anti-Legionnaire's Disease plus a specifiable differential, which takes account of the temperature difference that may exist between the ACS accumulator and the position of the Heat control sensor, parameter AS05 - see figure C
- the Anti-Legionnaire's Disease period is finished

when normal mode and the actual Heat (or Cool) setpoint are restored, except in the event of request/consent for machine operation in ACS mode, for which the machine's behaviour has already been described in detail. All considerations made with regard to actions adopted during switchovers apply.

Note. Once the request for ACS heating for Anti-Legionnaire's Disease is exhausted, typically the conditions for having an ACS heating request are not satisfied, but this may occur if the Anti-Legionnaire's Disease period has a limited duration. In which case, normal mode will not be restored but the machine will operate in ACS mode, for which the machine's behaviour has already been described in detail.

Diagram	Par.	Description		
С	AS05	ACS disengage setpoint differential		
B-C	AS20	ACS setpoint for anti-legionnaire's disease		
B-C	AS21-AS22	Note: with the parameters : AS21 - Minimum ACS setpoint for anti-legionnaire's disease AS22 - Maximum ACS setpoint for anti-legionnaire's disease it is possible to limit the maximum and minimum configuration values of AS20		
В	Control sensor	Sanitary water temperature		
С	Aln Control sensor	HEAT control sensor		

Note

•

Diagram C Case: if the Heat control sensor is disengaged (e.g. the sanitary water did not achieve the Anti-Legionnaire's Disease setpoint), the conditions for a new ACS consent for Anti-Legionnaire's Disease may immediately exist. In order to prevent the machine fluctuating between normal mode and ACS for Anti-Legionnaire's Disease mode, there must be a minimum ACS OFF-ON safety time for Anti-legionnaire's disease defined by parameter **AS23 - ACS minimum deactivation/activation time for anti-legionnaire's disease**

22.4.1 ACS Heater for Anti-Legionnaire's Disease

The ACS heater is regulated in the same way as described for ACS heating, except that: • the setpoint adopted is AS20 - ACS setpoint for anti-legionnaire's disease

Differential AS07 is cancelled if the unit is in Heat Pump Lock

-	
AS06	ACS heater hysteresis (for anti-legionnaire's disease)
AS07	ACS heater differential
AS20	ACS setpoint for anti-legionnaire's disease
Control sensor	ACS water temperature

22.5 Sanitary Water Antifreeze

In specific situations (e.g. machine in standby) it is necessary to guard against the risk of the ACS water freezing. For this purpose, <u>only the ACS heater</u> (which must be present*) is used and the machine's operation mode is not modified (e.g. if in Cool, it remains in Cool).

* at least one digital input must be configured as ACS Electrical Heater by means of parameters CL90...CL97 / CL80-CL81 if digital / CL61...CL63 if digital = ±28.

The heater is regulated on parameter **AS08 - ACS antifreeze setpoint**, as shown in the figure below. The analogue input used for regulation is exclusively the sanitary water temperature

23 BLOCK HEAT PUMP (FOLDER PAR/HP)

The block heat pump function allows <u>energy savings</u> by disabling the heat pump in specific operating conditions, such as: • when the installation is not working efficiently due to the external temperature (Block heat pump by external

temperature)

 \bigcirc

• when on account of the particular electricity supply agreement it would be useful to disable the heat pump at peak charge times (Block heat pump with digital input)

Block heat pump 1 and 2 parameters table

Parameter	Description	External temperature	Differential Setpoint External Temperature	Parameter (analogue input)	
	Block 1				
HP00	Select heat pump 1 lock probe	X (=1)		x	
HP01	Block heat pump 1 setpoint	x		x	
HP02	Block heat pump 1 hysteresis	x		x	
HP03	Heat pump 1 lock maximum dynamic differential		x		
HP04	Block heat pump 1 dynamic differential setpoint		x		
HP05	Block heat pump 1 dynamic differential proportional band		x		
Block 2					
HP10	Select probe for block heat pump 2	X (=1)		x	
HP11	Block heat pump 2 setpoint	x		x	
HP12	Block heat pump 2 hysteresis	x		x	

If the external temperature is too low, heat pump performance will not be acceptable; the following are thus available:

Block heat pump based on external temperature

Block heat pump based on external temperature

• set a set point (HP01 / HP11) below which the heat pump will be disabled.

Block heat pump

Block heat pump based on regulation temperature

based on regulation temperature

- set a set point (HP01 / HP11) above which the heat pump will be disabled.
- Set the parameters HP00 / HP10 Select probe for block heat pump 1 / 2 > 1

Value Probe Mode No probe (block pump disabled) 0 Heating 1 External temperature 2 Internal exchanger water/air inlet temperature Cooling Internal exchanger water/air outlet temperature Cooling 3 4 Circuit 1 and 2 internal exchanger water outlet average temperature Cooling 5 Recovery exchanger inlet water temperature Cooling (or external exchanger) 6 Recovery exchanger water outlet temperature Cooling (or external exchanger) Circuit 1 and 2 external exchanger average temperature Cooling 7

Note: The Economy LED illuminates with a steady light on the display to indicate heat pump lock (set **UI07** - **Configuration of Economy LED** = 2)

23.1.1 Block heat pump 1 - setpoint

It is useful to be able to vary the block heat pump temperature according to the external temperature. This regulator linearly compensates the setpoint for the block heat pump function with a positive or negative differential value according to the external temperature.

The real setpoint for the block function is calculated by *adding* this dynamic differential to the value of parameter **HP01 - Block heat pump 1 setpoint**

Enabling

The regulator is enabled by setting parameter HP03 - Heat pump 1 lock maximum dynamic differential $\neq 0$. Furthermore, an analogue input must be configured as external temperature.

23.1.2 Block heat pump from digital input

If a digital input is configured as "Block heat pump" or CL40..CL45 / CL50..CL54=±20, then when it is activated, the heat pump will be deactivated.

24 POWER LIMITATION (FOLDER PAR/PL)

Power limitation parameters can be viewed and set in folder PL (see User Interface and Parameters chapters)

24.1 Operating modes

The power limitation function:

- protects the machine from high and low temperature situations when used with the temperature control probe;
- protects the machine from high pressure situations, when used with the high pressure probe;
- protects the machine from low pressure situations, when used with the low pressure probe;
- prevents the machine from running at a low efficiency level, when used with the external temperature.

Enabling

- Power limitation on external temperature * is enabled by parameter (PL00 Proportional band for power limitation on external temperature ≠ 0)
- Power limitation on **temperature** * is enabled by parameter (**PL10** Proportional band for power limitation on water/air temperature ≠ **0**)
- Power limitation on **pressure **** is enabled by parameter (**PL20** Proportional band for power limitation on pressure ≠ **0**)

* The external temperature and temperature power limitation act on the power steps independently of the circuits.

** In the case of machines with two circuits, power limitation is controlled on each circuit separately, as a function of their parameters.

General conditions of operation

Function active in Cool/Heat mode.

- 1. In **Off** the power limitation function is disabled.
- 2. In **Standby** the power limitation function is disabled.
- 3. In **On** power limitation acts by switching off the power steps in observance of the set safety timings. The same applies to their turning back on when returning from limitation.
 - Note: when limitation is active, no special message indicates this on the display
 - **Note**: if the control input is not configured or in error, the <u>individual</u> power limitation controllers are disabled. Apart from probe errors, in this situation there is no special <u>indication on the display</u>

Parameter	Parameter	Description	See dia	agram
COOL	HEAT		COOL	HEAT
PI	-00	Power limitation on external temperature proportional band External SETPOINT. COOL temperature		
PL01	PL02	External temperature setpoint for power limitation in Cool/Heat. External SETPOINT. HEAT temperature	Α Α'	B B'
PI	.11	Select probe for power limitation on water/air temperature	See table, pa	rameter PL11
PI	.12	High water temperature setpoint for power limitation PL12 High temperature SETPOINT	C	:
PI	.13	Low water temperature setpoint for power limitation Low temperature SETPOINT	D	
PI	.20	Power limitation on pressure proportional band		
PI	.21	High pressure setpoint for power limitation High Pressure SETPOINT	E E'	E"
PI	.22	Low pressure setpoint for power limitation Low Pressure SETPOINT	F F' F"	

Table, parameter PL11

Value	Probe
0	No probe (regulator disabled)
1	Internal exchanger water/air inlet temperature
2	Internal exchanger water/air outlet temperature
3	Circuit 1 and 2 internal exchanger water outlet average temperature
4	Recovery (or external) exchanger inlet water temperature
5	Recovery (or external) exchanger water outlet temperature
6	Circuit 1 and 2 external exchanger average temperature

Power limitation - 2 compressors

Diagrams A' B' E' F' F' represent the inhibition/enabling of two power steps (two compressor machine or power stage compressor);

The pressure or temperature interval between inhibition/enabling of one step and the next depends on the proportional band and the number of resources present in the circuit. The switching on/off of steps respects the operating logic set

Power limitation - 4 compressors

The external temperature and temperature power limitation act on the power steps independently of the circuits.

24.2 Power limitation - by external temperature (Cool and Heat)

24.3 Power limitation - by temperature (Cool and Heat)

Example of power limitation on temperature in a 4 step machine,

24.4 Power limitation - by high pressure probe (Cool and Heat)

Example of power limitation on high pressure in a 4 step/1 circuit machine

24.5 Power limitation - by low pressure probe (Cool and Heat)

24.6 Power limitation to 50%

Function enabled by configuring:

a digital input as 50% power limitation or by setting one of parameters CL40...CL45 = ± 21 or an analogue input when configured as digital input CL46...CL54 = ± 21 ;

Activating the digital input halves the availability of power steps, thus reducing energy consumption.

Power limitation to 50% is independent of the forced power stages described above. The limitations act in parallel, and the number of steps limited is the maximum of the two limitation functions.

With the SBW600 this results in a large number of possible situations: <u>the first column</u> shows the power steps *normally* available (without alarms or blocks, a value which depends exclusively on how the SBW600 is *configured*, not on the particular situation at any given time), while the second column shows the residual power steps with 50% power limitation active.

Number of power steps configured	Number of power steps available with <i>limitation to 50%</i> active	Notes
1	1	No effect
2	1	
3	2	
4	2	

By step we mean the power equivalent of a compressor power stage; the selection of the step is subordinate to the compressor controller mechanism (e.g. limitation to 50% makes no distinction between the power stages of different circuits).

In other words, the selection of which power step to turn off is made by the power stage on/off logic described in the chapter Compressors.

Example 1

SB device configured with two power steps, one per circuit (= one compressor per circuit): the activation of the input <u>has</u> <u>no effect</u> if only one compressor is running at the time; if the input stays active, it will affect any request for activation of the compressor of the other circuit (<u>it will impede it</u>).

Example 2

SB device configured with four power steps (one power stage compressor per circuit): activation of the input <u>has no effect</u> if only 1 or 2 power stages are active at the time (whether both or only one compressor is running), as for the previous example. It will have an effect if 3 or 4 power stages are active and 1 or 2 steps are turned off according to the compressor controller logic (either both compressors or only one remains active).

As fro other forms of limitation, the step off/on sequence is subordinate to the safety timings.

The function has no effect on other resources, and is not indicated on the display in any way.

25 TIME BANDS (FOLDER PAR/TE)

SBW600 allows for differentiated operation based on the time and the days of the week.

In fact, you can "define" time bands (e.g. in order to save energy at night, when less energy is requested by the system), by programming specific "profiles" and "events" throughout the course of the week.

You can define the hour and minute of each event, at which point a new "time band" triggers the activation of a specific mode (ON or STANDBY) and specific Cool / Heat setpoints.

The Time Band control parameters can be viewed and configured in the **tE** folder (see User interface section and Parameters section).

Enabling

The function may be enabled using parameter tE00 - Enable time band operation

		Parameter			Description	
					0	1
Enable	tE00	Enable operation	time	band	Time bands disabled	Time bands enabled

General conditions of operation

tE00 - Enable time band operation = 1

The RTC must be present (models /C)

The time must first be checked and if necessary adjusted (see paragraph on How to adjust the clock (CL), in the User Interface section (folder PAr/UI)

NOTE: This DOES NOT affect <u>the Heat/Cool mode change or even the system / ACS mode change</u> but only the Cool and Heat setpoint values defined by the indicated parameters, as well as the mode change from ON to STANDBY and vice versa.

The mode change procedure always occurs in accordance with the basic regulation times and rules.

Time Band Operation

Up to 3 profiles are available for each day of the week. They may be selected from the following parameters:

Parameter	Description	1	2	3
tE01	Select profile, day 1 (Monday)	Profile 1	Profile 2	Profile 3
tE02	Select profile, day 2 (Tuesday)	Profile 1	Profile 2	Profile 3
tE03	Select profile, day 3 (Wednesday)	Profile 1	Profile 2	Profile 3
tE04	Select profile, day 4 (Thursday)	Profile 1	Profile 2	Profile 3
tE05	Select profile, day 5 (Friday)	Profile 1	Profile 2	Profile 3
tE06	Select profile, day 6 (Saturday)	Profile 1	Profile 2	Profile 3
tE07	Select profile, day 7 (Sunday)	Profile 1	Profile 2	Profile 3

Up to 4 events can be associated with each profile – see the following table:

Description	Description	Profile 1	Profile 2	Profile 3
		tE10tE15	tE38tE50	tE66tE71
EVENT 1	Hour / Minutes	tE10tE11	tE38tE39	tE66tE67
	ON/Standby operating mode	tE12	tE40	tE68
	Cool setpoint	tE13	tE41	tE69
	Heat setpoint	tE14	tE42	tE70
	ACS setpoint	tE15	tE43	tE71
		tE17tE22	tE45tE50	tE73tE78
	Hour / Minutes	tE17tE18	tE45tE46	tE73tE74
EVENT 2	ON/Standby operating mode	tE19	tE47	tE75
	Cool setpoint	tE20	tE48	tE76
	Heat setpoint	tE21	tE49	tE77
	ACS setpoint	tE22	tE50	tE78
		tE24tE29	tE52tE57	tE80tE85
	Hour / Minutes	tE24tE25	tE52tE53	tE80tE81
EVENT 3	ON/Standby operating mode	tE26	tE54	tE82
	Cool setpoint	tE27	tE55	tE83
	Heat setpoint	tE28	tE56	tE84
	ACS setpoint	tE29	tE57	tE85
		tE31tE36	tE59tE64	tE87tE92
	Hour / Minutes	tE31tE32	tE59tE60	tE87tE88
EVENT 4	ON/Standby operating mode	tE33	tE61	tE89
	Cool setpoint	tE34	tE62	tE90
	ACS setpoint	tE36	tE64	tE92

ACS = Domestic hot water Each event will have a start time defined by 2 parameters event start hour event start minute operating mode ΟN Standby

SBW600 will enter ON or standby when the time coincides with the start of the time band

Cool mode temperature controller setpoint Heat mode temperature controller setpoint

Sanitary Water setpoint

The Cool mode setpoint will be active with SBW600 in Cool mode when the time coincides with the predefined event (start of the time band).

Similarly, the Heat mode setpoint will be active with SBW600 in Heat mode when the time coincides with the start of the time band

NOTE: the SBW600 device does NOT change mode but will use the setpoints indicated if in Cool/Heat mode

	IZO ALAKIMIS AIND DIAGIN		FAN/ALI				
Alarms	"Energy SBA600" can execute complete diagnostics of the plant and signal a series of alarms.						
	Parameters for alarm activation ar AL (parameters AL00AL82) (se	d resetting can be vie e User Interface and P	wed and configur arameters section	ed in folder).			
Automatic reset	Automatic reset For automatic reset alarms, norma	al operation is restored	l as soon as the ca	ause of the alarm h	as been removed.		
Manual reset	Manual reset Alarms can be manually reset by p Normal operation can only be reso • by pressing a key on the • Only if the cause of the	pressing and releasing t et e instrument keyboard alarm has been remov	the [UP + DOWN] and ved.	keys			
-	Alarm acknowledgment Alarms can be acknowledged by p NOTE: acknowledging an alarm from fixed to flashing.	ressing any key. I has no effect on th	ie alarm genera	ted other than or	1 the alarm LED, which goes		
	An alarm has two effects: • It blocks the services concerned • Message on display alternates with a message on the main display						
	The next two sections summarize Alarm code and alarm parameters	alarms grouped by typ are in bold (folder PA	e (digital or analo r/AL)	ogue).			
	For some alarms, the signal can be excluded for a preset interval, set in the relative parameter.						
	Number of trips The number of interventions per are counted	sampling period is de	fined in paramete	er AL00 – Time int	erval in which alarm events		
Number of trips	For some alarms, the number of events that occur are counted: if, in a period of time defined in AL00 a threshold set in a parameter is exceeded, the alarm changes from automatic to manual reset.						
	Alarms are counted every AL00 /32 (minutes) = sampling time. AL00 and hence also AL00/32 is expressed in minutes.						
	Example AL10-Circuit 1 high pressure alarm: if a number of events equivalent to AL10 is set, in order for the alarm to switch from automatic reset to manual reset the events must reach the number set by AL10 .						
	switch from automatic reset to ma						
	Example AL10=3						
	Example AL10=3	AU	ТО	<u>N</u>			
	Example AL10=3 Counter	AU 0 1 	2 	3=AL10			
	Example AL10=3 Counter ON Alarm			3=AL10			
	Example AL10=3 Counter Alarm OFI			3=AL10			
	Example AL10=3 Counter Alarm OFI 1 Events 0			3=AL10			
	Example AL10=3 Counter Alarm OFI 1 Events 0	$\begin{array}{c c} & AU \\ 0 & 1 $	TO 2 2 1 1 0 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	3=AL10			
	Example AL10=3 Counter Alarm OFI Events 0 Sam	AU O I I I I I I I I I I I I I	TO 2 1 event	3=AL10			
	Example AL10=3 Counter Alarm OFI Events 0 Sam	AU	TO 2 1 event 2 1 event 2 2 2 2 2 2 2 2 2 2 2 2 2	3=AL10	→ Time		
	Example AL10=3 Counter ON Alarm OFI Events 0 Sam	AU 0 1 7 1 1 event 1 e pling AL00/32 AL0	TO 2 1 event 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2	3=AL10	Time		
	Example AL10=3 Counter Alarm OFI I Events 0 Sam A: automatic reset Sampl M: manual reset Time:	AU 0 1 1 event 1 e pling AU	TO 2 1 event 2 2 2 2 2 2 2 2 2 2 2 2 2	3=AL10	Time Event =No. Events 1 2		

if during the sample time **AL10**/32 several alarm events of the same type occur (e.g. **High pressure alarm circuit 1**), only 1 event will be counted If the alarm condition is active for several sample times, only 1 event is counted. If the alarm event is active for a period greater than **AL00**, **the counter resets to zero**.

.

•
Digital alarms

26.1.1 Digital alarms

Alarm code	Name of alarm	Bypass activation event	Bypass time	Automatic alarm activation time	Manual alarm activation manual	Exit alarm deactivation time	Number of interventions per sample time
E001	Circuit 1 digital high pressure alarm	None	not present	not present	not present	not present	AL10
E002	Circuit 2 digital high pressure alarm	None	not present	not present	not present	not present	AL10
E005	Circuit 1 digital low pressure alarm	Circuit compressor activated or reversal of 4-way valve (NOTE 1)	AL11	not present	not present	not present	AL12
E006	Circuit 2 digital low pressure alarm	Circuit compressor activated or reversal of 4-way valve (NOTE 1)	AL11	not present	not present	not present	AL12
E020 (NOTE 2)	Primary circuit flow switch alarm	Internal circuit pump activation (One of the two pumps)	AL14	AL15	AL16	AL15	not present
E025 (NOTE 3)	Primary circuit pump thermal switch alarm	External circuit pump activation	AL17	AL18	AL19	AL18	not present
E010	Compressor 1 thermal switch	Compressor 1 switched on	AL20	not present	not present	not present	AL21
E011	Compressor 2 thermal switch	Compressor 2 switched on	AL20	not present	not present	not present	AL21
E012	Compressor 3 thermal switch	Compressor 3 switched on	AL20	not present	not present	not present	AL21
E013	Compressor 4 thermal switch	Compressor 4 switched on	AL20	not present	not present	not present	AL21
E015 (NOTE 2)	Compressor 1 oil pressure switch	Compressor 1 switched on	AL22	not present	not present	Not present	AL23
E016 (NOTE 2)	Compressor 2 oil pressure switch	Compressor 2 switched on	AL22	not present	not present	Not present	AL23
E017 (NOTE 2)	Compressor 3 oil pressure switch	Compressor 3 switched on	AL22	not present	not present	Not present	AL23
E018 (NOTE 2)	Compressor 4 oil pressure switch	Compressor 4 switched on	AL22	not present	not present	Not present	AL23
Er40	Internal exchanger fan thermal switch	None	not present	not present	not present	Not present	AL24
Er41	External exchanger fan thermal switch Circuit 1	None	not present	not present	not present	Not present	AL25
Er42	External exchanger fan thermal switch Circuit 2	None	not present	not present	not present	Not present	AL25
E021	Primary circuit pump 1 thermal switch	None	not present	Not present	not present	Not present	AL26
E022	Primary circuit pump 2 thermal switch	None	not present	Not present	not present	Not present	AL26
E026	Disposable circuit pump thermal switch	None	not present	Not present	not present	Not present	AL27
E050	Primary exchanger electric heater 1 thermal switch	None	Not present	Not present	not present	Not present	not present
E051	Primary exchanger electric heater 2 thermal switch	None	Not present	Not present	not present	Not present	not present
E056	Auxiliary output alarm	None	Not present	Not present	not present	Not present	not present

(NOTE 1) The bypass is activated by the reversal of the 4-way valve only if at least one compressor is on

(NOTE 2) The alarm is enabled only if the associated resource (e.g. a given compressor or pump) is active

(NOTE 3) The alarm is enabled only if the associated resource (e.g. specific compressor or specific pump) is active only in heating mode.

26.1.1.1 Flow switch alarm

Management of the digital flow switch alarms E020 & E025 is different from that of the other digital alarms: the alarm events are not considered, instead, only the activation time of the digital input is taken into account. See the following examples Note. The external circuit flow switch alarm is not active in Cool.

Analogue alarms

26.1.2 Analogue alarms

NOTES

(NOTE 1) If N° trips = 1, the alarm is always manual reset type. (NOTE 2) Alarm bypass is active in heating mode only.

Alarm code	Name of alarm	Bypass activation event	Bypass time	SET activation	Hysteresis	Automatic alarm time (NOTE 1)	N° of trips	Regulation probe
E003	Circuit 1 analogue high pressure alarm	None	None	AL40	AL41	Not present	AL42	High pressure probe Circuit 1
E004	Circuit 2 analogue high pressure alarm None		None	AL40	AL41	Not present	AL42	High pressure probe Circuit 2
E007	Circuit 1 analogue low high pressure alarm	A circuit 1 compressor is switched on or reversal of the 4-way valve	AL43	Al44	AL45	Not present	AL46	Low pressure probe Circuit 1
E008	Circuit 2 analogue low pressure alarm	A circuit 1 compressor switched on or reversal of the 4-way valve	AL43	Al44	AL45	Not present	AL46	Low pressure probe Circuit 2
E030	Primary circuit antifreeze alarm	On/Off (local or remote), input in heat mode (NOTE 2)	AL50	AL51	AL52	Not present	A53	Internal exchanger water/air outlet temperature
E031	Disposable circuit antifreeze alarm	On/Off (local or remote), input in heat mode (NOTE 2)	AL54	AL55	AL56	Not present	A57	External exchanger outlet water temperature
E035	High temperature alarm	None	None	AL47	AL48	AL49	Automatic reset	Internal exchanger water/air outlet temperature

26.1.3 Alarms Table

- ٠
- The indication is composed of a code type "EOnn" (where nn is a 2-digit number identifying the alarm type, e.g.: E000, E025, E039....). In the case of multiple simultaneous alarms only the one with the lowest code will be displayed (e.g. simultaneous alarms E000 and E001). The display will show only E000 alternated with the main display page ٠
- If the measurement on the main display is incorrect, in the event of an alarm, the alternate alarm code will alternate with "----". •

All possible alarms are listed in the table below with their respective codes and the relative utilities blocked:

Alarm table key

column										
Alarm	NOTE: the co	des are shown in ascending order (E000, E001)								
code	but there may	be some gaps (there is no E006)								
Name of										
alarm										
notes	CMP 1/2	Compressor 1/power step 2								
	PUMP 1/2	Pump 1/2								
alarm	D	digital								
	Α	input								
		See digital alarms table								
Reset	AUTO	automatic								
	OFF COMP1	OFF compressor 1								
	OFF COMP2	OFF compressor 2								
	OFF COMP3	OFF compressor 3								
	OFF COMP4	OFF compressor 4								
UTILITY	OFF (1)	When used for temperature control								
	OFF (2)	When used for temperature control and/or								
		antifreeze								
	OFF RES1	OFF heater 1								
	OFF RES2	OFF heater 2								

Alarms Table

Alarms Table

Alarm Code	Name of Alarm	Notes	Digital/Analogue	Alarm type	SANITARY WATER VALVE	SANITARY WATER HEATER	COMPRESSORS	EXTERNAL EXCHANGER FAN	RECIRCULATION FAN	INTERNAL CIRCUIT PUMP	EXTERNAL CIRCUIT PUMP	INTERNAL EXCHANGER HEATERS	EXTERNAL EXCHANGER HEATERS	OUTPUT AUXILIARY	BOILER
E000	General alarm		D	AUTO	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF
E001	Circuit 1 digital high pressure		D	Events			OFF (1)								
E002	Circuit 2 digital high pressure		D	Events			OFF (1)								
E003	Circuit 1 analogue high pressure		Α	Events			OFF (1)								

Alarm Code	Name of Alarm	Notes	Digital/Analogue	Alarm type	SANITARY WATER VALVE	SANITARY WATER HEATER	COMPRESSORS	EXTERNAL EXCHANGER FAN	RECIRCULATION FAN	INTERNAL CIRCUIT PUMP	EXTERNAL CIRCUIT PUMP	INTERNAL EXCHANGER HEATERS	EXTERNAL EXCHANGER HEATERS	OUTPUT AUXILIARY	BOILER
E004	Circuit 2 analogue high pressure		Α	Events			OFF (1)								
E005	Circuit 1 digital low pressure		D	Events			OFF (1)	OFF (2)	OFF						
E007	Circuit 1 analogue low pressure		Α	Events			OFF (1)	OFF (2)	OFF						
E008	Circuit 2 analogue low pressure		Α	Events			OFF (1)	OFF (2)	OFF						
E009	Machine low charge		Α	Events			OFF	OFF (2)	OFF						
E010	Compressor 1 thermal switch	CMP 1	D	Events			OFF COMP1								
E011	Compressor 2 thermal switch	CMP 2	D	Events			OFF COMP2								
E012	Compressor 3 thermal switch	CMP 3	D	Events			OFF COMP3								
E013	Compressor 4 thermal switch	CMP 4	D	Events			OFF COMP4								
E015	Compressor 1 oil pressure switch	CMP 1	D	Events			OFF COMP1								
E016	Compressor 2 oil pressure switch	CMP 2	D	Events			OFF COMP2								
E017	Compressor 3 oil pressure switch	CMP 3	D	Events			OFF COMP3								
E018	Compressor 4 oil pressure switch	CMP 4	D	Events			OFF COMP4								
E020	Primary circuit flow switch		D	Time	OFF for manual reset alarm		OFF	OFF		OFF for manual reset alarm		OFF			OFF
E021	Primary circuit pump 1 thermal switch	Pump 1	D	Events			OFF (3)	OFF (3)		OFF Pump 1		OFF (3)			OFF (3)
E022	Primary circuit pump 2 thermal switch	Pump 2	D	Events			OFF (3)	OFF (3)		OFF Pump 2		OFF (3)			OFF (3)
E025	Disposable circuit flow switch		D	Time			OFF	OFF if alarm with manual reset			OFF for manual reset alarm		OFF		
E026	Disposable circuit pump thermal switch		D	Events			OFF				OFF		OFF		
E030	Primary circuit antifreeze		Α	AUTO			OFF	OFF							
E031	Disposable circuit antifreeze		Α	AUTO			OFF	OFF							
E035	High temperature		Α	AUTO			OFF								

Alarm Code	Name of Alarm	Notes	Digital/Analogue	Alarm type	SANITARY WATER VALVE	SANITARY WATER HEATER	COMPRESSORS	EXTERNAL EXCHANGER FAN	RECIRCULATION FAN	INTERNAL CIRCUIT PUMP	EXTERNAL CIRCUIT PUMP	INTERNAL EXCHANGER HEATERS	EXTERNAL EXCHANGER HEATERS	OUTPUT AUXILIARY	BOILER
E040	Primary exchanger fan thermal switch		D	Events			OFF		OFF			OFF			
E041	Circuit 1 external exchanger fan thermal switch		D	Events			OFF (2)	OFF (1)					OFF (2)		
E042	Circuit 2 external exchanger fan thermal switch		D	Events			OFF (2)	OFF (1)					OFF (2)		
E045	Faulty clock			AUTO											
E046	Time lost			AUTO											
E047	LAN communication absent			AUTO											
E048	Anti-legionnaires alarm			AUTO											
E050	Primary exchanger electric heater 1 thermal switch		D	AUTO								OFF RES.1			
E051	Primary exchanger electric heater 2 thermal switch		D	AUTO								OFF RES.2			
E056	Auxiliary output alarm		D	AUTO										OFF	
E060	Primary exchanger water or air input temperature probe faulty			AUTO	See Probe	e Errors T	able								
E061	Primary exchanger water or air output temperature probe faulty, or Circuit 1 internal exchanger water outlet temperature probe faulty, or Circuit 2 internal exchanger water outlet temperature probe faulty			AUTO	See Probe Errors Table										
E062	Circuit 1 disposable exchanger faulty temperature probe, or Circuit 2 disposable exchanger faulty temperature probe			AUTO	See Probe Errors Table										
E063	Faulty disposable exchanger inlet water temperature probe			AUTO	See Probe Errors Table										
E064	Faulty disposable exchanger outlet water temperature probe			AUTO	Compared See Probe Errors Table										
E065	Internal room temperature probe faulty			AUTO	See Probe Errors Table										

Alarm Code	Name of Alarm	Notes	Digital/Analogue	Alarm type	SANITARY WATER VALVE	SANITARY WATER HEATER	COMPRESSORS	EXTERNAL EXCHANGER FAN	RECIRCULATION FAN	INTERNAL CIRCUIT PUMP	EXTERNAL CIRCUIT PUMP	INTERNAL EXCHANGER HEATERS	EXTERNAL EXCHANGER HEATERS	OUTPUT AUXILIARY	BOILER
E066	Sanitary water temperature probe faulty			AUTO	See Probe	e Errors Ta	able								
E067	Faulty display probe (temperature / pressure)			AUTO	See Probe	e Errors Ta	able				-				
E068	Faulty external temperature probe			AUTO											
E069	Faulty circuit 1 high pressure transducer, or Faulty circuit 2 high pressure transducer			AUTO	See Probe	e Errors Ta	able								
E070	Faulty circuit 1 low pressure transducer, and/or Faulty circuit 2 low pressure transducer			AUTO											
E071	Faulty compressor 1 discharge temperature probe			AUTO											
E073	Faulty dynamic setpoint input			AUTO											
E074	Faulty primary exchanger transducer circuit 1, and/or Faulty primary exchanger transducer circuit 2			AUTO	See Probe	e Errors Ta	able								
E075	Faulty disposable exchanger transducer circuit 1, and/or Faulty disposable exchanger transducer circuit 2 faulty			AUTO	See Probe	e Errors Ta	able								
E080	Configuration error			AUTO	OFF	OFF									
E081	Compressors operating hours exceeded (*)	СМР		Manual											
E085	Primary circuit pump operating hours exceeded (*)	PUMP		Manual											
E086	External circuit pump operating hours exceeded (*)	PUMP		Manual											
E090	Alarm log full warning			Manual											

(*)It will be possible to configure a digital output as Operating hours exceeded (value = ±29), which will be activated when at least one of these alarms trips

(1) the resources of the associated circuit are switched off

(2) the resources of the associated circuit are switched off if separate condensation, all resources if single condensation. In digital and analogue low pressure alarms, the external exchanger fans are switched off only if the alarm is of the manual reset type

(3) if the device is configured for two internal water pumps, the resources are switched off only if both thermal switch alarms (pump 1 and pump 2) are active

26.1.4 XVD driver alarms

The XVD alarms are managed locally by each driver and they are signalled and recorded by the master SBA controller The alarm codes are divided as follows

Alarm Code SBA	
E1xx	XVD1
E2xx	XVD2

Alarm Code	Name of Alarm	Type alarm	COMPRESSORS CIRCUIT 1	Code Preheat		Type alarm	COMPRESSORS CIRCUIT 2
E101	Input error dA/1 EEV1	AUTO		E201	Input error dA/1 EEV2	AUTO	
E102	Input error dA/2 EEV1	AUTO		E202	Input error dA/2 EEV2	AUTO	
E103	Input error dA/3 EEV1	AUTO		E203	Input error dA/3 EEV2	AUTO	
E104	Input error dA/4 EEV1	AUTO		E204	Input error dA/4 EEV2	AUTO	
E105	Valve EEV1 overheating probe (1rE1)	AUTO		E205	Valve EEV2 overheating probe (2rE1)	AUTO	
E106	Valve EEV1 saturation probe (1rE2)	AUTO		E206	Valve EEV2 saturation probe (2rE2)	AUTO	
E107	Alarm MOP XVD1	AUTO		E207	Alarm MOP XVD2	AUTO	
E108	XVD1 maximum valve opening alarm	AUTO		E208	XVD2 maximum valve opening alarm	AUTO	
E109	External alarm XVD1	AUTO		E209	External alarm XVD2	AUTO	
E110	NOLINK alarm XVD1	AUTO		E210	NOLINK alarm XVD2	AUTO	
E111	Motor protection alarm XVD1: current consumption too high	MANUAL	OFF	E211	Motor protection alarm XVD2: current consumption too high	MANUAL	OFF
E112	Motor protection alarm XVD1: winding 1 not connected	MANUAL	OFF	E212	Motor protection alarm XVD2: winding 1 not connected	MANUAL	OFF
E113	Motor protection alarm XVD1: winding 1 short-circuited	MANUAL	OFF	E213	Motor protection alarm XVD2: winding 1 short-circuited	MANUAL	OFF
E114	Motor protection alarm XVD1: winding 2 not connected	MANUAL	OFF	E214	Motor protection alarm XVD2: winding 2 not connected	MANUAL	OFF
E115	Motor protection alarm XVD1: winding 2 short-circuited	MANUAL	OFF	E215	Motor protection alarm XVD2: winding 2 short-circuited	MANUAL	OFF

NOTE switch off driver XVD and switch it on again for a manual reset

26.1.4.2 XVD driver probe errors

Label		Cause	Effect	Solution
E101 E201	Probe AI1 faulty	Measured values are outside the nominal range Regulating probe faulty/short-	Signal only if the relative backup probe is configured Al2 If this is not done	Check the probe wiring. Replace probe. when the error condition ceases,
		circuited/open	E106	regulation continues normally
E102 E202	Probe AI2 faulty		Same as E101 (probe dAi1)	
E103 E203	Probe AI3 faulty	Same as E101	Signal only if the relative backup probe is configured Al4 If this is not done see E105	
E104 E204	Probe 1AI4 faulty		Same as E101 (probe Ai3)	Same as E101
E105 E205	Evaporator outlet probe error (1rE1) Evaporator outlet probe error (2rE1)	Probes AI3 AI4 are both in error	%valve opening =dE16	
E106 E206	Gas saturation probe error (1rE2) Gas saturation probe error (2rE2)	Probes Al1, Al2 are both in error	Example dE50= 0 %valve opening =dE16 Example dE50= 1 Valve closed	

26.1.4.3 XVD driver alarms

Label		Cause	Effect	Solution
E107	Alarm MOP XVD1	Saturation temperature > MOP setpoint (dE52) for time greater than dE53	Only if dE50=1 Valve closed	Wait for return Saturation temperature < dE52
E108	XVD1 maximum valve opening alarm	% maximum opening of valve drE7 ≥ dE10 for time greater than dE13	Signal only	Wait for return % maximum opening of valve drE7 < dE10
E109	External alarm XVD1	Activation of digital input set as external alarm. See paragraph dL40/dL41=±3	Valve closed	Deactivation of digital input set as external alarm
E110	NOLINK alarm XVD1	Serial communication failure	Valve closed	Communication restore
E111	Motor protection alarm XVD1: current consumption too high	Excess current consumption	Valve closed	Check motor phases Check motor connection Check correct setting parameters dE01dE09. dE80
E112	Motor protection alarm XVD1: winding 1 disconnected	Winding 1 disconnection	Valve closed	Check winding 1 connection (terminals 6-7) Check correct setting parameters dE01dE09, dE80
E113	Motor protection alarm XVD1: winding 1 short-circuited	Winding 1 short- circuited	Valve closed	Check winding 1 connection (terminals 6-7) Check correct setting parameters dE01dE09, dE80
E114	Motor protection alarm XVD1: winding 2 disconnected	Winding 2 disconnection	Valve closed	Check winding 2 connection (terminals 4-5) Check correct setting parameters dE01dE09, dE80
E115	Motor protection alarm XVD1: winding 2 short-circuited	Winding 2 short- circuited	Valve closed	Check winding 2 connection (terminals 4-5) Check correct setting parameters dE01dE09, dE80

Probe errors table Probe errors table

Temperature probe error	Use	Lock machine	Notes
Water/air inlet temperature	Cool / Heat temperature controllers (proportional and differential)	YES	
Internal exchanger	Change over	YES	
	Recirculation fan	NO	The fan switches ON/OFF depending on the compressor state
	Internal circuit water pump, antifreeze and/or Internal circuit heater, antifreeze	YES	
	Antifreeze with heat pump	YES	
	Heat pump lock	YES	
	Power limitation	NO	
	Low refrigerant alarm	NO	The alarm is disabled
Water/air outlet temperature Internal exchanger		YES	
Water outlet temperature probe Internal exchanger circuit 1		YES	
Water outlet temperature probe Internal exchanger circuit 2		YES	
External exchanger temperature	Cool / Heat temperature controllers (proportional and differential)	YES	
circuit 1	External exchanger fans	NO	
and/or	Antifreeze with external circuit heater	YES	
External exchanger temperature	Auxiliary output	NO	
circuit 2	Defrost, input and output	NO	
	Heat pump lock and/or Power limitation	YES	
Water inlet temperature	Cool / Heat temperature controllers (proportional and differential)	YES	
external exchanger	Antifreeze with external circuit heater	YES	
	Auxiliary output	NO	
	Heat pump lock	YES	
	Power limitation	NO	
Water outlet temperature external exchanger		YES	
External temperature	Cool / Heat temperature regulators (differential)	YES	
	Change over	NO	
	Dynamic setpoint	NO	
	Internal circuit water pump, antifreeze	YES	
	Internal integrated heater, differential	NO	
	Auxiliary output	NO	
	External antifreeze heater	YES	
	Boiler, differential	NO	
	Heat pump lock	YES	
	Power limitation	NO	

Temperature probe error	Use	Lock machine	Notes
	Defrost, compensation		
Input for dynamic setpoint	Dynamic setpoint	NO	
Temperature display	Display	NO	
Sanitary water temperature	Sanitary water	NO	
Pressure probe error	Use	Lock machine	Notes
High pressure input circuit 1	External exchanger fans	VEC	
and/or	Defrost, input and output	TES	
High pressure input circuit 2	Power limitation		
Low pressure input circuit 1	it 1 External exchanger fans		
and/or	Defrost, input and output	TED	
Low pressure input circuit 2	Power limitation		
Input for dynamic setpoint	Dynamic setpoint	NO	
Internal exchanger pressure circuit 1			
and/or		YES	
Internal exchanger pressure circuit 2 External exchanger fans			
External exchanger pressure circuit 1	xchanger pressure circuit 1 External exchanger fans		
and/or Defrost input and output		YES	
External exchanger pressure circuit 2			
Pressure display	Display	NO	

26.2 Alarm log

The alarm log saved with the Device Manager software is a TXT format file; it can be read with any text editor and it can also be imported into Microsoft Excel® for clearer comprehension.

Guidelines for correct interpretation are provided below:

- Line 1: heading with name of model of Device Manager utilised to download data from the device or from MFK.
- Line 2: date and time of data download procedure.
- Line 3: column headings.

"Number" column:

incremental and circular index (FIFO); the alarm with index Eu00 is the most recent, while the Euxx index (max. xx: 98) indicates the oldest.

"Code" column:

lists the device alarm codes (as shown on the device display).

"Type" column:

indicates whether the alarm is reset automatically or manually.

The example below shows the recording of an alarm which changes from automatic reset to manual reset. The manual alarm reset was carried out from the functions menu, not by switching the device off and on again, because the alarm end date and time is also shown.

Eu56	E020	Reset Manual	State Closed	21.52	07-feb	21.52	07-feb
Eu57	E020	Reset Automatic	State Closed	21.52	07-feb	21.52	07-feb

"State" column:

indicates whether the alarm is still present (Open) or has been reset (Closed).

"Time Start" and "Date Start" columns: indicate the alarm start time and date.

"Time End" and "Date End" columns:

indicate the alarm end time and date.

A lack of data (as shown below) indicates that the alarm is still ongoing.

If the device is switched off with a manual reset alarm, the log will not record this alarm reset procedure.

Number	Code	Туре	State	Time	Date	Time	Date
				Start	Start	End	End
Eu00	Er68	Reset Automatic	State Open	20.20	04-mar	:	/
Eu01	Er62	Reset Automatic	State Open	20.20	04-mar	:	/
Eu02	Er61	Reset Automatic	State Open	20.20	04-mar	:	/

For manual reset alarms, the reset date and time correspond to the alarm reset and not to the change in the status of the digital input.

Eu56	E020	Reset Manual	State Closed	21.52	07-feb 21.52	07-feb
Eu57	E020	Reset Automatic	State Closed	21.52	07-feb 21.52	07-feb
Eu58	E020	Reset Manual	State Closed	21.51	07-feb 21.51	07-feb

27 PARAMETERS (PAR)

Parameter setting allows full configurability of Energy SBA600 and the drivers for XVD Open stepper valves; Parameters can be edited using:

- Multi Function key (MFK)
 - Keys on the SBA600 front panel / SKW22(L) terminal
 - PC and DeviceManager software

The following sections provide a detailed analysis of each parameter, divided into categories (folders).

Each folder is designated with a label showing 2 characters (example: CF, UI, etc.).

All parameters are described in the Parameters / visibility table The parameters for management of XVD Open drivers (folders 1L/1r/1F/1E, 2L/2r/2F/2E) are described in a specific table

UI parameters are also described in the paragraph User interface (UI) parameters

Visibility and Parameter Values

Energy SBA600 denotes a family of controllers.

There are 4+1 hardware models (see Appendix, Models section) with varying numbers of inputs and outputs.

The 4+1 hardware models are grouped into 3 DeviceManager models (version with 1 or 2 TRIACs and version with 5 relays). Depending on the model, some configuration parameters may not (usually) be visible and/or be of no significance given that the associated resource is not present.

Refer also to the following table:

			TCL1 TCE1	TCL2 TCE2	DOL6 DOE6
	Device Manager	Hardware			
	636	636	CL73-CL76-CL79 CE73-CE76-CE79	CL75-CL78-CL81 (AOL2) CE75-CE78-CE81 (AOE2)	
	646	646/C 646/C/S	CL73-CL76-CL79 CE73-CE76-CE79		//
Model	655	655/C 655/C/S	//	//	CL95 CE95

When not indicated otherwise, the parameter is always visible and editable, unless customized settings have been configured via serial.

N.B.: both parameters and folder visibility can be controlled (See Folder table).

If folder visibility is modified, the new setting will apply to all parameters in the folder.

27.1.1 Local I/O configuration parameters (CL) - Configuration Local

Table A Analogue Inputs Configuration

0	Input disabled	16	Temperature display
1	Water/air inlet temperature	17	NOT USED
	internal exchanger		
2	Water/air outlet temperature	18	NOT USED
	internal exchanger		
3	Water outlet temperature	19	NOT USED
	internal exchanger circuit 1		
4	Water outlet temperature	20	NOT USED
	internal exchanger circuit 2		
5	External exchanger temperature circuit 1	21	High pressure input circuit 1
6	External exchanger temperature circuit 2	22	High pressure input circuit 2
7	Water inlet temperature	23	Low pressure input circuit 1
	recovery (or external) exchanger		
8	Water outlet temperature	24	Low pressure input circuit 2
	recovery (or external) exchanger		
9	External temperature	25	Input for dynamic setpoint
10	Internal ambient temperature	26	Internal exchanger pressure circuit 1
11	Domestic hot water temperature	27	Internal exchanger pressure circuit 2
12	Compressor 1 discharge temperature	28	External exchanger pressure circuit 1
13	NOT USED	29	External exchanger pressure circuit 2
14	NOT USED	30	Pressure display
15	NOT USED		

Table B Digital Inputs ConfigurationPolarity is defined as indicated below:

	Valu	ue D	Descrip	tion		
	+ Posi	tive A	Active w	hen con	tact closed	
	- Neg	ative A	Active w	hen con	itact open	
0	Input disabled			±31	High pressure p	ressure switch C2
±1	Remote STD-BY			±32	Low pressure pr	essure switch C1
±2	Remote off			±33	Low pressure pr	essure switch C2
±3	Remote Summer/Winter			±34	Compressor 1 o	il pressure switch
±4	Capacity step 1 request			±35	Compressor 2 o	il pressure switch
±5	Capacity step 2 request			±36	Compressor 3 o	il pressure switch
±6	Capacity step 3 request			±37	Compressor 4 o	il pressure switch
±7	Capacity step 4 request			±38	NOT USED	
±8	Digital input heat step 1 request			±39	External exchan	ger fan thermal switch C1
±9	Digital input heat step 2 request			±40	External exchan	ger fan thermal switch C2
±10	Digital input heat step 3 request			±41	Internal exchan	ger fan thermal switch
±11	Digital input heat step 4 request			±42	NOT USED	
±12	Digital input cool step 1 request			±43	Compressor 1 t	nermal witch
±13	Digital input cool step 2 request			±44	Compressor 2 tl	nermal switch
±14	Digital input cool step 3 request			±45	Compressor 3 tl	nermal switch
±15	Digital input cool step 4 request			±46	Compressor 4 t	nermal switch
±16	Block compressor 1			±47	Internal circuit	oump 1 thermal switch
±17	Block compressor 2			±48	Internal circuit	oump 2 thermal switch
±18	Block compressor 3			±49	External circuit	pump thermal switch
±19	Block compressor 4			±50	Internal exchange	ger electric heater 1 thermal switch
±20	Heat pump lock			±51	Internal exchan	ger electric heater 2 thermal switch
±21	Power restricted to 50%			±52	Auxiliary output	: alarm
±22	Economy input			±53	NOT USED	
±23	NOT USED			±54	NOT USED	
±24	General alarm			±55	Primary circuit f	low switch
±25	End of defrost C1			±56	External circuit	flow switch (Recovery)
±26	End of defrost C2			±57	NOT USED	
±27	NOT USED			±58	Display	
±28	Remote AS					
±29	NOT USED					
±30	High pressure pressure switch C1					

NOTE: If more than one digital input in the table is configured with the same value, the function is activated when the input with the highest index is piloted.

Table C Digital Outputs Configuration

Polarity is defined as indicated below:

	Value	Description
+	Positive	Active when contact closed
-	Negative	Active when contact open

Value	Description	Туре	Value	Descriptio
0	Output disabled	Digital	±31	Preheat
±1	Compressor 1	Digital	±32	EEV 1 ON com
±2	Compressor 2	Digital	±33	EEV 2 ON comm
±β	Compressor 3	Digital	±34	Compressor 1 In
±4	Compressor 4	Digital	±35	NOT USED
±5	Reversal valve circuit 1	Digital	±36	NOT USED
±6	Reversal valve circuit 2	Digital	±37	NOT USED
±7	NOT USED	Digital	±38	NOT USED
±β	NOT USED	Digital	±39	NOT USED
±9	Domestic hot water valve	Digital	±40	NOT USED
±10	NOT USED	Digital	±41	NOT USED
±11	NOT USED	Digital	±42	NOT USED
±12	NOT USED	Digital	±43	NOT USED
±13	NOT USED	Digital	±44	NOT USED
±14	Internal circuit water pump 1	Digital	±45	NOT USED
±15	Internal circuit water pump 2	Digital	±46	NOT USED
±16	External circuit water pump	Digital	±47	NOT USED
±17	NOT USED	Digital	±48	NOT USED
±18	Recirculation fan	Digital	±49	NOT USED
±19	Fan external exchanger circuit 1	Digital	±50	NOT USED
±20	Fan external exchanger circuit 2	Digital	±51	NOT USED
±21	NOT USED	Digital	±52	NOT USED
±22	Auxiliary output conditional on	Digital	±53	NOT USED
	defrosting	0		
±23	Electric heater 1	Digital	±54	NOT USED
	internal exchanger	U U		
±24	Electric heater 2	Digital	±55	NOT USED
	internal exchanger	-		
±25	Electric heater	Digital	±56	Fan external exchanger
	external exchanger 1			circuit 1
±26	Electric heater	Digital	±57	Fan external exchanger
	external exchanger 2			circuit 2
±27	Auxiliary output	Digital	±58	Water heater
±28	Domestic Hot Water Electric Heater	Digital	±59	Modulating internal cir
_				water pump 1
±29	Running hours exceeded	Digital	±60	Modulating internal cir
				water pump 2
±β0	Water heater	Digital	±61	Analogue stage 1 fo
_				with Envelope control
			±62	Analogue stage 1 for c
			±63	Analogue stage 2 for Co

If multiple outputs have been configured to run the same resource, these outputs will be activated in parallel.

27.1.2 Configuration parameters for XVD driver 1 (1r / 1F / 1L / 1E)

27.1.3 Configuration parameters for XVD driver 2 (2r / 2F / 2L / 2E)

Parameters with prefix 1 are relative to driver XVD1 while those with prefix 2 concern XVD2. Exclusively parameters with prefix 1 are shown below; parameters with prefix 2 are identical. The table shows both parameters. The resources of the 2 XVD drivers can be configured for use by the base in the same way as an expansion.

27.1.4 User interface parameters (UI) – User Interface

Service LEDs table	LED symbo on display	LED SBW600 / LED SKW22 22L	Parameter SB600 / LED SKW22 22L	Default SBW600 SKW22 22	Default / SBW600 L		Default icon on front panel SBA600	
	-	LED 1 / 11 (first from left)	UI00 / UI30	50 / 50	Capacity step 1		1	
	-	LED 2 / 12	UI01 / UI31	51 / 51	Capacity step 2		2	
	-	LED 3 / 13	UI02 / UI32	14/0	Internal circuit wa	ter pump	V	
	-	LED 4 / 14	UI03 / UI33	16/0	External circuit wa	ater pump	\bigcirc	
	-	LED 5 / 15	UI04 /UI34	23 / 23	Internal exchange	r electric heater 1	2	
	-	LED 6 / 16	UI05 /UI35	9/0	Valve or DHW pur	mp	6	
	-	LED 7 / 17	UI06 /UI36	30 / 14	Water heater	_ r	0	
	LED symbo on display	LED SBW600	Parameter S	BA600			1 -	
		Economy LED	UI07=0 dS00=0	UI07=0 dS00=1	UI07=1 dS00=0		NOT enabled (LED off)	
)	Economy LED			UI07=1 dS00=1		Enabled (dynamic setpoint)	
	* the LED i not active See Outpu	s permanently on when i ts: configuration table v	n AS mode and with the follow	with heatin	g in progress, blinking ons:	when in AS mode ar	nd with heating	
	Value	Description						
	+50	Capacity step 1 output						
	±51	Capacity step 2 output			values used only for configuring the user interface LEDs, and associated with the capacity steps requested by the main temperature regulator			
	±52	Capacity step 3 output						
	±53	Capacity step 4 output			-			
	±70	internal pump 1 output	or or both					
	±71	external exchanger fan	circuit 1 output		Digital			
		or external exchanger fan or both	circuit 2 output		values used only for co	onfiguring the user ir	nterface LEDs	
	±72	internal exchanger elect or internal exchanger elect	tric heater 1 out tric heater 2 out	:put :put				
		or both						
	±73	external exchanger heat or external exchanger heat or both	ter 1 output ter 2 output					
	±74	circuit 1 heat pump loc or circuit 2 heat pump loc or both	k status k status					

UI10 Select main display

To select to view the main display

0	AiL analogue input 1	XVD1	20	Input 1rE1 (evaporator outlet temperature) XVD1
1	Analogue input AiL2		21	Input 1rE2 (saturation temperature) XVD1
2	Analogue input AiL3		22	Input 1rE3 (backup probe evaporator outlet temperature)
				XVD1
3	Analogue Input AiL4		23	Input 1rE4 (backup probe evaporator temperature) XVD1
4	Analogue input AiL5		24	Input 1rE5 (superheating) XVD1
5	Analogue Input 1 Terminal AIR1		25	Input 1rE6 (refrigerant pressure) XVD1
6	Analogue Input 2 Terminal AIR2		26	Input 1rE7 (valve opening percentage) XVD1
7	AiE Analogue input 1		27	Input 1SP4 (superheating current setpoint) XVD1
8	AiE Analogue input 2	XVD2	28	Input 2rE1 (evaporator outlet temperature) XVD2
9	AiE Analogue input 3		29	Input 2rE1 (saturation temperature) XVD2
10	AiE analogue input 4		30	Input 2rE3 (backup probe evaporator outlet temperature)
				XVD2
11	AiE analogue input 5		31	Input 2rE4 (backup probe evaporator outlet temperature)
				XVD2
12	Clock		32	Input 2rE5 (superheating) XVD2
13	Programmed setpoint		33	Input 2rE6 (refrigerant pressure) XVD2
14	Real Setpoint		34	Input 2rE7 (valve opening percentage) XVD2
15	Input 1AI1		35	Input 2SP4 (superheating current setpoint) XVD2
16	Input 1AI2		36	Clock
17	Input 1AI3		37	Programmed setpoint
18	Input 1AI4		38	Real Setpoint
19	Input 2AI1			

UI11 Select main display (terminal) SKW1

Selects the terminal main display* mode *Note: display with 2 and a half digits + sign Same as UI10

For convenience we will designate:

Display	Display A	Display B*
A 88:8.8 88:8.8	4-figure read-out For displaying time	Read-out with 2 and a half digits and +/- sign See parameter UI11

UI25 Setpoint edit function enable from main screen

Parameter allows you to enable Setpoint modification on the main display with the UP and DOWN keys

- 0 = Key not enabled for the function
- 1 = Key enabled for the function

Parameter	Key [press and hold]	Default icon on front panel	Parameter	Key [press and hold]	Default icon on front panel
UI20=1	[UP] = Domestic Hot Water / Manual defrost depending on model	₩/ <u>₩</u>	UI24=1	[Set] = edit SetPoint	No (set key)
UI21=1	[esc] = changeover	mode	Parameter	key (press and release)	Default icon on front panel
UI22=1	[set] = display	disp	UI25=1	UP / DOWN	No (UP and DOWN keys)
UI23=1	[DOWN] = Standby / Local ON/OFF according to model	∞			

27.2 Parameters / visibility table, folder visibility table and client table

The **tables below** list all information required to read, write and decode all accessible resources in the device. There are three tables:

- The parameters table lists all controller configuration parameters saved in the non-volatile memory, including visibility.
- The **folders** table lists all parameter folder visibility details.
- The client table includes all I/O and alarm status resources available in the volatile memory of the instrument.

Description of columns:

FOLDER This indicates the label of the folder containing the parameter in question.

LABEL This indicates the label used to display the **parameters** in the menu of the controller.

ADDR VAL PAR ADDRESS

The whole part represents the address of the MODBUS register containing the value of the resource to be read or written in the instrument. The value after the point indicates the position of the most significant data bit inside the register; if not indicated it is taken to be zero. This information is always provided when the register contains more than one information item, and it is necessary to distinguish which bits actually represent the data (the working size of the data indicated in the column DATA SIZE is also taken into consideration).

Given that the modbus registers have the size of one WORD (16 bit), the index number after the point can vary from 0 (least significant bit –LSb–) to 15 (most significant bit –MSb–).

Examples (in binary form the least significant bit is the first on the right):

VAL PAR ADDRESS	DATA SIZE	Value	Content of register	
8806	WORD	1350	1350	(0000010101000110)
8806	Byte	70	1350	(0000010101000110)
8806.8	Byte	5	1350	(0000010101000110)
8806.14	1 bits	0	1350	(0000010101000110)
8806.7	4 bits	10	1350	(0000010101000110)

Important: when the register contains more than one piece of data, the write procedure is as follows:

- Read current value of register
- Modify bits for the resource concerned
- Write register

VIS ADDR VAL PAR ADDRESS

The same as above. In this case, the MODBUS register address contains the visibility value of the parameter. By default all parameters have:

- Data size bit
- Range 0...3
- **Visibility 3
- U.M. num.

****Value** Significance

• Value 3 = parameter or folder always visible

- Value 2 =manufacturer level; these parameters can only be viewed by entering the manufacturer's password (see parameter UI18) (all parameters declared as always visible, parameters visible at the installation engineer level and manufacturer's level will be visible).
- Value 1 =**installer level**; these parameters can only be viewed by entering the installer's password (see parameter UI17) (all parameters declared as always visible and parameters visible at the installation engineer level).
- Value 0 = parameter or folder NOT visible.
- 1. Parameters and/or folders with a level of visibility <>3 (password-protected) will be visible only if the correct password is entered (installer or manufacturer) following this procedure:
- 2. Parameters and/or folders with a level of visibility = 3 are always visible even without a password: in this case, the following procedure is not necessary.

Examples (in binary form the least significant bit is the first on the right): **Default visibility:**

VAL PAR ADDRESS	DATA SIZE	Value	Content of register	
49481.6	2 bits	3	65535	(1111111111111111)
49482	2 bits	3	65535	(11111111111111)
49482.2	2 bits	3	65535	(11111111111111)
49482.4	2 bits	3	65535	(11111111111111)
49482.6	2 bits	3	65535	(11111111111111)

	Let's modify the visibi	lity of paramet	er CL04 (a	ddress 49482.6) from 3	t to 0:	
	Visibility modified	5				
	VAL PAR ADDRESS	DATA SIZE	Value	Content of register		
	49481.6	2 bits	0	16383	(00111111111111)	
RESET (Y/N)	Indicates whether the • Y=YES the o • N=NO the Example ALL configure SWITCHED OFF THE	device MUST device MUST b device DOES N ration paramet N BACK ON A	be reboote e reboote I OT need ers (folder GAIN AFT)	ed after the parameter d to save the change. to be rebooted after ch r CF) equal Y or the co ER THEY HAVE BEEN (has been changed. nanging the parameter ontroller, meaning the controller <u>MUST ALWAYS BE</u> CHANGED.	
R/W	Indicates if resources R The resource W The resource RW The resource	are read/write, te is read-only te is write-only te can be both	read-only	r or write-only: written to		
DATA SIZE	Indicates the size of tl WORD = 1 Byte = 8 "n" bit = 0	he data in bits. 6 bit bit 15 bit based	on the val	ue of "n"		
CPL	When the field indica with a sign. In other c To carry out the conv If the value If the value values)	tes "Y", the val ases the value ersion, proceed in the register in the register	ue read by is always p d as follow is betwee is betwee	y the register needs to ositive or null. 's: n 0 and 32.767, the res n 32.768 and 65.535, th	be converted because the value represents a number ult is the value itself (zero and positive values) he result is the value of the register – 65.536 (negative	
RANGE	Describes the interva parameters (indicated N.B. If the real value the limits have been o	al of values th in the parame is outside the hanged), <u>the li</u>	at can be ter label). permitteo mit that ha	e assigned to the para d limits for the parame <u>as been passed</u> and not	ameter. It can be correlated with other instrument eter (for example, because other parameters defining t the real value will be displayed.	
DEFAULT	Indicates the factory s 2 analogue outputs AC	setting for the s 01 AO2 PWM +	standard m 1 low volta	nodel of the instrument age analogue output A0	t. <u>Hardware model</u> SBW646/C with 4 relays + TRIAC + 3 is considered in this table.	
EXP	If = -1 the value reac DEFAULT columns usi Example: parameter C • The value r • The value r	by the registen ng the unit of r LO4 = 50.0. Col ead by the dev ead from the re	er is divide measurem lumn EXP ice /Device egister is 5	ed by 10 (value/10) to ent in the UM column, = -1: eManager is 50.0 500> 500/10 = 50.0	convert it to the values indicated in the RANGE and	
U.M.	Measurement unit for	values convert	ted accord	ling to the rules indicat	ed in the CPL and EXP columns.	

27.2.1 Parameters / visibility table

CF CF01 49169 49468.6 BYTE Belet COM protocol selection CCM (TTL) communication channel protocol: • 0 = Elwell; 1 = Modbus NOTE: 0 1 1 num. CF CF01 49169 49468.6 BYTE RW • Select COM protocol selection CCM (TTL) communication channel protocol: • 0 = Elwell protocol controller anality values valid from 0 to 1.4) CF21 = controller family values valid from 0 to 1.4) CF21 = controller family values valid from 0 to 1.4) CF21 = controller family values valid from 0 to 1.4) CF21 = controller family values valid from 0 to 1.4) CF21 = controller family values valid from 0 to 1.4) CF21 = controller family values valid from 0 to 1.4) CF21 = controller family values valid from 0 to 1.4) CF21 = controller family values valid from 0 to 1.4) CF21 = controller family values valid from 0 to 1.4) CF21 = controller family values valid from 0 to 1.4) CF21 = controller values from 0 to 1.4) CF21 = controller value from 0 to 1.4) CF21 = controller values from 0 to 1.4) CF21 = controller value from 0 to 1.4) CF21 = controller values from 0 to 1.4 CF21 = controller values from 0 to 1.4 CF220 baud CF22 = vonte 07 3 .	FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
CF CF20 49176 49470.4 BYTE RW C220-controller address C220-controller address of the controller and the pair are indicated in the following form 4751 represent the network address of the controller and the pair are indicated in the following form 4751 represent the network address of the controller and the pair are indicated in the following form 4751 represent the network address of the controller and the pair are indicated in the following form 47510° (where FF=CF21 and DD=CF20). 014 0 num. CF CF21 49170 49470.6 BYTE RW Revere See CF21 0140 0 num. CF CF30 49178 49471 BYTE RW Note 0 cereol is not included to cereol is not included to 12000 baud 1255 1 num. CF CF31 49179 49471.2 BYTE RW Note 0 cereol is not included to 12000 baud 07 3 num. CF CF31 49179 49471.4 BYTE RW Y Y 2-4800 baud to 3-53400 baud (maximum speed that can be set using DeviceManager software) 07 3 num. CF CF32 49180 49471.4 BYTE R Firmware	CF	CF01	49169	49468.6	BYTE			RW	 Select COM1 protocol Selection of COM1 (TTL) communication channel protocol: 0 = Eliwell; 1 = Modbus NOTE: If CF01=0, parameters CF20/CF21 should be configured If CF01=1, parameters CF30/CF31/CF32 should be configured 	0 1	1	num.
CF 4917 49470.6 BYTE Image: Control	CF	CF20	49176	49470.4	BYTE			RW	Eliwell protocol controller address CF20= address of the controller within the family (values valid from 0 to. 14) CF21 = controller family (values from 0 to 14). The two values CF20 and CF21 represent the network address of the controller and the pair are indicated in the following format "FF.DD" (where FF=CF21 and DD=CF20).	0 14	0	num.
CF CF30 49178 49471 BYTE RW Modbus protocol controller address 1 255 1 num. CF CF31 49179 49471.2 BYTE RW NOTE: 0 (zero) is not included 1 255 1 num. CF CF31 49179 49471.2 BYTE RW NOTE: 0 (zero) is not included 0 7 3 num. CF CF31 49179 49471.2 BYTE RW NW - 2-4800 baud - 2-115200 b	CF	CF21	49177	49470.6	BYTE			RW	Eliwell protocol controller family See CF21	0 14	0	num.
CF CF31 49179 49471.2 BYTE RW ···· Modbus protocol Baudrate ···· To modify the Modbus protocol baud ····· 1=2400 baud ····································	CF	CF30	49178	49471	BYTE			RW	Modbus protocol controller address NOTE: 0 (zero) is not included	1 255	1	num.
CF ZF32 49180 49471.4 BYTE RW * Modus protocol parity 1 = EVEN 2 = NONE 1 3	CF	CF31	49179	49471.2	BYTE			RW	 Modbus protocol Baudrate To modify the Modbus protocol baud rate 0=1200 baud 1=2400 baud 2=4800 baud 3=9600 baud 4=19200 baud 5=38400 baud (maximum speed that can be set using DeviceManager software) 6=57600 baud 7=115200 baud 	0 7	3	num.
CF CF43 NA NA BYTE R Firmware screen 0 999 0 999 0 num. CF CF44 NA NA BYTE R Firmware version 0 999 0 999 0 num. CF CF50 49360 49473.2 BYTE R Firmware version 0 1 1 num. CF CF60 16430 49473.4 WORD RV RTC present 0 = RTC not present; 1 = RTC present 0 10 1 num. CF CF60 16430 49473.4 WORD RW RTC present code 1 Parameter for the exclusive use of customers/users. The user can assign these parameters values that e.g. identify the type and/or model of the system, and its configuration etc. 0 999 0 num. CF CF61 16432 49473.6 WORD RW Client code 2 See CF60 0 999 0 num. CL CL00 49208 49438.6 BYTE RW NULL analogue input type • 0 = Probe not configured • 1 = DI • 2 = NTC 0 2 0 2 0 2 <td>CF</td> <td>CF32</td> <td>49180</td> <td>49471.4</td> <td>BYTE</td> <td></td> <td></td> <td>RW</td> <td> Modbus protocol parity 1 = EVEN 2 = NONE 3 = ODD </td> <td>1 3</td> <td>1</td> <td>num.</td>	CF	CF32	49180	49471.4	BYTE			RW	 Modbus protocol parity 1 = EVEN 2 = NONE 3 = ODD 	1 3	1	num.
CF CF44 NA NA BYTE R Firmware version 0 999 0 num. CF CF50 49360 49473.2 BYTE R RTC present 0 = RTC not present; 1 = RTC present 0 1 1 num. CF CF60 16430 49473.4 WORD RW RWP Parameter for the exclusive use of customers/users. The user can assign these parameters values that e.g. identify the type and/or model of the system, and its configuration etc. 0 999 0 num. CF CF61 16432 49473.6 WORD RW Client code 2 see CF60 See CF60 0 999 0 num. CL CL00 49208 49438.6 BYTE RW RWP Client code 2 see CF60 See CF60 0 2 0 2 0 num. CL CL00 49208 49438.6 BYTE RW RWP See CF60 0 2 0 2 0 num. CL CL01 49209 49439.8 BYTE RW AiL2 analogue input type See CL00 0 2	CF	CF43	NA	NA	BYTE			R	Firmware screen	0 999	0	num.
CF CF50 49360 49473.2 BYTE RW RTC present 0 = RTC not present; 1 = RTC present 0 1 1 num. CF CF60 16430 49473.4 WORD Parameter for the exclusive use of customers/users. The user can assign these parameters values that e.g. identify the type and/or model of the system, and its configuration etc. 0 999 0 num. CF CF61 16432 49473.6 WORD RW Client code 1 Parameter for the exclusive use of customers/users. The user can assign these parameters values that e.g. identify the type and/or model of the system, and its configuration etc. 0 999 0 num. CF CF61 16432 49473.6 WORD RW Client code 2 See CF60 0 0 999 0 num. CL L000 49208 49438.6 BYTE RW RW O = Probe not configured 0 = Probe not configured 0 = 2 = NTC 0 2 0 num. CL CL01 49209 49439.2 BYTE RW AiL2 analogue input type See CL00 0 2 0 2 0 num.	CF	CF44	NA	NA	BYTE			R	Firmware version	0 999	0	num.
CFLessLessLessLessClient code 1 Parameter for the exclusive use of customers/users. The user can assign these parameters values that e.g. identify the type and/or model of the system, and its configuration etc.D 999D	CF	CF50	49360	49473.2	BYTE			RW	RTC present 0 = RTC not present; 1 = RTC present	0 1	1	num.
CF 16432 49473.6 WORD RW Client code 2 See CF60 0999 0999 0999 0999 num. CL L00 49208 49438.6 BYTE RW · AiL1 analogue input type • 0 = Probe not configured • 1 = DI • 2 = NTC 02	CF	CF60	16430	49473.4	WORD			RW	Client code 1 Parameter for the exclusive use of customers/users. The user can assign these parameters values that e.g. identify the type and/or model of the system, and its configuration etc.	0 999	0	num.
CL 49208 49438.6 BYTE RW • AiL1 analogue input type • 0 = Probe not configured • 1 = DI • 2 = NTC 0 2 0 num. CL CL01 49209 49439 BYTE RW AiL2 analogue input type See CL00 0 2 0 num. CL CL02 49210 49439.2 BYTE RW • AiL3 analogue input type 0 6 0 6 0 num.	CF	CF61	16432	49473.6	WORD			RW	Client code 2 See CF60	0 999	0	num.
CL 49209 49439 BYTE RW AiL2 analogue input type See CL00 0 2 0 num. CL CL02 49210 49439.2 BYTE RW • AiL3 analogue input type 0 6 0 6 0 0 num.	CL	CL00	49208	49438.6	BYTE			RW	 AiL1 analogue input type 0= Probe not configured 1= DI 2= NTC 	0 2	0	num.
CL 49210 49439.2 BYTE RW • AiL3 analogue input type 0 6 0 num.	CL	CL01	49209	49439	BYTE			RW	AiL2 analogue input type See CL00	0 2	0	num.
	CL	CL02	49210	49439.2	BYTE			RW	AiL3 analogue input type	0 6	0	num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
								 0= Probe not configured 1= DI 2= NTC 3=420mA 4=0-10V 5=0-5V 6=0-1V 			
CL	CL03	49211	49439.4	BYTE			RW	AiL4 analogue input type See CL02	0 6	0	num.
CL	CL04	49212	49439.6	BYTE			RW	AiL5 analogue input type See CL00	0 2	0	num.
CL	CL10	16450	49440	WORD	Y	-1	RW	AiL3 analogue input full scale value	CL11 999	500	°C/Bar
CL	CL11	16462	49440.2	WORD	Y	-1	RW	AiL3 analogue input start of scale value	-500CL10	0	°C/Bar
CL	CL12	16452	49440.4	WORD	Y	-1	RW	AiL4 analogue input full scale value	CL13 999	500	°C/Bar
CL	CL13	16464	49440.6	WORD	Y	-1	RW	AiL4 analogue input start of scale value	-500 CL12	0	°C/Bar
CL	CL20	49238	49441	BYTE	Y	-1	RW	AiL1 analogue input differential	-120 120	0	°C
CL	CL21	49239	49441.2	BYTE	Y	-1	RW	AiL2 analogue input differential	-120 120	0	°C
CL	CL22	49240	49441.4	BYTE	Y	-1	RW	AiL3 analogue input differential	-120 120	0	°C/Bar
CL	CL23	49241	49441.6	BYTE	Y	-1	RW	AiL4 analogue input differential	-120 120	0	°C/Bar
CL	CL24	49242	49442	BYTE	Y	-1	RW	AiL5 analogue input differential5	-120 120	0	°C
CL	CL30	49286	49442.2	BYTE			RW	AIL1 analogue input configuration	0 16	0	num.
CL	CL31	49287	49442.4	BYTE			RW	AIL2 analogue input configuration	0 16	0	num.
CL	CL32	49288	49442.6	BYTE			RW	AIL3 analogue input configuration	0 30	0	num.
CL	CL33	49289	49443	BYTE			RW	AIL4 analogue input configuration	0 30	0	num.
CL	CL34	49290	49443.2	BYTE			RW	AIL5 analogue input configuration	0 16	0	num.
CL	CL40	49292	49443.4	BYTE	Y		RW	DIL1 digital input configuration	-58 58	0	num.
CL	CL41	49293	49443.6	BYTE	Y		RW	DIL2 digital input configuration	-58 58	0	num.
CL	CL42	49294	49444	BYTE	Y		RW	DIL3 digital input configuration	-58 58	0	num.
CL	CL43	49295	49444.2	BYTE	Y		RW	DIL4 digital input configuration	-58 58	0	num.
CL	CL44	49296	49444.4	BYTE	Y		RW	DIL5 digital input configuration	-58 58	0	num.
CL	CL45	49297	49444.6	BYTE	Y		RW	DIL6 digital input configuration	-58 58	0	num.
CL	CL50	49302	49445.2	BYTE	Y		RW	AIL1 analogue input configuration if configured as a digital input NOTE: Set to 0 if AiL1 is NOT configured as a DI	-58 58	0	num.
CL	CL51	49303	49445.4	BYTE	Y		RW	AIL2 analogue input configuration if configured as a digital input NOTE: Set to 0 if AiL2 is NOT configured as a DI	-58 58	0	num.
CL	CL52	49304	49445.6	BYTE	Y		RW	AIL3 analogue input configuration if configured as a digital input NOTE: Set to 0 if AiL3 is NOT configured as a DI	-58 58	0	num.
CL	CL53	49305	49446	BYTE	Y		RW	AIL4 analogue input configuration if configured as a digital input NOTE: Set to 0 if AiL4 is NOT configured as a DI	-58 58	0	num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
CL	CL54	49306	49446.2	BYTE	Y		RW	AIL5 analogue input configuration if configured as a digital input NOTE: Set to 0 if AiL5 is NOT configured as a DI	-58 58	0	num.
CL	CL60	49248	49446.4	BYTE			RW	 AOL5 analogue output type 0 = 4-20mA 1 = 0-20mA 	0 1	0	num.
CL	CL61	49310	49446.6	BYTE	Y		RW	AOL3 analogue output configuration	-53 66	66	num.
CL	CL62	49311	49447	BYTE	Y		RW	AOL4 analogue output configuration	-53 66	59	num.
CL	CL63	49312	49447.2	BYTE	Y		RW	AOL5 analogue output configuration	-53 66	0	num.
CL	CL71	49251	49447.6	BYTE			RW	 Enable AOL1 analogue output 1 0 = Output configured as digital – see CL96 1 = Output configured as TRIAC – see CL74 – CL77 – CL80 2 = PWM – see CL82 	0 1	1	num.
CL	CL72	49252	49448	BYTE			RW	 Enable AOL2 analogue output 0 = Output configured as digital – see CL97 1 = Output configured as TRIAC – see CL75 – CL78 – CL81 	0 1	1	num.
CL	CL73	49253	49448.2	BYTE			RW	Phase shift TCL1 analogue output	0 90	1	deg
CL	CL74	49254	49448.4	BYTE			RW	Phase shift AOL1 analogue output	0 90	27	deg
CL	CL75	49255	49448.6	BYTE			RW	Phase shift AOL2 analogue output	0 90	27	deg
CL	CL76	49256	49449	BYTE			RW	TCL1 analogue output pulse length	5 40	27	69 µsec
CL	CL77	49257	49449.2	BYTE			RW	AOL1 analogue output pulse length	5 40	10	69 µsec
CL	CL78	49258	49449.4	BYTE			RW	AOL2 analogue output pulse length	5 40	10	69 µsec
CL	CL79	49314	49449.6	BYTE	Y		RW	TCL1 analogue output configuration	-53 66	10	num.
CL	CL80	49315	49450	BYTE	Y		RW	AOL1 analogue output configuration	-53 66	59	num.
CL	CL81	49316	49450.2	BYTE	Y		RW	AOL2 analogue output configuration	-53 66	56	num.
CL	CL90	49322	49450.4	BYTE	Y		RW	DOL1 digital output configuration	-53 53	0	num.
CL	CL91	49323	49450.6	BYTE	Y		RW	DOL2 digital output configuration	-53 53	-5	num.
CL	CL92	49324	49451	BYTE	Y		RW	DOL3 digital output configuration	-53 53	24	num.
CL	CL93	49325	49451.2	BYTE	Y		RW	DOL4 digital output configuration	-53 53	23	num.
CL	CL94	49326	49451.4	BYTE	Y		RW	DOL5 digital output configuration (Open Collector)	-53 53	34	num.
CL	CL95	49327	49451.6	BYTE	Y		RW	Visible only in models 655 DOL6 digital output configuration (655 models)	-53 53	31	num.
CL	CL96	49328	49452	BYTE	Y		RW	AOL1 digital output configuration	-53 53	0	num.
CL	CL97	49329	49452.2	BYTE	Y		RW	AOL2 digital output configuration	-53 53	0	num.
Ui	Ui00	49388	49474	BYTE			RW	Configuration of LED1	0 74	50	num.
Ui	Ui01	49389	49474.2	BYTE		<u> </u>	RW	Configuration of LED2	0 74	51	num.
Ui	Ui02	49390	49474.4	BYTE		<u> </u>	RW	Configuration of LED3	0 74	14	num.
Ui	Ui03	49391	49474.6	BYTE			RW	Configuration of LED4	0 74	16	num.
Ui	Ui04	49392	49475	BYTE		<u> </u>	RW	Configuration of LED5	0 74	23	num.
Ui	Ui05	49393	49475.2	BYTE			RW	Configuration of LED6	0 74	9	num.
Ui	Ui06	49394	49475.4	BYTE			RW	Configuration of LED7	0 74	30	num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
Ui	Ui07	49402	49475.6	BYTE			RW	 Configuration of Economy LED Allows you to configure the Economy LED. (if=1 the economy LED on the display will be permanently on) 0 = LED disabled 1 = dynamic setpoint 	0 2	1	num.
Ui	Ui10	49366	49476.2	BYTE			RW	Select main display	0 38	0	num.
Ui	Ui11	49367	49476.4	BYTE			RW	Select main display SKW1	0 38	5	num.
Ui	Ui20	49382	49477	BYTE			RW	 Enable DHW in standby / Manual defrost function from key [UP] Makes it possible to enable or disable the domestic hot water function in standby from the [UP] button, or manual defrost, depending on the model 0 = Key not enabled for the function 1 = Key enabled for the function 	0 1	1	num.
Ui	Ui21	49383	49477.2	BYTE			RW	 Enable MODE function from key To enable or disable mode selection ([esc] key) (mode function) from a key 0 = Key not enabled for the function 1 = Key enabled for the function 	0 1	1	num.
Ui	Ui22	49384	49477.4	BYTE			RW	 Enable DISP function from key To enable or disable access the button [set] (disp function) for configuration of the main display mode 0 = Key not enabled for the function 1 = Key enabled for the function 	0 1	1	num.
Ui	Ui23	49385	49477.6	BYTE			RW	 Enable ON/OFF function from key To enable or disable the [DOWN] key (ON/OFF function) to switch the instrument on or off 0 = Key not enabled for the function 1 = Key enabled for the function 	0 1	1	num.
Ui	Ui24	49386	49478	BYTE			RW	 Enable SET function from key To enable or disable access via the "set" key to the machine state menu and relative subfolders 0 = Key not enabled for the function 1 = Key enabled for the function 	0 1	1	num.
Ui	Ui25	49387	49478.2	BYTE			RW	 Setpoint edit function enable from main screen To enable or disable Setpoint modification on the main display with the UP and DOWN keys 0 = Key not enabled for the function 1 = Key enabled for the function 	0 1	0	num.
Ui	Ui27	16640	49478.6	WORD			RW	Installation password When enabled (value other than 0) it constitutes the access key for parameters	0 255	1	num.
Ui	Ui28	16642	49479	WORD			RW	Manufacturer password When enabled (value other than zero), constitutes the password for access to parameters	0 255	2	num.
Ui	Ui30	49395	49479.2	BYTE			RW	SKW utility LED configuration Configuration of led11 See LED table (parameters UI00UI06)	0 74	50	num.
Ui	Ui31	49396	49479.4	BYTE			RW	Configuration of LED12	0 74	51	num.
Ui	Ui32	49397	49479.6	BYTE			RW	Configuration of LED13	0 74	0	num.
Ui	Ui33	49398	49480	BYTE			RW	Configuration of LED14	0 74	0	num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
Ui	Ui34	49399	49480.2	BYTE			RW	Configuration of LED15	0 74	23	num.
Ui	Ui35	49400	49480.4	BYTE			RW	Configuration of LED16	0 74	0	num.
Ui	Ui36	49401	49480.6	BYTE			RW	Configuration of LED17	0 74	14	num.
Cr	CR00	49664	49452.4	BYTE			RW	 AIR1 local analogue input type 0= Probe not configured 1 = not used 2= NTC 	0 2	0	num.
Cr	CR01	49665	49452.6	BYTE			RW	 AIR2 local analogue input type 0= Probe not configured 1= DI 2= NTC 3 = 420mA 	0 3	0	num.
Cr	CR10	16900	49453	WORD	Y	-1	RW	AIR2 analogue input full scale value	Cr11 999	500	C/Bar
Cr	CR11	16904	49453.2	WORD	Y	-1	RW	AIR2 analogue input start of scale value	-500 Cr10	0	C/Bar
Cr	CR20	49674	49453.4	BYTE	Y	-1	RW	AIR1 analogue input differential	-120 120	0	°C
Cr	CR21	49675	49453.6	BYTE	Y	-1	RW	AIR2 analogue input differential	-120 120	0	C/Bar
Cr	CR30	49676	49454	BYTE			RW	AIR1 analogue input configuration	0 16	0	num.
Cr	CR31	49677	49454.2	BYTE			RW	AIR2 analogue input configuration	0 30	0	num.
Cr	CR50	49683	49454.4	BYTE	Y		RW	AIR2 analogue input configuration if configured as a digital input NOTE: Set to 0 if Air2 is NOT configured as a DI	-58 58	0	num.
CE	CE00	49696	49454.6	BYTE			RW	 AIE1 analogue input type 0= Probe not configured 1= DI 2= NTC 	0 2	0	num.
CE	CE01	49697	49455	BYTE			RW	AIE2 analogue input type See CE00	0 2	0	num.
CE	CE02	49698	49455.2	BYTE			RW	 AIE3 analogue input type 0 = Probe not configured 1 = DI 2 = NTC 3 = 420mA 4=0-10V 5=0-5V 6=0-1V 	0 6	0	num.
CE	CE03	49699	49455.4	BYTE			RW	AIE4 analogue input type See CE02	0 6	0	num.
CE	CE04	49700	49455.6	BYTE			RW	AIE5 analogue input type See CE00	0 2	0	num.
CE	CE10	16938	49456	WORD	Y	-1	RW	AIE3 analogue input fullscale value	CE11 999	500	°C/Bar
CE	CE11	16950	49456.2	WORD	Y	-1	RW	AIE3 analogue input start of scale value	-500 CE10	0	°C/Bar
CE	CE12	16940	49456.4	WORD	Y	-1	RW	AIE4 analogue input fullscale value	CE13 999	500	°C/Bar
CE	CE13	16952	49456.6	WORD	Y	-1	RW	AIE4 analogue input start of scale value	-500 CE12	0	°C/Bar
CE	CE20	49726	49457	BYTE	Y	-1	RW	AIE1 analogue input differential	-120 120	0	°C
CE	CE21	49727	49457.2	BYTE	Y	-1	RW	AIE2 analogue input differential	-120 120	0	°C

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
CE	CE22	49728	49457.4	BYTE	Y	-1	RW	AIE3 analogue input differential	-120 120	0	°C/Bar
CE	CE23	49729	49457.6	BYTE	Υ	-1	RW	AIE4 analogue input differential	-120 120	0	°C/Bar
CE	CE24	49730	49458	BYTE	Y	-1	RW	AIE5 analogue input differential	-120 120	0	°C
CE	CE30	49748	49458.2	BYTE			RW	AIE1 analogue input configuration	0 16	0	num.
CE	CE31	49749	49458.4	BYTE			RW	AIE2 analogue input configuration	0 16	0	num.
CE	CE32	49750	49458.6	BYTE			RW	AIE3 analogue input configuration	0 30	0	num.
CE	CE33	49751	49459	BYTE			RW	AIE4 analogue input configuration	0 30	0	num.
CE	CE34	49752	49459.2	BYTE			RW	AIE5 analogue input configuration	0 16	0	num.
CE	CE40	49754	49459.4	BYTE	Υ		RW	DIE1 digital input configuration	-58 58	0	num.
CE	CE41	49755	49459.6	BYTE	Υ		RW	DIE2 digital input configuration	-58 58	0	num.
CE	CE42	49756	49460	BYTE	Υ		RW	DIE3 digital input configuration	-58 58	0	num.
CE	CE43	49757	49460.2	BYTE	Υ		RW	DIE4 digital input configuration	-58 58	0	num.
CE	CE44	49758	49460.4	BYTE	Y		RW	DIE5 digital input configuration	-58 58	0	num.
CE	CE45	49759	49460.6	BYTE	Υ		RW	DIE6 digital input configuration	-58 58	0	num.
CE	CE50	49762	49461.2	BYTE	Y		RW	AIE1 analogue input configuration if configured as a digital input NOTE: Set = 0 if AiE1 is NOT configured as DI	-58 58	0	num.
CE	CE51	49763	49461.4	BYTE	Y		RW	AIE2 analogue input configuration if configured as a digital input NOTE: Set = 0 if AiE2 is NOT configured as DI	-58 58	0	num.
CE	CE52	49764	49461.6	BYTE	Y		RW	AIE3 analogue input configuration if configured as a digital input NOTE: Set = 0 if AiE3 is NOT configured as DI	-58 58	0	num.
CE	CE53	49765	49462	BYTE	Y		RW	AIE4 analogue input configuration if configured as a digital input NOTE: Set to 0 if AE4 is NOT configured as a DI	-58 58	0	num.
CE	CE54	49766	49462.2	BYTE	Y		RW	AIE5 analogue input configuration if configured as a digital input NOTE: Set = 0 if AiE5 is NOT configured as DI	-58 58	0	num.
CE	CE60	49736	49462.4	BYTE			RW	 AOE5 analogue output type 0 = 4-20mA 1 = 0-20mA 	0 1	0	num.
CE	CE61	49768	49462.6	BYTE	Y		RW	AOE3 analogue output configuration	-53 66	0	num.
CE	CE62	49769	49463	BYTE	Y		RW	AOE4 analogue output configuration	-53 66	0	num.
CE	CE63	49770	49463.2	BYTE	Y		RW	AOE5 analogue output configuration	-53 66	0	num.
CE	CE70	49738	49463.4	BYTE			RW	 Enable TCE1 analogue output 0 = SE65x models - see CE95 1 = SE64x models - see CE73 - CE76 - CE79 	0 1	1	num.
CE	CE71	49739	49463.6	BYTE			RW	 Enable AOE1 analogue output 0 = Output configured as digital – see CE96 1 = Output configured as triac – see CE74 – CE77 – CE80 	0 1	0	num.
CE	CE72	49740	49464	BYTE			RW	 Enable AOE2 analogue output 0 = Output configured as digital – see CE97 1 = Output configured as TRIAC – see CE75 – CE78 – CE81 	0 1	0	num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
CE	CE73	49741	49464.2	BYTE			RW	Phase shift TCE1 analogue output	0 90	27	deg
CE	CE74	49742	49464.4	BYTE			RW	Phase shift AOE1 analogue output	0 90	27	deg
CE	CE75	49743	49464.6	BYTE			RW	Phase shift AOE2 analogue output	0 90	27	deg
CE	CE76	49744	49465	BYTE			RW	TCE1 analogue output pulse length	5 40	10	69 µsec
CE	CE77	49745	49465.2	BYTE			RW	AOE1 analogue output pulse length	5 40	10	69 µsec
CE	CE78	49746	49465.4	BYTE			RW	AOE2 analogue output pulse length	5 40	10	69 µsec
CE	CE79	49772	49465.6	BYTE	Y		RW	TCE1 analogue output configuration	-53 66	0	num.
CE	CE80	49773	49466	BYTE	Y		RW	AOE1 analogue output configuration	-53 66	0	num.
CE	CE81	49774	49466.2	BYTE	Y		RW	AOE2 analogue output configuration	-53 66	0	num.
CE	CE90	49776	49466.4	BYTE	Y		RW	DOE1 digital output configuration	-53 53	0	num.
CE	CE91	49777	49466.6	BYTE	Υ		RW	DOE2 digital output configuration	-53 53	0	num.
CE	CE92	49778	49467	BYTE	Y		RW	DOE3 digital output configuration	-53 53	0	num.
CE	CE93	49779	49467.2	BYTE	Y		RW	DOE4 digital output configuration	-53 53	0	num.
CE	CE94	49780	49467.4	BYTE	Y		RW	DOE5 digital output configuration	-53 53	0	num.
CE	CE95	49781	49467.6	BYTE	Y		RW	Visible only in models 655 DOE6 digital output configuration (models 655)	-53 53	0	num.
CE	CE96	49782	49468	BYTE	Y		RW	AOE1 digital output configuration	-53 53	0	num.
CE	CE97	49783	49468.2	BYTE	Y		RW	AOE2 digital output configuration	-53 53	0	num.

The parameters relative to the XVD Open drivers are listed at the end of the table The folders are shown after parameters CE and before parameters St

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	υ.м.
St	ST00	49808	49520	BYTE			RW	 Operating mode Select function modes 0 = cool only. Only OFF, STAND-BY and COOL allowed (local and remote). 1 = heat only. Only OFF, STAND-BY and COOL allowed (local and remote). 2 = Heat pump heat/cool All modes allowed. 	0 2	2	num.
St	ST01	49809	49520.2	BYTE			RW	 Enable change-over from analogue input 0 = not enabled 1 = enabled 	0 1	0	num.
St	ST02	49810	49520.4	BYTE			RW	 Select probe for automatic change-over of operating mode 0 = external temperature 1 = internal exchanger inlet water temperature 2 = external exchanger water outlet temperature 	0 2	0	num.
St	ST03	17044	49520.6	WORD	Υ	-1	RW	Differential for automatic changeover in Heat	-255 255	-100	°C
St	ST04	17046	49521	WORD	Υ	-1	RW	Differential for automatic changeover in Cool	-255 255	100	°C
St	ST05	49816	49521.2	BYTE			RW	Reversal valve Reversal valve switching delay	0 255	3	sec
St	ST06	49817	49521.4	BYTE			RW	Reversal valve switching from Heat to Defrost delay	0 255	15	sec
St	ST07	49818	49521.6	BYTE			RW	Reversal valve switching from Defrost to Heat delay	0 255	1	sec
St	ST08	49819	49522	BYTE			RW	Reversal valve activation time for pressure release Each time the compressors are completely switched off, the reversal valve is temporarily inverted. If = 0 the valve will not be temporarily inverted with a complete compressors shut down	0 255	0	sec
tr	TR00	49824	49513	BYTE			RW	 Type of temperature controller 0 = Proportional 1 = Differential 2 = Digital 3 = INVERTER Proportional 4 = INVERTER Differential 	0 4	3	num.
tr	TR01	49825	49513.2	BYTE			RW	 Enable heat pump 0 = Heat pump absent 1 = Heat pump present 	0 1	1	num.
tr	TR02	49826	49513.4	BYTE			RW	Select temperature control probe in Cool 0=Internal exchanger water/air inlet temperature (CL30CL34=0) 1=Internal exchanger water/air outlet temperature (CL30CL34=1) 2= Circuit 1 and 2 internal exchanger water outlet average temperature Average ((CL30CL34=2), (CL30CL34=3)) 3= External exchanger water inlet temperature (CL30CL34=6) 4= External exchanger water outlet temperature (CL30CL34=7) 5= Circuit 1 and 2 external exchanger average temperature Average ((CL30CL34=4), (CL30CL34=5))	0 5	0	num.
tr	TR03	49827	49513.6	BYTE			RW	Select temperature control probe in Heat See tr02	0 5	0	num.
tr	TR04	49828	49514	BYTE			RW	 Select probe for temperature control differential in Cool Probe 1 – see tr02 Probe 2 External temperature NTC input (CL30CL34=8) 	0 5	0	num.
tr	TR05	49829	49514.2	BYTE			RW	Select probe for temperature control differential in Heat See tr04	0 5	0	num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	U.M.
tr	TR10	17062	49514.4	WORD	Y	-1	RW	Cool mode setpoint, hysteresis, differentials Temperature control setpoint in Cool	tr11 tr12	150	°C
tr	TR11	17064	49514.6	WORD	Y	-1	RW	Minimum temperature control setpoint in Cool	-500 tr12	110	°C
tr	TR12	17066	49515	WORD	Y	-1	RW	Maximum temperature control setpoint in Cool	tr11 999	200	°C
tr	TR13	17068	49515.2	WORD		-1	RW	Temperature control hysteresis in Cool	1 255	30	°C
tr	TR14	17070	49515.4	WORD		-1	RW	Steps/compressors insertion differential in Cool	1 255	30	°C
tr	TR15	17072	49515.6	WORD	Y	-1	RW	Setpoint differential in Cool from start of Economy	-255 255	50	°C
tr	TR20	17074	49516	WORD	Y	-1	RW	Heat mode setpoint, hysteresis, differentials Temperature control setpoint in Heat	tr21tr22	310	°C
tr	TR21	17076	49516.2	WORD	Υ	-1	RW	Minimum temperature control setpoint in Heat	-500 tr22	300	°C
tr	TR22	17078	49516.4	WORD	Y	-1	RW	Maximum temperature control setpoint in Heat	tr21 999	450	°C
tr	TR23	17080	49516.6	WORD		-1	RW	Temperature control hysteresis in Heat	1 255	30	°C
tr	TR24	17082	49517	WORD		-1	RW	Steps/compressors insertion differential in Heat	1 255	30	°C
tr	TR25	17084	49517.2	WORD	Y	-1	RW	Setpoint differential in Heat from start of Economy	-255 255	-50	°C
tr	TR30	17712	49517.4	WORD		-1	RW	Temperature controller hysteresis with inverter in Cool To modify temperature control hysteresis with INVERTER in Cool mode	0 255	20	°C
tr	TR31	17714	49517.6	WORD		-1	RW	Temperature controller band with inverter in Cool To modify the proportional band of the temperature controller with INVERTER in Cool mode	0 255	30	°C
tr	TR32	50484	49518	BYTE			RW	Minimum speed with inverter in Cool To modify the maximum speed of the compressor with INVERTER in Cool mode	0tr33	30	num.
tr	TR33	50485	49518.2	BYTE			RW	Maximum speed with inverter in Cool To modify the maximum speed of the compressor with INVERTER in Cool mode	tr32 100	70	num.
tr	TR34	17718	49518.4	WORD		-1	RW	Inverter/compressors insertion differential in Cool Makes it possible to change the compressor / INVERTER starting differential in Cooling mode	0 255	60	°C
tr	TR40	17726	49518.6	WORD		-1	RW	Temperature controller hysteresis with inverter in Heat To modify temperature control hysteresis with INVERTER in Heat mode	0 255	20	°C
tr	TR41	17728	49519	WORD		-1	RW	Temperature controller band with inverter in Heat To modify the proportional band of the temperature controller with INVERTER in Heat mode	0 255	30	°C
tr	TR42	50498	49519.2	BYTE			RW	Minimum speed with inverter in Heat To modify the minimum speed of the compressor with INVERTER in Heat mode	0 Tr43	30	num.
tr	TR43	50499	49519.4	BYTE			RW	Maximum speed with inverter in Heat To modify the maximum speed of the compressor with INVERTER in Heat mode	tr42 100	70	num.
tr	TR44	17732	49519.6	WORD		-1	RW	Inverter/compressors insertion differential in Heat Makes it possible to change the compressor / INVERTER starting differential in Heating mode	0 255	60	°C
ri	ri00	50864	49522.2	BYTE			RW	Enable discharge temperature limitation control 0= disabled; 1= enabled	0 1	0	num.
ri	ri01	50865	49522.4	BYTE			RW	Compression ratio control mode selection 0= Compression ratio control disabled 1=Compression ratio control enabled, minimum and maximum values 2=Compression ratio control enabled, minimum value 3=Compression ratio control enabled, maximum value	0 3	1	num.
ri	ri10	50868	49523.2	BYTE			RW	Compressor safety speed for oil recovery	0 100	40	%

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	U.M.
ri	ri11	50869	49523.4	BYTE			RW	Compressor safety speed	0 100	50	%
ri	ri12	50870	49523.6	BYTE			RW	Compressor safety operation time If different from zero enables oil recovery function	0 255	3	min
ri	ri13	50871	49524	BYTE			RW	Compressor running time for oil recovery	0 255	30	min
ri	ri14	50872	49524.2	BYTE			RW	Initial transient for compression ratio control	0 255	2	min
ri	ri16	50874	49524.6	BYTE			RW	Compressor speed correction	1 20	5	%
ri	ri20	50875	49525	BYTE			RW	Zone 1b discharge temperature limit	0 255	110	°C
ri	ri21	50876	49525.2	BYTE			RW	Zone 1a - 2 discharge temperature limit	0 255	120	°C
ri	ri22	50877	49525.4	BYTE			RW	Zone 1c - 3 discharge temperature limit ri20/ri21/ri22: discharge temperature reference values	0 255	120	°C
ri	ri30	50879	49526	BYTE		-1	RW	Minimum compression ratio	0 255	10	num.
ri	ri31	50880	49526.2	BYTE		-1	RW	Maximum compression ratio	0 255	100	num.
ri	ri32	50881	49526.4	BYTE		-1	RW	Minimum compression ratio band	0 255	10	num.
ri	ri33	50882	49526.6	BYTE		-1	RW	Maximum compression ratio band	0 255	20	num.
ri	ri34	50883	49527	BYTE			RW	Discharge temperature correction period	5 255	60	sec
ri	ri55	50894	49529.6	BYTE			RW	Superheating setpoint correction period	160	1	min
ri	ri63	50901	49531.4	BYTE		-1	RW	Zone 1a/1b evaporation pressure	0 255	34	bar
ri	ri64	50902	49531.6	BYTE		-1	RW	Evaporation pressure differential 2	0 255	20	bar
ri	ri65	50903	49532	BYTE		-1	RW	Zone 1b/1c evaporation pressure	0 255	60	bar
dS	d500	49876	49573.6	BYTE			RW	 Ambient or external temperature regulator dynamic differential selection 0 = disabled 1 = proportional 2 = by steps 	0 2	0	num.
dS	dS01	17096	49574	WORD	Y	-1	RW	Temperature controller dynamic differential proportional band in Cool	-500 999	50	°C
dS	dS02	17098	49574.2	WORD	Y	-1	RW	Temperature controller dynamic differential proportional band in Heat	-500 999	50	°C
dS	dS03	17100	49574.4	WORD	Y	-1	RW	Maximum temperature controller dynamic differential in Cool	-500 999	50	°C
dS	dS04	17102	49574.6	WORD	Y	-1	RW	Maximum temperature controller dynamic differential in Heat	-500 999	50	°C
dS	dS05	17104	49575	WORD	Y	-1	RW	Temperature controller dynamic differential setpoint in Cool	-500 999	150	°C
dS	dS06	17106	49575.2	WORD	Y	-1	RW	Temperature controller dynamic differential setpoint in Heat	-500 999	220	°C
СР	CP00	49694	49532.2	BYTE			RW	 Type of System Type of compressor 0 = simple (non-power stage) 1 = alternate power stage 2 = screw power stage 	0 2	0	num.
СР	CP01	49887	49532.4	BYTE			RW	 Number of circuits 1 = 1 circuit 2 = 2 circuits 	1 2	1	num.
СР	CP02	49888	49532.6	BYTE			RW	 Number of compressors per circuit 1 = 1 compressor 2= 2 compressors 3 = 3 compressors 	1 4	1	num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	U.M.
								• 4 = 4 compressors			
СР	CP03	49889	49533	BYTE			RW	 Number of capacity steps of compressor 1 = 1 capacity steps 2= 2 capacity steps 3 = 3 capacity steps 	0 3	0	num.
СР	CP10	49896	49533.6	BYTE			RW	 Plant resource management Enable circuit balancing Establishes circuit management 0 = saturation (circuits) 1 = balancing (circuits) 	0 1	0	num.
СР	CP11	49897	49534	BYTE			RW	 Enable compressor balancing Establishes circuit management 0 = saturation (compressors) 1 = balancing (compressors) 2 = NOT USED 	0 1	0	num.
СР	CP12	49898	49534.2	BYTE			RW	 Circuit selection criterion 0 = hours balancing 1 = on sequence 1>2: off sequence 2>1 	0 1	0	num.
СР	CP13	49899	49534.4	BYTE			RW	 Compressor selection criterion Establishes the selection of compressors on each circuit 0 = hours balancing 1 = on sequence 1>2>3>4; off sequence 4>3>2>1 2 = operating time 	0 2	0	num.
СР	CP14	17132	49534.6	WORD			RW	Compressor running time for switch on sequence	0 255	3	sec*10
СР	CP20	17136	49535	WORD			RW	Compressor Protection Minimum off/on for same compressor	0 255	3	sec*10
СР	CP21	17138	49535.2	WORD			RW	Minimum time between the switching on of the same compressor	0 255	3	sec*10
СР	CP22	17140	49535.4	WORD			RW	Minimum compressor on time	0 255	3	sec*10
СР	CP23	17142	49535.6	WORD			RW	Minimum on/on time for same compressor	1 255	10	sec
СР	CP24	17144	49536	WORD			RW	Minimum off/off time for different compressors	1 255	10	sec
СР	CP25	17146	49536.2	WORD			RW	Minimum compressor switch on time per splitting increment	1 255	10	sec
СР	CP26	17148	49536.4	WORD			RW	Minimum compressor switch on time per splitting decrease	1 255	5	sec
СР	CP27	17150	49536.6	WORD			RW	Defrost compressor/step delay minimum	1 255	3	sec
Fi	F100	49956	49546.4	BYTE			RW	 Select recirculation fan operation 0 = recirculation fan disabled 1 = Always on 2 = On request 	0 2	0	num.
Fi	FI01	17190	49546.6	WORD		-1	RW	Recirculating fan regulator hysteresis in Cool mode	1 255	20	°C
Fi	FI02	17192	49547	WORD		-1	RW	Recirculating fan regulator hysteresis in Heat mode	1 255	20	°C
Fi	F103	17194	49547.2	WORD			RW	Postventilation time in Heat mode	0 255	10	sec
Pi	P100	49984	49540	BYTE			RW	 Select primary circuit water pump operating mode 0=Pump disabled 1=Continuous (always on) 2=On request (pump on when compressor on) 	0 2	2	num.
Pi	PI01	49985	49540.2	BYTE			RW	Time primary circuit water pump not active for anti-lock	0 255	1	hours

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	U.M.
Pi	P102	49986	49540.4	BYTE			RW	Internal circuit water pump pick-up time	0 255	2	sec
Pi	PI03	49987	49540.6	BYTE			RW	Minimum internal circuit water pump start time	0 255	10	Sec x 10
Pi	P105	49989	49541.2	BYTE			RW	Maximum internal circuit water pump changeover start time Pump operation time, after which the active pump is switched off and replaced by the second pump if available. If = 0 the second pump is not called	0 255	0	hours
Pi	PI10	49992	49541.4	BYTE			RW	 Enable primary circuit water pump on when antifreeze heaters on 0 = Pump disabled 1 = Pump enabled 	0 1	0	num.
Pi	PI11	49993	49541.6	BYTE			RW	 Enable internal circuit water pump start when boiler active 0 = Pump disabled 1 = Pump enabled 	0 2	1	num.
Pi	PI20	49996	49542	BYTE			RW	Operation in response to request Delay internal circuit water pump on and compressor on	0 255	60	sec
Pi	PI21	49997	49542.2	BYTE			RW	Delay compressor off - internal circuit water pump off	0 255	60	sec
Pi	PI22	49998	49542.4	BYTE			RW	Internal circuit pump periodic activation interval Modifies the maximum pump off time after which the pump is forced on If modulating, it will be switched on a maximum speed	0 255	30	min
Pi	PI30	50002	49542.6	BYTE			RW	Modulating function in Cool mode Minimum internal circuit water pump speed in Cool	1 100	50	%
Pi	PI31	50003	49543	BYTE			RW	Maximum internal circuit water pump speed in Cool	1 100	100	%
Pi	PI32	17236	49543.2	WORD	Y	-1	RW	Minimum internal circuit water pump speed setpoint in Cool	-500 999	200	°C
Pi	PI33	17238	49543.4	WORD	Y	-1	RW	Internal circuit water pump proportional band in Cool	-255 255	80	°C
Pi	PI34	50008	49543.6	BYTE			RW	Fan speed setpoint to modulate internal circuit water pump in Cool	0 100	80	%
Pi	PI35	50009	49544	BYTE			RW	Fan speed hysteresis to modulate internal circuit water pump in Cool	1 100	10	%
Pi	PI40	50012	49544.2	BYTE			RW	Modulating function in Heat mode Minimum internal circuit water pump speed in Heat	1 100	30	%
Pi	PI41	50013	49544.4	BYTE			RW	Maximum internal circuit water pump speed in Heat	1 100	100	%
Pi	PI42	17246	49544.6	WORD	Y	-1	RW	Minimum internal circuit water pump speed setpoint in Heat	-500 999	200	°C
Pi	PI43	17248	49545	WORD	Y	-1	RW	Internal circuit water pump proportional band in Heat	-255 255	180	°C
Pi	PI44	50018	49545.2	BYTE			RW	Fan speed setpoint to modulate internal circuit water pump in Heat	0 100	80	%
Pi	PI45	50019	49545.4	BYTE			RW	Fan speed hysteresis to modulate internal circuit water pump in Heat	1 100	10	%
Pi	PI50	50022	49545.6	BYTE			RW	 ANTIFREEZE with PUMP Select probe for internal circuit + water pump antifreeze 0=No probe (pump in antifreeze disabled) 1=Internal exchanger water/air inlet temperature 2=Internal exchanger water/air outlet temperature 3=Circuit 1 internal exchanger water outlet temperature 4=Circuit 2 internal exchanger water outlet temperature 5=Circuit 1 and 2 internal exchanger water outlet minimum temperature 6=External temperature 	0 6	0	num.
Pi	PI51	17256	49546	WORD	Y	-1	RW	Internal circuit water pump regulator setpoint for antifreeze	-500 999	80	°C
Pi	PI52	17258	49546.2	WORD		-1	RW	Internal circuit water pump regulator hysteresis for antifreeze	1 255	20	°C

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	U.M.
FE	FE00	50038	49548.4	BYTE			RW	 External exchanger fan mode selection 0 = Fan disabled 1 = Continuous operation (Always ON) 2 = Operation on call (ON when compressor ON) 	0 2	1	num.
FE	FE01	50039	49548.6	BYTE			RW	External exchanger fan pick-up time	0 60	2	sec
FE	FE10	50046	49549	BYTE			RW	 FAN CONTROL IN DEFROST Enable single condensation Configures 2 circuit machines with a single condenser 0 = separate condensation / independent fans 1 = single condensation / in parallel 	0 1	0	num.
FE	FE11	50047	49549.2	BYTE			RW	 Enable external exchanger fan on in defrost 0 = Fan disabled 1 = Fan enabled 	0 2	0	num.
FE	FE12	17280	49549.4	WORD	Y	-1	RW	External exchanger fan on setpoint in defrost	-500 999	190	°C/Bar
FE	FE13	17282	49549.6	WORD		-1	RW	External exchanger fan on hysteresis in defrost	1 255	10	°C/Bar
FE	FE14	50052	49550	BYTE			RW	 Select probe for external exchanger fan regulation in defrost 0 = Probe absent 1 = External exchanger temperature probe (circuit 1 and 2) 2 = High Pressure probe (circuit 1 and 2) 3 = External exchanger pressure probe (circuit 1 and 2) 	0 3	1	num.
FE	FE20	17290	49550.2	WORD			RW	Bypass time for external exchanger fan cut-off	0 255	2	sec
FE	FE21	17292	49550.4	WORD			RW	External exchanger fan preventilation time	0 255	0	sec
FE	FE30	50062	49550.6	BYTE			RW	FAN CONTROL IN COOLING Minimum speed external exchanger fan in Cool	0 100	35	%
FE	FE31	50063	49551	BYTE			RW	Average speed external exchanger fan in Cool	0 100	100	%
FE	FE32	50064	49551.2	BYTE			RW	Maximum speed external exchanger fan in Cool	0 100	100	%
FE	FE33	50065	49551.4	BYTE			RW	 Select probe for external exchanger fan regulation in Cool 0=No probe 1=External exchanger temperature (circuit 1 and 2) 2=High pressure input (circuit 1 and 2) 3=Low pressure input (circuit 1 and 2) 4=External exchanger pressure (circuit 1 and 2) 5=Internal exchanger pressure (circuit 1 and 2) 	0 7	4	num.
FE	FE34	17298	49551.6	WORD	Y	-1	RW	External exchanger fan minimum speed setpoint in Cool	-500 999	180	°C/Bar
FE	FE35	17300	49552	WORD	Y	-1	RW	External exchanger maximum speed differential in Cool	1 999	55	°C/Bar
FE	FE36	17302	49552.2	WORD		-1	RW	External exchanger fan speed proportional band in Cool	0 999	25	°C/Bar
FE	FE37	17304	49552.4	WORD		-1	RW	Maximum external exchanger fan hysteresis in Cool mode	1 255	10	°C/Bar
FE	FE38	17306	49552.6	WORD		-1	RW	External exchanger fan cut-off hysteresis in Cool	1 255	10	°C/Bar
FE	FE39	17308	49553	WORD		-1	RW	External exchanger fan cut-off differential in Cool	0 255	20	°C/Bar
FE	FE50	50082	49553.2	BYTE			RW	FAN CONTROL IN HEATING Minimum speed external exchanger fan in Heat	0 100	35	%
FE	FE51	50083	49553.4	BYTE			RW	Average speed external exchanger fan in Heat	0 100	100	%
FE	FE52	50084	49553.6	BYTE			RW	Maximum speed external exchanger fan in Heat	0 100	100	%
FE	FE53	50085	49554	BYTE			RW	 Select probe for external exchanger fan regulation in Heat 0=No probe 	0 7	4	num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	U.M.
								 1=External exchanger temperature (circuit 1 and 2) 2=High pressure input (circuit 1 and 2) 3=Low pressure input (circuit 1 and 2) 4=External exchanger pressure (circuit 1 and 2) 5=Internal exchanger pressure (circuit 1 and 2) 			
FE	FE54	17318	49554.2	WORD	Y	-1	RW	Minimum external exchanger fan speed setpoint in Heat	-500 999	120	°C/Bar
FE	FE55	17320	49554.4	WORD	Y	-1	RW	Maximum external exchanger speed differential in Heat	1 999	17	°C/Bar
FE	FE56	17322	49554.6	WORD		-1	RW	External exchanger fan speed proportional band in Heat	0 999	10	°C/Bar
FE	FE57	17324	49555	WORD		-1	RW	Maximum external exchanger fan speed hysteresis in Heat	1 255	5	°C/Bar
FE	FE58	17326	49555.2	WORD		-1	RW	External exchanger fan cut-off hysteresis in Heat	1 255	5	°C/Bar
FE	FE59	17328	49555.4	WORD		-1	RW	External exchanger fan cut-off differential in Heat	0 255	10	°C/Bar
PE	PE00	50110	49555.6	BYTE			RW	 External circuit water pump mode selection Defines the operation of the external circuit water pump 0 = Pump disabled 1 = Continuous operation (Always ON) 2 = NOT USED 3 = Operation synchronised with external exchanger fans 	0 3	0	num.
PE	PE02	50111	49556	BYTE			RW	External circuit pump switch-on - compressor switch-on delay	0 255	0	sec
PE	PE03	50112	49556.2	BYTE			RW	Compressor switch-off - external circuit pump switch-off delay	0 255	60	sec
PE	PE04	50113	49556.4	BYTE			RW	External circuit water pump antilock function enabling 0= function disabled; 1= function enabled	0 1	0	num.
PE	PE05	50114	49556.6	BYTE			RW	External circuit water pump OFF time for antilock	0 255	50	hours
PE	PE06	50115	49557	BYTE			RW	External circuit water pump ON time for antilock	1 255	10	sec
PE	PE07	50116	49557.2	BYTE			RW	Antifreeze function enabling with external circuit water pump 0= function disabled; 1= function enabled	0 1	0	num.
PE	PE08	17350	49557.4	WORD	Y	-1	RW	External circuit water pump set point control for antifreeze	-500 999	100	°C
PE	PE09	17352	49557.6	WORD		-1	RW	External circuit water pump hysteresis control for antifreeze	0 255	20	°C
Hi	H100	50126	49558	BYTE			RW	 Enable internal exchanger antifreeze heaters in standby 0 = Heaters disabled 1 = Heaters enabled 	0 1	0	num.
Hi	HI01	50127	49558.2	BYTE			RW	 Enable force heaters on during defrost 0 = Heaters enabled (ON) when requested by temperature controller (antifreeze or integrated use) 1 = Heaters always enabled ON during defrost 	0 3	0	num.
Hi	HI10	50130	49558.4	BYTE			RW	 Select probe for antifreeze internal exchanger + heater 1 0=No probe (antifreeze heater disabled) 1=Internal exchanger water/air inlet temperature 2=Internal exchanger water/air outlet temperature 3=Circuit 1 internal exchanger water outlet temperature 4=Circuit 2 internal exchanger water outlet temperature 5=Circuit 1 and 2 internal exchanger water outlet average temperature 	0 5	2	num.
Hi	HI11	50131	49558.6	BYTE			RW	Select probe for antifreeze internal exchanger + heater 2 See HI11	0 5	2	num.
Hi	HI12	17364	49559	WORD	Y	-1	RW	Internal exchanger heater regulator setpoint for antifreeze	HI14HI13	40	°C
Hi	HI13	17366	49559.2	WORD	Y	-1	RW	Maximum internal exchanger heater regulator setpoint for antifreeze	HI14 999	70	°C
FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	U.M.
--------	-------	-------	-------------	--------------	-----	-----	-----	--	-----------	-------------	------
Hi	HI14	17368	49559.4	WORD	Y	-1	RW	Minimum internal exchanger heater regulator setpoint for antifreeze	-500 HI13	-100	°C
Hi	HI15	17370	49559.6	WORD		-1	RW	Internal exchanger heater regulator hysteresis for antifreeze	1 255	5	°C
Hi	HI20	50146	49560	BYTE			RW	 Select heater mode for internal exchanger in integration mode 0=Integration heaters disabled 1=Integration heaters with differential setpoint proportional to external temperature 2=Integration heaters with differential setpoint in steps to external temperature 3=Integration heaters with differential setpoint fixed 	0 3	3	num.
Hi	HI21	17380	49560.2	WORD	Y	-1	RW	Internal exchanger heater dynamic differential setpoint in integrated use	-500 999	100	°C
Hi	HI22	17382	49560.4	WORD		-1	RW	Maximum dynamic differential internal exchanger heaters in integrated use	0 999	60	°C
Hi	HI23	17384	49560.6	WORD		-1	RW	Heater differential in integration mode with heat pump lock	0 999	0	°C
Hi	HI24	17386	49561	WORD		-1	RW	Internal exchanger heater dynamic differential proportional band in integrated use	0 999	50	°C
Hi	HI25	17388	49561.2	WORD		-1	RW	Internal exchanger heater regulator hysteresis in integrated use	1 255	10	°C
Hi	HI26	17390	49561.4	WORD		-1	RW	Differential setpoint internal exchanger heater 2 on in integrated use	0 999	200	°C
HE	HE00	50166	49561.6	BYTE			RW	 Enable external exchanger antifreeze heaters in standby 0 = Heaters disabled 1 = Heaters enabled 	0 1	0	num.
HE	HE10	50168	49562	BYTE			RW	 Select probe for antifreeze external exchanger + heater 1 0=No probe (antifreeze heater disabled) 1=Circuit 1 and 2 external exchanger average temperature 2=Recovery (or external) exchanger inlet water temperature 3=Recovery (or external) exchanger outlet water temperature 4=External temperature 	0 4	0	num.
HE	HE11	50169	49562.2	BYTE			RW	Select probe for antifreeze external exchanger + heater 2 See HE10	0 4	0	num.
HE	HE12	17402	49562.4	WORD	Y	-1	RW	External exchanger heater switch on setpoint for antifreeze	HE14 HE13	40	°C
HE	HE13	17404	49562.6	WORD	Y	-1	RW	Maximum external exchanger heater regulator setpoint for antifreeze	HE14 999	70	°C
HE	HE14	17406	49563	WORD	Y	-1	RW	Minimum external exchanger heater regulator setpoint for antifreeze	-500 HE13	-100	°C
HE	HE15	17408	49563.2	WORD		-1	RW	External exchanger heater regulator hysteresis for antifreeze	1 255	10	°C
НА	HA00	50186	49563.4	BYTE			RW	 Select probe for auxiliary output regulator 0=No probe (auxiliary output disabled) 1=External temperature 2=External exchanger temperature circuit 1 3=External exchanger temperature circuit 2 4=Recovery (or external) exchanger inlet water temperature 5=Recovery (or external) exchanger outlet water temperature 6=NOT USED 	0 6	0	num.
HA	HA01	17420	49563.6	WORD	Y	-1	RW	Auxiliary output regulator setpoint	-500 999	20	°C
HA	HA02	17422	49564	WORD	Υ	-1	RW	Auxiliary output regulator hysteresis	-500 999	10	°C
br	BR00	50200	49564.2	BYTE			RW	 Select boiler (water heater) mode 0=Water heater disabled 1=Water heater with differential setpoint proportional to external temperature 2=Water heater with differential setpoint in steps as a function of external 	0 3	0	num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	υ.м.
								 temperature 3=Water heater with differential setpoint fixed 			
br	BR01	17434	49564.4	WORD	Y	-1	RW	Boiler dynamic differential setpoint	-500 999	100	°C
br	BR02	17436	49564.6	WORD		-1	RW	Maximum boiler dynamic differential	0 999	255	°C
br	BR03	17438	49565	WORD		-1	RW	Boiler dynamic differential with heat pump lock In case of <u>heat pump block</u> , the Water heater differential assumes the fixed value of this parameter	0 999	0	°C
br	BR04	17440	49565.2	WORD		-1	RW	Boiler proportional band dynamic differential	0 999	50	°C
br	BR05	17442	49565.4	WORD		-1	RW	Boiler regulator hysteresis	1 255	20	°C
dF	dF00	50262	49570.2	BYTE			RW	 Select defrost mode 0= Defrost disabled 1 = Simultaneous defrost (only for dual-circuit systems) 2 = Independent defrost (for single-circuit systems and dual-circuit systems with separate condensation) 	0 2	2	num.
dF	dF01	50263	49570.4	BYTE			RW	Enable maximum power for non-defrost circuit 0= force maximum power NOT enabled 1= force maximum power enabled	0 1	0	num.
dF	dF10	50266	49570.6	BYTE			RW	 Select probe to enable interval count between defrost cycles 0 = External exchanger temperature 1 = High pressure input 2 = Low pressure input 3= Internal exchanger pressure 4 = External exchanger pressure 	0 4	4	Num.
dF	dF11	17500	49571	WORD	Y	-1	RW	Setpoint for enable interval count between defrost cycles	-500 999	27	°C/Bar
dF	dF12	17502	49571.2	WORD	Y	-1	RW	Setpoint to clear cumulative time between defrost cycles	-500 999	130	°C/Bar
dF	dF13	17504	49571.4	WORD			RW	Cumulative time between defrost cycles	1 255	20	Min
dF	dF14	17506	49571.6	WORD			RW	Minimum interval between defrost cycles	1 255	60	Min
dF	dF20	50280	49572	BYTE			RW	 Select probe to disable defrost 0 = External exchanger temperature 1 = High pressure input 2 = Low pressure input 3= Internal exchanger pressure 4 = External exchanger pressure 	0 4	1	Num.
dF	dF21	17514	49572.2	WORD	Y	-1	RW	Disable defrost setpoint	-500 999	130	°C/Bar
dF	dF22	17516	49572.4	WORD			RW	Maximum defrost time	1 255	5	Minutes
dF	dF23	17518	49572.6	WORD			RW	Drip time	0 255	40	sec
dF	dF30	17524	49573	WORD	Y	-1	RW	Maximum dynamic defrost differential	-500 999	0	°C/Bar
dF	dF31	17526	49573.2	WORD	Y	-1	RW	Dynamic defrost differential setpoint	-500 999	100	°C
dF	dF32	17528	49573.4	WORD	Y	-1	RW	Defrost proportional band dynamic differential	-500 999	-50	°C
Ad	Ad00	50308	49575.4	BYTE			RW	 Select no accumulation mode 0 = Accumulation disabled 1 = Setpoint 2 = Hysteresis 3 = Setpoint and hysteresis 	0 3	0	Num.
Ad	Ad01	17542	49575.6	WORD		-1	RW	Constant accumulation compensation	0 255	20	Num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	U.M.
Ad	Ad02	17544	49576	WORD		-1	RW	Accumulator compensation differential	0 255	5	°C
Ad	Ad03	17546	49576.2	WORD	Y	-1	RW	Accumulation compensation block setpoint in Cool	-500 999	40	°C
Ad	Ad04	17548	49576.4	WORD	Y	-1	RW	Accumulation compensation block setpoint in Heat	-500 999	500	°C
Ad	Ad05	17550	49576.6	WORD			RW	Time compressor on for accumulation compensation regression	0 255	24	sec x 10
Ad	Ad06	17552	49577	WORD			RW	Compressor on reference time for accumulation compensation	0 255	18	sec x 10
AF	AF00	50332	49577.2	BYTE			RW	Select antifreeze probe with circuit 1 heat pump	0 5	0	num.
AF	AF01	50333	49577.4	BYTE			RW	Select antifreeze probe with circuit 2 heat pump	0 5	0	num.
AF	AF02	17566	49577.6	WORD	Y	-1	RW	Setpoint for anti-freeze regulator with heat pump	-500 999	50	°C
AF	AF03	17568	49578	WORD		-1	RW	Anti-freeze regulator hysteresis with heat pump	1 125	30	°C
AS	AS00	50344	49578.2	BYTE			RW	Select ACS mode	0 6	0	num.
AS	AS01	17578	49578.4	WORD	Y	-1	RW	ACS setpoint	AS2 AS03	500	°C
AS	AS02	17580	49578.6	WORD	Y	-1	RW	ACS minimum setpoint	-500 AS03	400	°C
AS	AS03	17582	49579	WORD	Y	-1	RW	ACS maximum setpoint	AS02 999	600	°C
AS	AS04	17584	49579.2	WORD		-1	RW	ACS hysteresis	1 255	30	°C
AS	AS05	17586	49579.4	WORD	Y	-1	RW	ACS disengage setpoint differential	-500 999	30	°C
AS	AS06	17588	49579.6	WORD		-1	RW	ACS heater hysteresis	1 255	20	°C
AS	AS07	17590	49580	WORD		-1	RW	ACS heater differential	0 999	0	°C
AS	AS08	17592	49580.2	WORD	Y	-1	RW	ACS antifreeze setpoint	-500 AS03	30	°C
AS	AS09	17594	49580.4	WORD			RW	ACS maximum activation time	1 999	60	min
AS	AS10	17596	49580.6	WORD			RW	ACS minimum deactivation/activation time	1 999	60	min
AS	AS11	17598	49581	WORD		-1	RW	Sanitary water setpoint dynamic constant	0 255	0	°C
AS	AS12	17600	49581.2	WORD	Y	-1	RW	Sanitary water system maximum temperature setpoint	-500 999	650	°C
AS	AS20	17602	49581.4	WORD	Y	-1	RW	ACS setpoint for anti-legionnaire's disease	AS21 AS22	650	°C
AS	AS21	17604	49581.6	WORD	Y	-1	RW	Minimum ACS setpoint for anti-legionnaire's disease	-500 AS22	600	°C
AS	AS22	17606	49582	WORD	Y	-1	RW	Maximum ACS setpoint for anti-legionnaire's disease	AS21 999	700	°C
AS	AS23	17608	49582.2	WORD			RW	ACS minimum deactivation/activation time for anti-legionnaire's disease	1 999	15	min
AS	AS25	50382	49582.4	BYTE			RW	Anti-legionnaire's disease period duration, day 1	0 24	0	Hours
AS	AS26	50383	49582.6	BYTE			RW	Event hour, day 1	0 23	0	Hours
AS	AS27	50384	49583	BYTE			RW	Event minutes, day 1	0 59	0	Minutes
AS	AS28	50385	49583.2	BYTE			RW	Anti-legionnaire's disease period duration, day 2	0 24	0	Hours
AS	AS29	50386	49583.4	BYTE			RW	Event hour, day 2	0 23	0	Hours
AS	AS30	50387	49583.6	BYTE			RW	Event minutes, day 2	0 59	0	Minutes
AS	AS31	50388	49584	BYTE			RW	Anti-legionnaire's disease period duration, day 3	0 24	0	Hours
AS	AS32	50389	49584.2	BYTE			RW	Event hour, day 3	0 23	0	Hours
AS	AS33	50390	49584.4	BYTE			RW	Event minutes, day 3	0 59	0	Minutes
AS	AS34	50391	49584.6	BYTE			RW	Anti-legionnaire's disease period duration, day 4	0 24	0	Hours
AS	AS35	50392	49585	BYTE			RW	Event hour, day 4	0 23	0	Hours

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	U.M.
AS	AS36	50393	49585.2	BYTE			RW	Event minutes, day 4	0 59	0	Minutes
AS	AS37	50394	49585.4	BYTE			RW	Anti-legionnaire's disease period duration, day 5	0 24	0	Hours
AS	AS38	50395	49585.6	BYTE			RW	Event hour, day 5	0 23	0	Hours
AS	AS39	50396	49586	BYTE			RW	Event minutes, day 5	0 59	0	Minutes
AS	AS40	50397	49586.2	BYTE			RW	Anti-legionnaire's disease period duration, day 6	0 24	0	Hours
AS	AS41	50206	49586.4	BYTE			RW	Event hour, day 6	0 23	0	Hours
AS	AS42	50399	49586.6	BYTE			RW	Event minutes, day 6	0 59	0	Minutes
AS	AS43	50400	49587	BYTE			RW	Anti-legionnaire's disease period duration, day 7	0 24	0	Hours
AS	AS44	50401	49587.2	BYTE			RW	Event hour, day 7	0 23	0	Hours
AS	AS45	50402	49587.4	BYTE			RW	Event minutes, day 7	0 59	0	Minutes
НР	HP00	50408	49587.6	BYTE			RW	 Select heat pump lock probe 1 0=No probe (pump block disabled) 1=External temperature - Heating 2=Internal exchanger water/air inlet temperature - Cooling 3=Internal exchanger water/air outlet temperature - Cooling 4=Circuit 1 and 2 internal exchanger water outlet average temperature - Cooling 5=Recovery (or external) exchanger inlet water temperature - Cooling 6=Recovery (or external) exchanger inlet water temperature - Cooling 7=Circuit 1 and 2 external exchanger average temperature - Cooling 	0 7	0	num.
HP	HP01	17642	49588	WORD	Y	-1	RW	Heat pump 1 lock setpoint	-500 999	0	°C
HP	HP02	17644	49588.2	WORD		-1	RW	Heat pump 1 lock hysteresis	1 255	20	°C
HP	HP03	17646	49588.4	WORD	Y	-1	RW	Heat pump 1 lock maximum dynamic differential	-500 999	0	°C
HP	HP04	17648	49588.6	WORD	Y	-1	RW	Heat pump 1 lock dynamic differential setpoint	-500 999	0	°C
HP	HP05	17650	49589	WORD	Y	-1	RW	Heat pump 1 lock dynamic differential proportional band	-500 999	0	°C
HP	HP10	50424	49589.2	BYTE			RW	Select heat pump lock probe 2	0 7	0	num.
HP	HP11	17658	49589.4	WORD	Y	-1	RW	Heat pump 2 lock setpoint	-500 999	450	°C
HP	HP12	17660	49589.6	WORD		-1	RW	Heat pump 2 lock hysteresis	1 255	20	°C
PL	PL00	17676	49590	WORD		-1	RW	Power limitation on external temperature Power limitation proportional band on external temperature	0 255	0	°C
PL	PL01	17678	49590.2	WORD	Y	-1	RW	External temperature setpoint for power limitation in Cool	-500 999	500	°C
PL	PL02	17680	49590.4	WORD	Y	-1	RW	External temperature setpoint for power limitation in Heat	-500 999	-50	°C
PL	PL10	17686	49590.6	WORD		-1	RW	Power limitation on temperature Power limitation proportional band on water/air temperature	0 255	0	°C
PL PL	PL11 PL12	50456	49591	BYTE	Y	-1	RW	 Power limitation probe selection on water/air temperature 0=No probe (Controller disabled) 1=Internal exchanger water/air inlet temperature 2=Internal exchanger water/air outlet temperature 3=Circuit 1 and 2 internal exchanger water outlet average temperature 4=Recovery (or external) exchanger inlet water temperature 5=Recovery (or external) exchanger outlet water temperature 6=Circuit 1 and 2 external exchanger average temperature High temperature setpoint for power limitation 	0 6	2	Num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	U.M.
PL	PL13	17692	49591.4	WORD	Y	-1	RW	Low temperature setpoint for power limitation	-500 999	50	°C
PL	PL20	17694	49591.6	WORD		-1	RW	Power limitation on pressure Power limitation proportional band on pressure	0 255	0	Bar
PL	PL21	17696	49592	WORD	Y	-1	RW	High pressure setpoint for power limitation	-500 999	400	Bar
PL	PL22	17698	49592.2	WORD	Y	-1	RW	Low pressure setpoint for power limitation	-500 999	30	Bar
tE	tE00	50688	49592.4	BYTE			RW	 Enable time band operation 0= time bands disabled 1= time bands enabled 	0 1	0	Num.
tE	tE01	50689	49592.6	BYTE			RW	 Select profile, day 1 To select the profile of the first day of the week MONDAY 1= Profile 1 2= Profile 2 3= Profile 3 	1 3	1	Num.
tE	tE02	50690	49593	BYTE			RW	Select profile, day 2 TUESDAY – See tE01	1 3	1	Num.
tE	tE03	50691	49593.2	BYTE			RW	Select profile, day 3 WEDNESDAY – See tE01	1 3	1	Num.
tE	tE04	50692	49593.4	BYTE			RW	Select profile, day 4 THURSDAY - See tE01	1 3	1	Num.
tE	tE05	50693	49593.6	BYTE			RW	Select profile, day 5 FRIDAY - See tE01	1 3	1	Num.
tE	tE06	50694	49594	BYTE			RW	Select profile, day 6 SATURDAY – See tE01	1 3	2	Num.
tE	tE07	50695	49594.2	BYTE			RW	Select profile, day 7 SUNDAY – See tE01	1 3	3	Num.
tE	tE10	50700	49594.4	BYTE			RW	PROFILE 1 EVENT 1 / PROFILE 1 Event start time hour 1, profile 1	0 23	7	Hours
tE	tE11	50701	49594.6	BYTE			RW	Event start time minutes 1, profile 1	0 59	0	Minutes
tE	tE12	50702	49595	BYTE			RW	 Operating mode from event 1, profile 1 Determines the operating mode of Energy Flex during the event 0= ON 1 = Standby 	0 1	0	Num.
tE	tE13	17936	49595.2	WORD	Y	-1	RW	Cool mode temperature regulator setpoint, from event 1, profile 1 Determines the Cool setpoint to use during the event (with Energy Flex in Cool mode)	tr11 tr12	120	°C
tE	tE14	17938	49595.4	WORD	Y	-1	RW	Heat mode temperature regulator setpoint, from event 1, profile 1 Determines the Heat setpoint to use during the event (with Energy Flex in Heat mode)	tr21tr22	400	°C
tE	tE15	17940	49595.6	WORD	Y	-1	RW	DHW setpoint from event 1, profile 1 Determines the sanitary water setpoint to use during the event	AS02 AS03	450	°C
tE	tE17	50712	49596	BYTE			RW	EVENT 2 / PROFILE 1 (see tE10tE14) Event start time hour 2, profile 1	0 23	12	Hours
tE	tE18	50713	49596.2	BYTE			RW	Event start time minutes 2, profile 1	0 59	0	Minutes
tE	tE19	50714	49596.4	BYTE			RW	Operating mode from event 2, profile 1	0 1	0	Num.
tE	tE20	17948	49596.6	WORD	Y	-1	RW	Cool mode temperature regulator setpoint, from event 2, profile 1	tr11 tr12	120	°C
tE	tE21	17950	49597	WORD	Y	-1	RW	Heat mode temperature regulator setpoint, from event 2, profile 1	tr21tr22	400	°C
tE	tE22	17952	49597.2	WORD	Y	-1	RW	DHW setpoint from event 2, profile 1	AS02 AS03	450	°C

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	U.M.
tE	tE24	50724	49597.4	BYTE			RW	EVENT 3 / PROFILE 1 (see tE10tE14) Event start time hour 3, profile 1	0 23	15	Hours
tE	tE25	50725	49597.6	BYTE			RW	Event start time minutes 3, profile 1	0 59	0	Minutes
tE	tE26	50726	49598	BYTE			RW	Operating mode from event 3, profile 1	0 1	0	Num.
tE	tE27	17960	49598.2	WORD	Y	-1	RW	Cool mode temperature regulator setpoint, from event 3, profile 1	tr11 tr12	120	°C
tE	tE28	17962	49598.4	WORD	Y	-1	RW	Heat mode temperature regulator setpoint, from event 3, profile 1	tr21tr22	400	°C
tE	tE29	17964	49598.6	WORD	Y	-1	RW	Sanitary water setpoint from event 3, profile 1	AS02 AS03	450	°C
tE	tE31	50736	49599	BYTE			RW	EVENT 4 / PROFILE 1 (see tE10tE14) Event start time hour 4, profile 1	0 23	22	Hours
tE	tE32	50737	49599.2	BYTE			RW	Event start time minutes 4, profile 1	0 59	0	Minutes
tE	tE33	50738	49599.4	BYTE			RW	Operating mode from event 4, profile 1	0 1	0	Num.
tE	tE34	17972	49599.6	WORD	Y	-1	RW	Cool mode temperature regulator setpoint, from event 4, profile 1	tr11 tr12	120	°C
tE	tE35	17974	49600	WORD	Y	-1	RW	Heat mode temperature regulator setpoint, from event 4, profile 1	tr21tr22	400	°C
tE	tE36	17976	49600.2	WORD	Y	-1	RW	Sanitary water setpoint from event 4, profile 1	AS02 AS03	450	°C
tE	tE38	50748	49600.4	BYTE			RW	PROFILE 2 EVENT 1 / PROFILE 2 (see tE10tE14) Event start time hour 1, profile 2	0 23	7	Hours
tE	tE39	50749	49600.6	BYTE			RW	Event start time minutes 1, profile 2	0 59	0	Minutes
tE	tE40	50750	49601	BYTE			RW	Operating mode from event 1, profile 2	0 1	0	Num.
tE	tE41	17984	49601.2	WORD	Y	-1	RW	Cool mode temperature regulator setpoint, from event 1, profile 2	tr11 tr12	120	°C
tE	tE42	17986	49601.4	WORD	Y	-1	RW	Heat mode temperature regulator setpoint, from event 1, profile 2	tr21tr22	400	°C
tE	tE43	17988	49601.6	WORD	Y	-1	RW	Sanitary setpoint from event 1, profile 2	AS02 AS03	450	°C
tE	tE45	50760	49602	BYTE			RW	EVENT 2 / PROFILE 2 (see tE10tE14) Event start time hour 2, profile 2	0 23	12	Hours
tE	tE46	50761	49602.2	BYTE			RW	Event start time minutes 2, profile 2	0 59	0	Minutes
tE	tE47	50762	49602.4	BYTE			RW	Operating mode from event 2, profile 2	0 1	0	Num.
tE	tE48	17996	49602.6	WORD	Y	-1	RW	Cool mode temperature regulator setpoint, from event 2, profile 2	tr11 tr12	120	°C
tE	tE49	17998	49603	WORD	Y	-1	RW	Heat mode temperature regulator setpoint, from event 2, profile 2	tr21tr22	400	°C
tE	tE50	18000	49603.2	WORD	Y	-1	RW	Sanitary water setpoint from event 2, profile 2	AS02 AS03	450	°C
tE	tE52	50772	49603.4	BYTE			RW	EVENT 3 / PROFILE 2 (see tE10tE14) Event start time hour 3, profile 2	0 23	15	Hours
tE	tE53	50773	49603.6	BYTE			RW	Event start time minutes 3, profile 2	0 59	0	Minutes
tE	tE54	50774	49604	BYTE			RW	Operating mode from event 3, profile 2	0 1	0	Num.
tE	tE55	18008	49604.2	WORD	Y	-1	RW	Cool mode temperature regulator setpoint, from event 3, profile 2	tr11 tr12	120	°C
tE	tE56	18010	49604.4	WORD	Y	-1	RW	Heat mode temperature regulator setpoint, from event 3, profile 2	tr21tr22	400	°C
tE	tE57	18012	49604.6	WORD	Y	-1	RW	Sanitary water setpoint from event 3, profile 2	AS02 AS03	450	°C
tE	tE59	50784	49605	BYTE			RW	EVENT 4 / PROFILE 2 (see tE10tE14) Event start time hour 4, profile 2	0 23	22	Hours
tE	tE60	50785	49605.2	BYTE			RW	Event start time minutes 4, profile 2	0 59	0	Minutes
tE	tE61	50786	49605.4	BYTE			RW	Operating mode from event 4, profile 2	0 1	0	Num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	U.M.
tE	tE62	18020	49605.6	WORD	Y	-1	RW	Cool mode temperature regulator setpoint, from event 4, profile 2	tr11 tr12	120	°C
tE	tE63	18022	49606	WORD	Y	-1	RW	Heat mode temperature regulator setpoint, from event 4, profile 2	tr21tr22	400	°C
tE	tE64	18024	49606.2	WORD	Y	-1	RW	Sanitary water setpoint from event 4, profile 2	AS02 AS03	450	°C
tE	tE66	50796	49606.4	BYTE			RW	PROFILE 3 EVENT 1 / PROFILE 3 (see tE10tE14) Event start time hour 3, profile 3	0 23	7	Hours
tE	tE67	50797	49606.6	BYTE			RW	Event start time minutes 1, profile 3	0 59	0	Minutes
tE	tE68	50798	49607	BYTE			RW	Operating mode from event 1, profile 3	0 1	0	Num.
tE	tE69	18032	49607.2	WORD	Y	-1	RW	Cool mode temperature regulator setpoint, from event 1, profile 3	tr11 tr12	120	°C
tE	tE70	18034	49607.4	WORD	Y	-1	RW	Heat mode temperature regulator setpoint, from event 1, profile 3	tr21tr22	400	°C
tE	tE71	18036	49607.6	WORD	Y	-1	RW	Sanitary water setpoint from event 1, profile 3	AS02 AS03	450	°C
tE	tE73	50808	49608	BYTE			RW	EVENT 2 / PROFILE 3 (see tE10tE14) Event start time hour 2, profile 3	0 23	12	Hours
tE	tE74	50809	49608.2	BYTE			RW	Event start time minutes 2, profile 3	0 59	0	Minutes
tE	tE75	50810	49608.4	BYTE			RW	Operating mode from event 2, profile 3	0 1	0	Num.
tE	tE76	18044	49608.6	WORD	Y	-1	RW	Cool mode temperature regulator setpoint, from event 2, profile 3	tr11 tr12	120	°C
tE	tE77	18046	49609	WORD	Y	-1	RW	Heat mode temperature regulator setpoint, from event 2, profile 3	tr21tr22	400	°C
tE	tE78	18048	49609.2	WORD	Y	-1	RW	Sanitary water setpoint from event 2, profile 3	AS02 AS03	450	°C
tE	tE80	50820	49609.4	BYTE			RW	EVENT 3 / PROFILE 3 (see tE10tE14) Event start time hour 3, profile 3	0 23	15	Hours
tE	tE81	50821	49609.6	BYTE			RW	Event start time minutes 3, profile 3	0 59	0	Minutes
tE	tE82	50822	49610	BYTE			RW	Operating mode from event 3, profile 3	0 1	0	Num.
tE	tE83	18056	49610.2	WORD	Y	-1	RW	Cool mode temperature regulator setpoint, from event 3, profile 3	tr11 tr12	120	°C
tE	tE84	18058	49610.4	WORD	Y	-1	RW	Heat mode temperature regulator setpoint, from event 3, profile 3	tr21tr22	400	°C
tE	tE85	18060	49610.6	WORD	Y	-1	RW	Sanitary water setpoint from event 3, profile 3	AS02 AS03	450	°C
tE	tE87	50832	49611	BYTE			RW	EVENT 4 / PROFILE 3 (see tE10tE14) Event start time hour 4, profile 3	0 23	22	Hours
tE	tE88	50833	49611.2	BYTE			RW	Event start time minutes 4, profile 3	0 59	0	Minutes
tE	tE89	50834	49611.4	BYTE			RW	Operating mode from event 4, profile 3	0 1	0	Num.
tE	tE90	18068	49611.6	WORD	Y	-1	RW	Cool mode temperature regulator setpoint, from event 4, profile 3	tr11 tr12	120	°C
tE	tE91	18070	49612	WORD	Y	-1	RW	Heat mode temperature regulator, from event 4, profile 3	tr21tr22	400	°C
tE	tE92	18072	49612.2	WORD	Y	-1	RW	Sanitary water setpoint from event 4, profile 3	AS02 AS03	450	°C
AL	AL00	50572	49612.4	BYTE			RW	Time interval for alarm event count To modify the interval in which alarm events are counted Alarms are sampled every AL00/32 = sampling time	1 99	60	Min
AL	AL01	50573	49612.6	BYTE			RW	Maximum number of events in alarm log for alarm signal	0 99	0	num.
AL	AL10	50580	49613	BYTE			RW	DIGITAL ALARMS Number of high pressure alarm events	1 255	1	num.
AL	AL11	50581	49613.2	BYTE			RW	Low pressure alarm bypass time	0 255	120	sec
AL	AL12	50582	49613.4	BYTE			RW	Number of low pressure alarms	1 255	3	num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	U.M.
AL	AL13	50583	49613.6	BYTE			RW	Enable low pressure alarm during defrost 0 = Alarm disabled 1 = Alarm enabled	0 1	0	num.
AL	AL14	50584	49614	BYTE			RW	Bypass flow switch time from activation of the internal circuit water pump	0 255	40	sec
AL	AL15	50585	49614.2	BYTE			RW	Flow switch activation/deactivation time on internal circuit automatic alarm	0 255	5	sec
AL	AL16	50586	49614.4	BYTE			RW	Flow switch activation time for internal circuit manual alarm	0 255	2	Sec x 10
AL	AL17	50587	49614.6	BYTE			RW	Bypass flow switch time from activation of the external circuit water pump	0 255	15	sec
AL	AL18	50588	49615	BYTE			RW	Flow switch activation/deactivation time on external circuit automatic alarm	0 255	5	sec
AL	AL19	50589	49615.2	BYTE			RW	Flow switch activation time for external circuit manual alarm	0 255	2	sec x 10
AL	AL20	50590	49615.4	BYTE			RW	Compressor thermoswitch alarm bypass time	0 255	1	sec
AL	AL21	50591	49615.6	BYTE			RW	Number of compressor thermoswitch alarms	1 255	1	num.
AL	AL22	50592	49616	BYTE			RW	Compressor oil pressure switch alarm bypass time	0 255	1	sec
AL	AL23	50593	49616.2	BYTE			RW	Number of compressor oil pressure switch alarms	1 255	1	num.
AL	AL24	50594	49616.4	BYTE			RW	Number of internal exchanger fan thermal switch alarms	1 255	1	num.
AL	AL25	50595	49616.6	BYTE			RW	Number of external exchanger fan thermal switch alarms	1 255	1	num.
AL	AL26	50596	49617	BYTE			RW	Number of internal circuit pump thermal switch alarms	1 255	2	num.
AL	AL27	50597	49617.2	BYTE			RW	Number of external circuit pump thermal switch alarms	1 255	2	num.
AL	AL40	17840	49617.4	WORD	Y	-1	RW	ANALOGUE ALARMS High pressure alarm regulator setpoint from analogue input	-500 999	420	Bar
AL	AL41	17842	49617.6	WORD		-1	RW	High pressure alarm regulator hysteresis from analogue input	1 255	20	Bar
AL	AL42	50612	49618	BYTE			RW	Number of high pressure alarms from analogue input	1 255	1	num.
AL	AL43	50613	49618.2	BYTE			RW	Low pressure alarm bypass time from analogue input	0 255	10	sec
AL	AL44	17846	49618.4	WORD	Υ	-1	RW	Low pressure alarm regulator setpoint from analogue input	-500 999	20	Bar
AL	AL45	17848	49618.6	WORD		-1	RW	Low pressure alarm regulator hysteresis from analogue input	1 255	20	Bar
AL	AL46	50618	49619	BYTE			RW	Number of low pressure alarms from analogue input	1 255	2	num.
AL	AL47	17852	49619.2	WORD	Υ	-1	RW	High temperature alarm regulator setpoint from analogue input	-500 999	800	°C
AL	AL48	17854	49619.4	WORD		-1	RW	High temperature alarm regulator hysteresis from analogue input	1 255	20	°C
AL	AL49	50624	49619.6	BYTE			RW	Time high temperature before alarm	0 255	30	sec x 10
AL	AL50	50625	49620	BYTE			RW	Internal circuit antifreeze alarm bypass time	0 255	1	min
AL	AL51	17858	49620.2	WORD	Υ	-1	RW	Internal circuit antifreeze alarm regulator setpoint	-500 999	40	°C
AL	AL52	17860	49620.4	WORD		-1	RW	Internal circuit antifreeze alarm regulator hysteresis	1 255	20	°C
AL	AL53	50630	49620.6	BYTE			RW	Number of internal circuit antifreeze alarms	1 255	1	num.
AL	AL54	50631	49621	BYTE			RW	External circuit antifreeze alarm bypass time	0 255	1	min
AL	AL55	17864	49621.2	WORD	Y	-1	RW	External circuit antifreeze alarm regulator setpoint	-500 999	40	°C
AL	AL56	17866	49621.4	WORD		-1	RW	External circuit antifreeze alarm regulator hysteresis	1 255	20	°C
AL	AL57	50636	49621.6	BYTE			RW	NO REFRIGERANT Number of external circuit antifreeze alarms	1 255	1	num.
AL	AL70	50640	49622	BYTE			RW	Enable low refrigerant alarm	0 1	0	num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFA ULT	υ.м.
AL	AL71	50641	49622.2	BYTE			RW	Low refrigerant alarm bypass time	0 255	5	min
AL	AL72	17874	49622.4	WORD		-1	RW	Low refrigerant alarm differential	0 255	20	°C
AL	AL73	50644	49622.6	BYTE			RW	Time low refrigerant before alarm	0 255	30	min
AL	AL80	50652	49623	BYTE			RW	MAINTENANCE Compressor start time for maintenance signal	0 255	0	hoursx100
AL	AL81	50653	49623.2	BYTE			RW	Internal pump start time on maintenance signal	0 255	0	hoursx100
AL	AL82	50462	49623.4	BYTE			RW	Internal pump start time on maintenance signal	0 255	0	hoursx100

Parameters AL80/AL81/AL82 see Alarms E081/E085/EO86

27.3 Configuration parameters for XVD driver 1 (1r / 1F / 1L / 1E)

27.3.1 Configuration parameters for XVD driver 2 (2r / 2F / 2L / 2E)

Parameters with prefix 1 are relative to driver XVD1 while those with prefix 2 concern XVD2. Exclusively parameters with prefix 1 are described below; parameters with prefix 2 are identical. The table shows both parameters.

The resources of the 2 XVD drivers can be configured for use by the base in the same way as an expansion.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
1R	1R00	50992	49481	BYTE			RW	Driver EEV1 enabling 0 = driver disabled: 1 = driver enabled	0 1	1	flag
1R	1R30	50997	49481.2	BYTE			RW	1Ai1 analogue input configuration See Table A Analogue Inputs Configuration Note. Values 030	0 30	0	num.
1R	1R31	50998	49481.4	BYTE			RW	1Ai2 analogue input configuration See Table A Analogue Inputs Configuration Note. Values 016	0 16	0	num.
1R	1R32	50999	49481.6	BYTE			RW	1Ai3 analogue input configuration See 1R31	0 16	0	num.
1R	1R33	51000	49482	BYTE			RW	1Ai4 analogue input configuration See 1R31	0 16	0	num.
1R	1R40	50993	49482.2	BYTE	Y		RW	1Ai3 digital input configuration Configures analogue input Ai3 if configured as a digital input See Table B Digital Inputs Configuration	-58 58	0	num.
1R	1R41	50994	49482.4	BYTE	Y		RW	1Ai4 digital input configuration Configures analogue input Ai4 if configured as a digital input See 1R40	-58 58	0	num.
1R	1R91	51004	49483	BYTE	Y		RW	1dO digital output configuration See Table C Digital Outputs Configuration	-53 53	0	num.
1F	1F02	51025	49483.2	BYTE			RW	Control from digital inputs or serial port • 0 = DI (digital input) • 1 = LAN • 2 = LAN + shared probe • 3 = DI (digital input) + shared probe	0 3	1	num.
1F	1F10	51024	49483.4	BYTE			RW	Lincus protocol controller address COM0 2= XVD 1 (MASTER XVD) 3= XVD 2 (SLAVE XVD) 	2 3	2	num.
1L	1L00	51074	49483.6	BYTE			RW	Analogue input type 1Ai1 • 0 = Probe not configured • 1 = NTC. • 2 = Pt1000 • 3 = 4.20 mA • 4 = 0-5 V ratiometric transducer • 5 = 0-10 V • 6 = extended range NTC	0 6	3	num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
1L	1L01	51075	49484	BYTE			RW	Analogue input type 1Ai2 • 0 = Probe not configured • 1 = NTC. • 2 = Pt1000 • 3 = NOT USED • 4 = NOT USED • 5 = NOT USED • 6 = extended range NTC	0 6	1	num.
1L	1L02	51076	49484.2	BYTE			RW	Analogue input type 1Ai3 • 0 = Probe not configured • 1 = NTC. • 2 = NOT USED • 3 = NOT USED • 4 = NOT USED • 5 = NOT USED • 6 = extended range NTC • 7 = DI (digital input)	0 7	1	num.
1L	1L03	51077	49484.4	BYTE			RW	Analogue input type 1Ai4 See 1L02	0 7	1	num.
1L	1L10	18310	49485.2	WORD	Y	-1	RW	Analogue input 1Ai1 full scale value. See Note*	1L11 9999	70	bar
1L	1L11	18314	49485.4	WORD	Y	-1	RW	Analogue input 1Ai1 start scale value	-1451L10	-5	bar
1L	1L20	51086	49486.2	BYTE	Y	-1	RW	Analogue input 1Ai1 differential the differential is calculated on the pressure or temperature value depending on the selected probe type	-120 120	0	bar/°C
1L	1L21	51087	49486.4	BYTE	Y	-1	RW	Analogue input 1Ai2 differential the differential is calculated on the temperature value depending on the selected probe type	-120 120	0	°C
1L	1L22	51088	49486.6	BYTE	Y	-1	RW	Analogue input 1Ai3 differential See 1L21	-120 120	0	°C
1L	1L23	51089	49487	BYTE	Y	-1	RW	Analogue input 1Ai4 differential See 1L21	-120 120	0	°C
1L	1L30	51094	49487.2	BYTE			RW	 1Ai1 analogue input configuration 0=not used 1= evaporator out, 2=saturation, 3=backup evaporator out 4=backup saturation (Note: temperature only) 5 = valve opening direct control 1Ai2 analogue input configuration 	0 5	2	num.
1L	1L31	51095	49487.4	BYTE			RW	 0 = not used 1 = evaporator out, 2=saturation, 3=backup evaporator out 4=backup saturation (Note: temperature only) 	0 4	1	num.
	1L32	51096	49487.6	BAIF	<u> </u>		ĸw	TAIS analogue input configuration	04	0	num.

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
								See 1L30			
1L	1L33	51097	49488	BYTE			RW	1Ai4 analogue input configuration See 1L30	0 4	0	num.
1L	1L40	51092	49488.2	BYTE	Y		RW	 1Ai3 digital input configuration 0 = Digital input not configured ±1 = ON/OFF driver (regulation) ±2 = defrost ±3 = alarm ±4 = installation operating mode COOL / HEAT (see parameters 1E211E22) ±5 = NOT USED ±6 = NOT USED ±7 = NOT USED 	-7 7	0	num.
1L	1L41	51093	49488.4	BYTE	Y		RW	1Ai4 digital input configuration See 1L40	-7 7	5	num.
1L	1L91	51099	49489	BYTE	Y		RW	 1dO digital output configuration 0 = not configured ±1= solenoid valve control ±2= alarm 	-2 2	0	num.
1E	1E00	51026	49489.2	BYTE			RW	Valve model (see parameters dE01dE09, dE80, see XVD parameters table in the Appendix) 0= customisable 112= NOT USED 13= ALCO EXM/EXL 14= SANHUA QA(Q) 15= NOT USED	0 15	14	num.
1E	1E10	51027	49489.4	BYTE			RW	Maximum valve opening percentage Defines the maximum valve opening value or the actuation limitation as a percentage. 0 indicates valve fully closed	0 100	100	%
1E	1E11	51028	49489.6	BYTE			RW	Valve actuation percentage after blackout Value calculated automatically but editable using this parameter for first startup	0 100	0	%
1E	1E12	51029	49490	BYTE			RW	Valve actuation percentage after defrost Value calculated automatically but editable using this parameter for first startup. Se = 0 the percentage is defined by 1E11	0 100	0	%
1E	1E13	51030	49490.2	BYTE			RW	Operating time at max opening for alarm signal If valve opening remains at a value greater than 1E10 for the time defined by 1E13 a maximum opening alarm E107 will be tripped (see Alarms section) Se = 0 signalling disabled	0 255	60	Min
1E	1E14	51031	49490.4	BYTE			RW	Minimum valve useful opening percentage If the regulator commands an output less than or equal to 1E14, the actual output will be = 0.	0 IE15	0	%
1E	1E15	51032	49490.6	BYTE			RW	Maximum valve useful opening percentage If the regulator commands an output greater than or equal to 1E15 the actual output is 1E10 (with 1E15 < 1E10). Disregarded if 1E15 > 1E10	IE14 IE10	100	%
1E	1E16	51033	49491	BYTE			RW	Valve opening percentage during probe error In the case of a probe error defines opening of the valve, as a percentage value	0 100	0	%

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
1E	1E20	51034	49491.2	BYTE			RW	Refrigerant type selection To use only if the configuration is set to 7. Otherwise 1E20 will be disregarded. 0=R404A; 1=r22; 2=R410a; 3=R134a; 4=R744 (CO2); 5=R407C; 6=R427A; 7= customisable	0 7	2	num
1E	1E21	51035	49491.4	BYTE			RW	System type operating mode COOL In the case of 1E21=0 the user can set parameters 1E301E38,1E501E53 See XVD Open parameters set in the Appendix: V12_dE30V12_dE53,, V16_dE30V16_dE53	0 16	12	num.
1E	1E22	51036	49491.6	BYTE			RW	System type operating mode HEAT See 1E21	0 16	13	num.
1E	1E30	51068	49492.4	BYTE			RW	Enable reference overheating recalculation Makes it possible to enable automatic recalculation of the reference setpoint for superheating control 0= recalculation disabled. Setpoint = 1E32; 1 = automatic recalculation enabled	0 1	0	flag
1E	1E31	18288	49492.6	WORD		-1	RW	Overheating upper threshold Makes it possible to set setpoint SP4 a to 1E31 (SP2) for control of superheating after a power loss or on exit from defrost cycle. Active for the time defined by dE51 (or during disabling of MOP function)	0 1000	50	°C
1E	1E32	18286	49493	WORD		-1	RW	Overheating lower threshold Makes it possible to program setpoint SP2 for control of superheating (target superheating) If dE30=1 and calculated setpoint < 1E32 , the dynamic setpoint will be set = 1E32 .	0 1000	50	°C
1E	1E33	18290	49493.2	WORD			RW	Overheating reference recalculation period Valid for 1E30=1 Defines period of recalculation of the dynamic setpoint (every 1E33 seconds)	0 999	20	sec
1E	1E34	18292	49493.4	WORD		-1	RW	Overheating recalculation step The dynamic setpoint varies by 1E34 degrees in accordance with the superheating value with respect to 1E32.	0 1000	1	°C
1E	1E35	18272	49493.6	WORD			RW	Valve opening freezing timer after OFF->ON	0 1999	0	sec
1E	1E36	18294	49494	WORD	Y	-1	RW	Overheating proportional band	-99991	-100	К
1E	1E37	18296	49494.2	WORD			RW	Overheating full time	0 1999	40	sec
1E	1E38	18298	49494.4	WORD			RW	Overheating derivative time	0 1999	0	sec
1E	1E47	51072	49494.6	BYTE			RW	Enable valve manual opening 0= valve automatic opening; 1= valve manual opening	0 1	0	flag
1E	1E48	18302	49495	WORD		-1	RW	Valve manual opening Note: valid if 1E47=1. Note: changing valve opening from automatic to manual (1E47=1) the opening percentage is not 0% as per default parameter but rather the percentage indicated by this parameter	0 1000	0	%
1E	1E50	51052	49495.2	BYTE			RW	Enable MOP 0=MOP disabled; 1=MOP enabled.	0 1	0	flag

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
1E	1E51	18276	49495.4	WORD			RW	MOP disable duration Delay time for MOP activation at startup of return from a defrost cycle.	0 999	0	sec
1E	1E52	18274	49495.6	WORD	Y	-1	RW	Evaporator temperature upper threshold MOP setpoint	-600 1000	0	°C
1E	1E53	51053	49496	BYTE			RW	Min time that temperature upper threshold is exceeded for alarm activation If threshold 1E52 is exceeded for a time longer than 1E53 the MOP alarm is tripped.	0 255	180	sec
	2xx							For descriptions of parameters 2xx refer to the relative parameters 1xx			
2R	2R00	51008	49497	BYTE			RW	Driver EEV2 enabling	0 1	0	flag
2R	2R30	51013	49497.2	BYTE			RW	Analogue input 2Ai1 configuration	0 30	0	num.
2R	2R31	51014	49497.4	BYTE			RW	Analogue input 2Ai2 configuration	0 16	0	num.
2R	2R32	51015	49497.6	BYTE			RW	Analogue input 2Ai3 configuration	0 16	0	num.
2R	2R33	51016	49498	BYTE			RW	Analogue input 2Ai4 configuration	0 16	0	num.
2R	2R40	51009	49498.2	BYTE	Y		RW	Digital input 2Ai3 configuration	-58 58	0	num.
2R	2R41	51010	49498.4	BYTE	Y		RW	Digital input 2Ai4 configuration	-58 58	0	num.
2R	2R91	51020	49499	BYTE	Y		RW	Digital output 2dO configuration	-53 53	0	num.
2F	2F02	51281	49499.2	BYTE			RW	Control from digital inputs or serial port	0 3	1	num.
2F	2F10	51280	49499.4	BYTE			RW	Lincus protocol controller address COM0	2 3	3	num.
2L	2L00	51330	49499.6	BYTE			RW	Analogue input type 2Ai1	0 6	3	num.
2L	2L01	51331	49500	BYTE			RW	Analogue input type 2Ai2	0 6	1	num.
2L	2L02	51332	49500.2	BYTE			RW	Analogue input type 2Ai3	0 7	1	num.
2L	2L03	51333	49500.4	BYTE			RW	Analogue input type 2Ai4	0 7	1	num.
2L	2L10	18566	49501.2	WORD	Y	-1	RW	Analogue input 2Ai1 full scale value. See Note*	2L11 9999	70	bar
2L	2L11	18570	49501.4	WORD	Y	-1	RW	Analogue input 2Ai1 start of scale value	-145 2L10	-5	bar
2L	2L20	51342	49502.2	BYTE	Y	-1	RW	Analogue input 2Ai1 differential	-120 120	0	bar/°C
2L	2L21	51343	49502.4	BYTE	Y	-1	RW	Analogue input 2Ai2 differential	-120 120	0	°C
2L	2L22	51344	49502.6	BYTE	Y	-1	RW	Analogue input 2Ai3 differential	-120 120	0	°C
2L	2L23	51345	49503	BYTE	Y	-1	RW	Analogue input 2Ai4 differential	-120 120	0	°C
2L	2L30	51350	49503.2	BYTE			RW	Analogue input 2Ai1 configuration	0 5	2	num.
2L	2L31	51351	49503.4	BYTE			RW	Analogue input 2Ai2 configuration	0 5	1	num.
2L	2L32	51352	49503.6	BYTE			RW	Analogue input 2Ai3 configuration	0 4	0	num.
2L	2L33	51353	49504	BYTE			RW	Analogue input 2Ai4 configuration	0 4	0	num.
2L	2L40	51348	49504.2	BYTE	Y		RW	Digital input 2Ai3 configuration	-7 7	0	num.
2L	2L41	51349	49504.4	BYTE	Y		RW	Digital input 2Ai4 configuration	-7 7	0	num.
2L	2L91	51355	49505	BYTE	Y		RW	Digital output 2dO configuration	-2 2	0	num.
2E	2E00	51282	49505.2	BYTE			RW	Valve model	0 15	14	num.
2E	2E10	51283	49505.4	BYTE			RW	Maximum valve opening percentage	0 100	100	%
2E	2E11	51284	49505.6	BYTE			RW	Valve actuation percentage after blackout	0 100	0	%
2E	2E12	51285	49506	BYTE			RW	Valve actuation percentage after defrost	0 100	0	%

FOLDER	LABEL	ADDR	VIS ADDR	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
2E	2E13	51286	49506.2	BYTE			RW	Operating time at max opening for alarm signal	0 255	60	Min
2E	2E14	51287	49506.4	BYTE			RW	Minimum valve useful opening percentage	0 2E15	0	%
2E	2E15	51288	49506.6	BYTE			RW	Maximum valve useful opening percentage	2E14 2E10	100	%
2E	2E16	51289	49507	BYTE			RW	Valve opening percentage during probe error	0 100	2	%
2E	2E20	51290	49507.2	BYTE			RW	Select type of gas	0 7	2	num.
2E	2E21	51291	49507.4	BYTE			RW	Type of system operating mode COOL	0 16	1	num.
2E	2E22	51292	49507.6	BYTE			RW	Type of system operating mode HEAT	0 16	2	num.
2E	2E30	51324	49508.4	BYTE			RW	Enable reference overheating recalculation	0 1	0	flag
2E	2E31	18544	49508.6	WORD		-1	RW	Overheating upper threshold	0 1000	50	°C
2E	2E32	18542	49509	WORD		-1	RW	Overheating lower threshold	0 1000	50	°C
2E	2E33	18546	49509.2	WORD			RW	Overheating reference recalculation period	0 999	20	sec
2E	2E34	18548	49509.4	WORD		-1	RW	Overheating recalculation step	0 1000	1	°C
2E	2E35	18528	49509.6	WORD			RW	Valve opening freezing timer after OFF->ON	0 1999	0	sec
2E	2E36	18550	49510	WORD	Y	-1	RW	Overheating proportional band	-99991	-100	К
2E	2E37	18552	49510.2	WORD			RW	Overheating full time	0 1999	40	sec
2E	2E38	18554	49510.4	WORD			RW	Overheating derivative time	0 1999	0	sec
2E	2E47	51328	49510.6	BYTE			RW	Enable valve manual opening	0 1	0	flag
2E	2E48	18558	49511	WORD		-1	RW	Valve manual opening	0 1000	0	%
2E	2E50	51308	49511.2	BYTE			RW	Enable MOP	0 1	0	flag
2E	2E51	18532	49511.4	WORD			RW	MOP disable time at start-up	0 999	0	sec
2E	2E52	18530	49511.6	WORD	Y	-1	RW	Evaporator temperature upper threshold	-600 1000	0	°C
2E	2E53	51309	49512	BYTE			RW	Min time that temp upper threshold is exceeded for alarm activation	0 255	180	sec

*Note. To set 1L10/2L10 use Device Manager o 32x74 SKP10 terminal to ensure parameters' values correct viewing in their full range

27.3.2 Folder visibility table

LABEL	ADDRESS	R/W	DESCRIPTION	DATA SIZE	RANGE	DEFAULT	U.M.
VisSt0	49424	RW	Folder Ai visibility	2 bits	0 3	3	num.
VisSt1	49424.2	RW	Visibility folder	2 bits	0 3	3	num.
VisSt2	49424.4	RW	Folder AO visibility	2 bits	0 3	3	num.
VisSt3	49424.6	RW	Folder dO visibility	2 bits	0 3	3	num.
VisSt4	49425	RW	Folder SP visibility	2 bits	0 3	3	num.
VisSt5	49425.2	RW	Folder Sr visibility	2 bits	0 3	3	num.
VisSt6	49425.4	RW	Folder Hr visibility	2 bits	0 3	3	num.
VisPa0	49425.6	RW	Folder Par visibility	2 bits	0 3	3	num.
VisPa1	49426	RW	Folder FnC visibility	2 bits	0 3	3	num.
VisPa2	49426.2	RW	Folder PASS visibility	2 bits	0 3	3	num.
VisPa3	49426.4	RW	Folder EU visibility	2 bits	0 3	3	num.
VisSSp0	49426.6	RW	Folder SP/COOL visibility	2 bits	0 3	3	num.
VisSSp1	49427	RW	Folder SP/HEAT visibility	2 bits	0 3	3	num.
VisSSp2	49427.2	RW	Folder SP/AS visibility	2 bits	0 3	3	num.
VisSSp3	49427.4	RW	Folder SP\AL visibility	2 bits	03	3	num.
VisSSr0	49427.6	RW	Folder Sr\COOL visibility	2 bits	03	3	num.
VisSSr1	49428	RW	Folder Sr\HEAT visibility	2 bits	0 3	3	num.
VisSSr2	49428.2	RW	Folder Sr\AS visibility	2 bits	0 3	3	num.
VisPP0	49428.4	RW	Folder Par\CL visibility	2 bits	0 3	3	num.
VisPP1	49428.6	RW	Folder Par\Cr visibility	2 bits	0 3	3	num.
VisPP2	49429	RW	Folder Par\CE visibility	2 bits	0 3	3	num.
VisPP3	49429.2	RW	Folder Par\CF visibility	2 bits	0 3	3	num.
VisPP4	49429.4	RW	Folder Par\Ui visibility	2 bits	0 3	3	num.
VisPP5	49429.6	RW	Folder Par\1R visibility	2 bits	0 3	3	num.
VisPP6	49430	RW	Folder Par\1F visibility	2 bits	0 3	3	num.
VisPP7	49430.2	RW	Folder Par \1L visibility	2 bits	0 3	3	num.
VisPP8	49430.4	RW	Folder Par\1E visibility	2 bits	0 3	3	num.
VisPP9	49430.6	RW	Folder Par\2R visibility	2 bits	0 3	0	num.
VisPP10	49431	RW	Folder Par\2F visibility	2 bits	0 3	0	num.
VisPP11	49431.2	RW	Folder Par\2L visibility	2 bits	0 3	0	num.
VisPP12	49431.4	RW	Folder Par\2E visibility	2 bits	0 3	0	num.
VisPP13	49431.6	RW	Folder Par\tr visibility	2 bits	0 3	3	num.
VisPP14	49432	RW	Folder Par\St visibility	2 bits	0 3	3	num.
VisPP15	49432.2	RW	Folder Par\RI visibility	2 bits	0 3	3	num.

LABEL	ADDRESS	R/W	DESCRIPTION	DATA SIZE	RANGE	DEFAULT	U.M.
_VisPP16	49432.4	RW	Folder Par\CP visibility	2 bits	0 3	3	num.
_VisPP17	49432.6	RW	Folder Par\Pi visibility	2 bits	0 3	3	num.
_VisPP18	49433	RW	Folder Par\Fi visibility	2 bits	0 3	3	num.
_VisPP19	49433.2	RW	Folder Par\FE visibility	2 bits	0 3	3	num.
_VisPP20	49433.4	RW	Folder Par\PE visibility	2 bits	0 3	3	num.
_VisPP21	49433.6	RW	Folder Par\Hi visibility	2 bits	0 3	3	num.
_VisPP22	49434	RW	Folder Par\HE visibility	2 bits	0 3	3	num.
_VisPP23	49434.2	RW	Folder Par\HA visibility	2 bits	0 3	3	num.
_VisPP24	49434.4	RW	Folder Par\br visibility	2 bits	0 3	3	num.
_VisPP26	49435	RW	Folder Par\dF visibility	2 bits	0 3	3	num.
_VisPP27	49435.2	RW	Folder Par\dS visibility	2 bits	0 3	3	num.
_VisPP28	49435.4	RW	Folder Par\Ad visibility	2 bits	0 3	3	num.
_VisPP29	49435.6	RW	Folder Par\AF visibility	2 bits	0 3	3	num.
_VisPP30	49436	RW	Folder Par\AS visibility	2 bits	0 3	3	num.
_VisPP31	49436.2	RW	Folder Par\HP visibility	2 bits	0 3	3	num.
_VisPP32	49436.4	RW	Folder Par\PL visibility	2 bits	0 3	3	num.
_VisPP33	49436.6	RW	Folder Par\tE visibility	2 bits	0 3	3	num.
_VisPP34	49437	RW	Folder Par\AL visibility	2 bits	0 3	3	num.
_VisPF0	49437.4	RW	Folder FnC\deF visibility	2 bits	0 3	3	num.
_VisPF1	49437.6	RW	Folder FnC\tA visibility	2 bits	0 3	3	num.
_VisPF2	49438	RW	Folder FnC\St visibility	2 bits	0 3	3	num.
_VisPF3	49438.2	RW	Folder FnC\CC visibility	2 bits	0 3	3	num.
_VisPF4	49438.4	RW	Folder FnC\Eur visibility	2 bits	0 3	3	num.
_VisPFCC0	49623.6	RW	Folder FnC\CC\UL visibility	2 bits	0 3	3	num.
_VisPFCC1	49624	RW	Folder FnC\CC\dL visibility	2 bits	0 3	3	num.
_VisPFCC2	49624.2	RW	Folder FnC\CC\Fr visibility	2 bits	0 3	3	num.

27.3.3 Client Table

RESOURCE	LABEL	ADDRESS	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEF	U.M.
AI	LocalAInput[0]	696	WORD	Y	-1	R	Analogue input AIL1	-500 999	0	°C
AI	LocalAInput[1]	698	WORD	Y	-1	R	Analogue input AIL2	-500 999	0	°C
AI	LocalAInput[2]	700	WORD	Y	-1	R	Analogue input AIL3	-500 999	0	°C/Bar
AI	LocalAInput[3]	702	WORD	Y	-1	R	Analogue input AIL4	-500 999	0	°C/Bar
AI	LocalAInput[4]	704	WORD	Y	-1	R	Analogue input AIL5	-500 999	0	°C
DI	LocalDigInput DIL1	33442	1 bits			R	Digital input DIL1	0 1	0	num.
DI	LocalDigInput DIL2	33442.1	1 bits			R	Digital input DIL2	0 1	0	num.
DI	LocalDigInput DIL3	33442.2	1 bits			R	Digital input DIL3	0 1	0	num.
DI	LocalDigInput DIL4	33442.3	1 bits			R	Digital input DIL5	0 1	0	num.
DI	LocalDigInput DIL5	33442.4	1 bits			R	Digital input DIL5	0 1	0	num.
DI	LocalDigInput DIL6	33442.5	1 bits			R	Digital input DIL6	0 1	0	num.
DO	LocalDigOutput DOL1	33443.2	1 bits			R	Digital output DOL1	0 1	0	num.
DO	LocalDigOutput DOL2	33443.3	1 bits			R	Digital output DOL2	0 1	0	num.
DO	LocalDigOutput DOL3	33443.4	1 bits			R	Digital output DOL3	0 1	0	num.
DO	LocalDigOutput DOL1	33443	1 bits			R	Digital output DOL4	0 1	0	num.
DO	LocalDigOutput DOL5	33443.1	1 bits			R	Digital output DOL5	0 1	0	num.
DO	LocalDigOutput DOL6	33443.5	1 bits			R	Digital output DOL6	0 1	0	num.
AO	AOL LocalDigOutput 1	33443.6	1 bits			R	Digital output AOL1	0 1	0	num.
AO	AOL LocalDigOutput 2	33443.7	1 bits			R	Digital output AOL2	0 1	0	num.
AO	PowerTk[0]	33508	BYTE	Y		R	Analogue output TCL1	0 100	0	num.
AO	PowerTk[1]	33509	BYTE	Y		R	Analogue output AOL1	0 100	0	num.
AO	PowerTk[2]	33510	BYTE	Y		R	Analogue output AOL2	0 100	0	num.
AO	OutPWM[0]	750	WORD	Y	-1	R	Analogue output AOL3	0 999	0	num.
AO	OutPWM[1]	752	WORD	Y	-1	R	Analogue output AOL4	0 999	0	num.
AO	OutPWM[2]	754	WORD	Y	-1	R	Analogue output AOL5	0 999	0	num.
AI	ExtAInput[0]	1148	WORD	Y	-1	R	Analogue input AIE1	-500 999	0	°C
AI	ExtAInput[1]	1150	WORD	Y	-1	R	Analogue input AIE2	-500 999	0	°C

RESOURCE	LABEL	ADDRESS	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEF	U.M.
AI	ExtAInput[2]	1152	WORD	Y	-1	R	Analogue input AIE3	-500 999	0	°C/Bar
AI	ExtAInput[3]	1154	WORD	Y	-1	R	Analogue input AIE4	-500 999	0	°C/Bar
AI	ExtAInput[4]	1156	WORD	Y	-1	R	Analogue input AIE5	-500 999	0	°C
DI	ExtDigInput DIE1	34040	1 bits			R	Digital input DIE1	0 1	0	num.
DI	ExtDigInput DIE2	34040.1	1 bits			R	Digital input DIE2	0 1	0	num.
DI	ExtDigInput DIE3	34040.2	1 bits			R	Digital input DIE3	0 1	0	num.
DI	ExtDigInput DIE4	34040.3	1 bits			R	Digital input DIE4	0 1	0	num.
DI	ExtDigInput DIE5	34040.4	1 bits			R	Digital input DIE5	0 1	0	num.
DI	ExtDigInput DIE6	34040.5	1 bits			R	Digital input DIE6	0 1	0	num.
DO	ExtDigOutput DOE1	34041	1 bits			R	Digital output DOE1	0 1	0	num.
DO	ExtDigOutput DOE2	34041.1	1 bits			R	Digital output DOE2	0 1	0	num.
DO	ExtDigOutput DOE3	34041.2	1 bits			R	Digital output DOE3	0 1	0	num.
DO	ExtDigOutput DOE4	34041.3	1 bits			R	Digital output DOE4	0 1	0	num.
DO	ExtDigOutput DOE5	34041.4	1 bits			R	Digital output DOE5	0 1	0	num.
DO	ExtDigOutput DOE6	34041.5	1 bits			R	Digital output DOE6	0 1	0	num.
AO	ExtDigOutput AOE1	34041.6	1 bits			R	Digital output AOE1	0 1	0	num.
AO	ExtDigOutput AOE2	34041.7	1 bits			R	Digital output AOE2	0 1	0	num.
AO	ExtTKOut[0]	34008	BYTE	Y		R	Analogue output TCE1	0 100	0	num.
AO	ExtTKOut[1]	34010	BYTE	Y		R	Analogue output AOE1	0 100	0	num.
AO	ExtTKOut[2]	34012	BYTE	Y		R	Analogue output AOE2	0 100	0	num.
AO	ExtPWMOut[0]	1234	WORD	Y	-1	R	Analogue output AOE3	0 999	0	num.
AO	ExtPWMOut[1]	1236	WORD	Y	-1	R	Analogue output AOE4	0 999	0	num.
AO	ExtPWMOut[2]	1238	WORD	Y	-1	R	Analogue output AOE5	0 999	0	num.
AI	RemAInput[0]	1144	WORD	Y	-1	R	Analogue input Alr1	-500 999	0	°C
AI	RemAInput[1]	1148	WORD	Y	-1	R	Analogue input AIr2	-500 999	0	°C/Bar
AI	EEV1AInput[0]	1158	WORD	Y	-1	R	Analogue input 1Al1	-500 9999		°C/Bar
AI	EEV1AInput[1]	1160	WORD	Y	-1	R	Analogue input 1AI2	-500 9999		°C
AI	EEV1AInput[2]	1162	WORD	Y	-1	R	Analogue input 1AI3	-500 9999		°C
AI	EEV1AInput[3]	1164	WORD	Y	-1	R	Analogue input 1AI4	-500 9999		°C
DI	EEV1DigInput[0]	34042	1 bits			R	Digital input 1AI3	0 1		flag

RESOURCE	LABEL	ADDRESS	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEF	U.M.
DI	EEV1DigInput[1]	34042.1	1 bits			R	Digital input 1AI4	0 1		flag
DO	EEV1DigOutput[1]	34045.1	1 bits			R	Control output 1DO	0 1		flag
AI	EEV2AInput[0]	1166	WORD	Y	-1	R	Analogue input 2AI1	-500 9999		°C/Bar
AI	EEV2AInput[1]	1168	WORD	Y	-1	R	Analogue input 2AI2	-500 9999		°C
AI	EEV2AInput[2]	1170	WORD	Y	-1	R	Analogue input 2AI3	-500 9999		°C
AI	EEV2AInput[3]	1172	WORD	Y	-1	R	Analogue input 2AI4	-500 9999		°C
DI	EEV2DigInput[0]	34046	1 bits			R	Digital input 2AI3	0 1		flag
DI	EEV2DigInput[1]	34046.1	1 bits			R	Digital input 2AI4	0 1		flag
DO	EEV2DigOutput[1]	34049.1	1 bits			R	Control output 2DO	0 1		flag
setpoint	Cool real setpoint	1321	WORD	Y	-1	R	Cool mode setpoint	-500 999	0	°C
setpoint	Heat real setpoint	1323	WORD	Y	-1	R	Heat mode setpoint	-500 999	0	°C
setpoint	SBSetDHWReal	1399	WORD	Y	-1	R	ACS or anti-legionnaire's disease setpoint	-500 999	0	°C
hysteresis	SBIstCoolReal	1325	WORD	Y	-1	R	Cool mode hysteresis	-500 999	0	°C
hysteresis	SBIstHeatReal	1327	WORD	Y	-1	R	Heat mode hysteresis	-500 999	0	°C
AI	EEV1ResInput[0]	1174	WORD	Y	-1	R	Valve EEV1 superheating temperature	-500 9999		°C
AI	EEV1ResInput[1]	1176	WORD	Y	-1	R	Valve EEV1 saturation temperature	-500 9999		°C
AI	EEV1ResInput[2]	1178	WORD	Y	-1	R	Valve EEV1 superheating temperature (backup)	-500 9999		°C
AI	EEV1ResInput[3]	1180	WORD	Y	-1	R	Valve EEV1 saturation temperature (backup)	-500 9999		°C
AI	EEV1ResInput[4]	1182	WORD	Y	-1	R	Valve EEV1 superheating	-500 9999		K/°R
AI	EEV1ResInput[5]	1184	WORD	Y	-1	R	Valve EEV1 evaporator pressure	-500 9999		bar
AI	EEV1ResInput[6]	1186	WORD		-1	R	Valve EEV1 opening percentage	-500 9999		%
AI	EEV1ResInput[7]	1188	WORD	Y	-1	R	Valve EEV1 superheating setpoint	-500 9999		K/°R
AI	EEV2ResInput[0]	1190	WORD	Y	-1	R	Valve EEV2 superheating temperature	-500 9999		°C
AI	EEV2ResInput[1]	1192	WORD	Y	-1	R	Valve EEV2 saturation temperature	-500 9999		°C
AI	EEV2ResInput[2]	1194	WORD	Y	-1	R	Valve EEV2 superheating temperature (backup)	-500 9999		°C
AI	EEV2ResInput[3]	1196	WORD	Y	-1	R	Valve EEV2 saturation temperature (backup)	-500 9999		°C
AI	EEV2ResInput[4]	1198	WORD	Y	-1	R	Valve EEV2 superheating	-500 9999		K/°R
AI	EEV2ResInput[5]	1200	WORD	Y	-1	R	Valve EEV2 evaporator pressure	-500 9999		bar
AI	EEV2ResInput[6]	1202	WORD		-1	R	Valve EEV2 opening percentage	-500 9999		%
AI	EEV2ResInput[7]	1204	WORD	Y	-1	R	Valve EEV2 superheating setpoint	-500 9999		K/°R

RESOURCE	LABEL	ADDRESS	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEF	U.M.
time	_TimMinOnOnCps	826	WORD			R	Compressors minimum on/on time timer	0 32768	0	d
time	_TimMinOfOfCps	828	WORD			R	Compressors minimum off/off time timer	0 32768	0	d
time	TimMinOnOnPrz	830	WORD			R	Capacity steps minimum on/on time timer	0 32768	0	d
time	TimMinOfOfPrz	832	WORD			R	Capacity steps minimum off/off time timer	0 32768	0	d
time	_TimMinOfOnCp0	834	WORD			R	Compressor 1 minimum on/off timer	0 32768	0	d
time	TimMinOfOnCp1	836	WORD			R	Compressor 2 minimum on/off timer	0 32768	0	d
time	_TimMinOfOnCp2	838	WORD			R	Compressor 3 minimum on/off timer	0 32768	0	d
time	TimMinOfOnCp3	840	WORD			R	Compressor 4 minimum on/off timer	0 32768	0	d
time	TimMinOnOnCp0	842	WORD			R	Compressor 1 minimum on/on timer	0 32768	0	d
time	_TimMinOnOnCp1	844	WORD			R	Compressor 2 minimum on/on timer	0 32768	0	d
time	TimMinOnOnCp2	846	WORD			R	Compressor 3 minimum on/on timer	0 32768	0	d
time	TimMinOnOnCp3	848	WORD			R	Compressor 4 minimum on/on timer	0 32768	0	d
time	_TimMinOnCp0	850	WORD			R	Compressor 1 minimum on time timer	0 32768	0	d
time	TimMinOnCp1	852	WORD			R	Compressor 2 minimum on time timer	0 32768	0	d
time	TimMinOnCp2	854	WORD			R	Compressor 3 minimum on time timer	0 32768	0	d
time	_TimMinOnCp3	856	WORD			R	Compressor 4 minimum on time timer	0 32768	0	d
time	TimEntraDefrostC1	866	WORD			R	Circuit 1 defrost interval/duration timer	0 32768	0	d
time	TimEntraDefrostC2	868	WORD			R	Circuit 2 defrost interval/duration timer	0 32768	0	d
time	_TimSgoccioC1	870	WORD			R	Circuit 1 coil drainage time timer	0 32768	0	d
time	TimSgoccioC2	872	WORD			R	Circuit 2 coil drainage time timer	0 32768	0	d
time	TimRitOnCpPomPri	876	WORD			R	Timer compressor on delay after internal pump	0 32768	0	d
time	TimRitOfPomPriCp	878	WORD			R	Timer internal pump off delay after compressors	0 32768	0	d
time	TimEnvelopeTimTS	1002	WORD			R	Discharge temperature correction timer	0 32768	0	d
time	TimEnvelopeTimTST	1004	WORD			R	Superheating setpoint correction/scanning timer	0 32768	0	min
time	TimEnvelopeTimTtransient	1006	WORD			R	Initial transient timer for compression ratio control	0 32768	0	min
time		1008	WORD			R	Timer for compressor safety operation and for oil recovery	0 32768	0	min
time	TimInverterOff	1010	WORD			R	Inverter off timer	0 32768	0	d
state	_DefrostOnC1	34179.2	1 bits			R	Defrost 1	0 1	0	num.
state	_DefrostOnC2	34179.3	1 bits			R	Defrost 2	0 1	0	num.
state	_ASPCal	34182.6	1 bits			R	ACS status with heat pump	0 1	0	num.

RESOURCE	LABEL	ADDRESS	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEF	U.M.
state	_ALPCal	34182.7	1 bits			R	Anti-legionnaire's status with heat pump	0 1	0	num.
mode	_MemoOff	33284	1 bits			R	Device OFF	0 1	0	num.
mode	MemoRemotOff	33284.1	1 bits			R	Device OFF	0 1	0	num.
mode	_MemoLocalStBy	33284.2	1 bits			R	Device STANDBY	0 1	0	num.
mode	_MemoRemotStBy	33284.3	1 bits			R	Device STANDBY	0 1	0	num.
mode	_MemoLocalCool	33284.4	1 bits			R	Device COOL	0 1	0	num.
mode	_MemoRemotCool	33284.5	1 bits			R	Device COOL	0 1	0	num.
mode	_MemoLocalHeat	33284.6	1 bits			R	Device HEAT	0 1	0	num.
mode	MemoRemotHeat	33284.7	1 bits			R	Device HEAT	0 1	0	num.
mode	_MemoLocalAS	33286	1 bits			R	Device in DHW	0 1	0	num.
mode	MemoRemotAS	33286.1	1 bits			R	Device in DHW	0 1	0	num.
counter	STCPOperatingHours[0]	1285	WORD			R	Compressor 1 operating hours	0 65535	0	hours
counter	STCPOperatingHours[1]	1287	WORD			R	Compressor 2 operating hours	0 65535	0	hours
counter	STCPOperatingHours[2]	1289	WORD			R	Compressor 3 operating hours	0 65535	0	hours
counter	STCPOperatingHours[3]	1291	WORD			R	Compressor 4 operating hours	0 65535	0	hours
counter	STPMOperatingHours[0]	1293	WORD			R	Pump 1 operating hours	0 65535	0	hours
counter	STPMOperatingHours[1]	1295	WORD			R	Pump 2 operating hours	0 65535	0	hours
counter	STPMOperatingHours[2]	1297	WORD			R	Pump 3 operating hours	0 65535	0	hours
differential	SBDiffSetPoint	1341	WORD	Y	-1	R	Temperature controller setpoint dynamic differential	-500 999	0	°C
offset	SBDiffAdaptive	1343	WORD	Y	-1	R	Adaptive function offset	-500 999	0	°C
differential	STDiffResPri	1345	WORD	Y	-1	R	Supplementary heater setpoint dynamic differential	-500 999	0	°C
differential	STDiffWater Heater	1347	WORD	Y	-1	R	Water heater setpoint dynamic differential	-500 999	0	°C
setpoint	SBSetStartSbri	1355	WORD	Y	-1	R	Defrost start set point	-500 999	0	°C
state	SBCircuiti[0].OutAttive	34145	BYTE			R	Temperature control steps supplied circuit 1	0 4	0	num.
state	SBCircuiti[0].OutAttive	34151	BYTE			R	Temperature control steps supplied circuit 2	0 4	0	num.
state	EEV1Status	34043	BYTE			R	EEV1 regulation status	0 255	0	num.
state	EEV2Status	34047	BYTE			R	EEV2 regulation status	0 255	0	num.
alarm	E000	33360	1 bits			R	General alarm	0 1	0	flag
alarm	E001	33360.1	1 bits			R	Digital high pressure alarm circuit 1	0 1	0	flag
alarm	E002	33360.2	1 bits			R	Digital high pressure alarm circuit 2	0 1	0	flag

RESOURCE	LABEL	ADDRESS	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEF	U.M.
alarm	E003	33360.3	1 bits			R	Analogue high pressure alarm circuit 1	0 1	0	flag
alarm	E004	33360.4	1 bits			R	Analogue high pressure alarm circuit 2	0 1	0	flag
alarm	E005	33360.5	1 bits			R	Digital low pressure alarm circuit 1	0 1	0	flag
alarm	E006	33360.6	1 bits			R	Digital low pressure alarm circuit 2	0 1	0	flag
alarm	E007	33360.7	1 bits			R	Analogue low pressure alarm circuit 1	0 1	0	flag
alarm	E008	33361	1 bits			R	Analogue low pressure alarm circuit 2	0 1	0	flag
alarm	E009	33361.1	1 bits			R	Low refrigerant alarm	0 1	0	flag
alarm	E010	33361.2	1 bits			R	Compressor 1 thermal switch alarm	0 1	0	flag
alarm	E011	33361.3	1 bits			R	Compressor 2 thermal switch alarm	0 1	0	flag
alarm	E012	33361.4	1 bits			R	Compressor 3 thermal switch alarm	0 1	0	flag
alarm	E013	33361.5	1 bits			R	Compressor 4 thermal switch alarm	0 1	0	flag
alarm	E015	33361.7	1 bits			R	Compressor 1 oil pressure switch alarm	0 1	0	flag
alarm	E016	33362	1 bits			R	Compressor 2 oil pressure switch alarm	0 1	0	flag
alarm	E017	33362.1	1 bits			R	Compressor 3 oil pressure switch alarm	0 1	0	flag
alarm	E018	33362.2	1 bits			R	Compressor 4 oil pressure switch alarm	0 1	0	flag
alarm	E020	33362.4	1 bits			R	Internal circuit flow meter alarm	0 1	0	flag
alarm	E021	33362.5	1 bits			R	Primary circuit pump 1 thermal switch alarm	0 1	0	flag
alarm	E022	33362.6	1 bits			R	Primary circuit pump 2 thermal switch alarm	0 1	0	flag
alarm	E025	33363.1	1 bits			R	Primary circuit pump thermal cut-out alarm	0 1	0	flag
alarm	E026	33363.2	1 bits			R	External circuit water pump thermal switch alarm	0 1	0	flag
alarm	E030	33363.6	1 bits			R	Internal circuit antifreeze alarm	0 1	0	flag
alarm	E031	33363.7	1 bits			R	External circuit antifreeze alarm	0 1	0	flag
alarm	E035	33364.3	1 bits			R	High temperature alarm	0 1	0	flag
alarm	E040	33365	1 bits			R	Internal exchanger fan thermal switch alarm	0 1	0	flag
alarm	E041	33365.1	1 bits			R	External exchanger fan thermal switch alarm circuit 1	0 1	0	flag
alarm	E042	33365.2	1 bits			R	External exchanger fan thermal switch alarm circuit 2	0 1	0	flag
alarm	E045	33365.5	1 bits			R	Faulty clock alarm	0 1	0	flag
alarm	E046	33365.6	1 bits			R	Time lost alarm	0 1	0	flag
alarm	E047	33365.7	1 bits			R	LAN communication absent alarm	0 1	0	flag
alarm	E048	33366	1 bits			R	Anti-Legionnaire's Alarm	0 1	0	flag

RESOURCE	LABEL	ADDRESS	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEF	U.M.
alarm	E050	33366.2	1 bits			R	Primary exchanger electric heater 1 thermal switch alarm	0 1	0	flag
alarm	E051	33366.3	1 bits			R	Primary exchanger electric heater 2 thermal switch alarm	0 1	0	flag
alarm	E056	33367	1 bits			R	Auxiliary output alarm	0 1	0	flag
alarm	E060	33367.4	1 bits			R	Primary exchanger air/water inlet temperature probe faulty alarm	0 1	0	flag
alarm	E061	33367.5	1 bits			R	Primary exchanger air/water outlet temperature probe faulty alarm	0 1	0	flag
alarm	E062	33367.6	1 bits			R	Faulty disposable exchanger temperature probe alarm	0 1	0	flag
alarm	E063	33367.7	1 bits			R	Faulty disposable exchanger air/water inlet temperature probe alarm	0 1	0	flag
alarm	E064	33368	1 bits			R	Faulty disposable exchanger air/water outlet temperature probe alarm	0 1	0	flag
alarm	E066	33368.2	1 bits			R	Sanitary water temperature probe faulty alarm	0 1	0	flag
alarm	E067	33368.3	1 bits			R	Faulty display probe alarm	0 1	0	flag
alarm	E068	33368.4	1 bits			R	Faulty external temperature probe alarm	0 1	0	flag
alarm	E069	33368.5	1 bits			R	Faulty circuit 1 or 2 high pressure transducer alarm	0 1	0	flag
alarm	E070	33368.6	1 bits			R	Faulty circuit 1 or 2 low pressure transducer alarm	0 1	0	flag
alarm	E073	33369.1	1 bits			R	Faulty dynamic setpoint input alarm	0 1	0	flag
alarm	E074	33369.2	1 bits			R	Faulty primary exchanger transducer alarm	0 1	0	flag
alarm	E075	33369.3	1 bits			R	Faulty disposable exchanger 1 or 2 transducer alarm	0 1	0	flag
alarm	E080	33370	1 bits			R	Configuration error alarm	0 1	0	flag
alarm	E081	33370.1	1 bits			R	Compressor operating hours exceeded warning	0 1	0	flag
alarm	E085	33370.5	1 bits			R	Primary circuit pump operating hours exceeded signal	0 1	0	flag
alarm	E086	33370.6	1 bits			R	External circuit pump operating hours exceeded signal	0 1	0	flag
alarm	E090	33371.2	1 bits			R	Alarm log full warning	0 1	0	flag
alarm	E101	33372.5	1 bits			R	Input error dAi1 EEV1	0 1		flag
alarm	E102	33372.6	1 bits			R	Input error dAi2 EEV1	0 1		flag
alarm	E103	33372.7	1 bits			R	Input error dAi3 EEV1	0 1		flag
alarm	E104	33373	1 bits			R	Input error dAi4 EEV1	0 1		flag
alarm	E105	33373.1	1 bits			R	Valve EEV1 superheating probe alarm	0 1		flag
alarm	E106	33373.2	1 bits			R	Valve EEV1 saturation probe alarm	0 1		flag
alarm	E107	33373.3	1 bits			R	Valve EEV1 MOP alarm	0 1		flag
alarm	E108	33373.4	1 bits			R	Valve EEV1 max output alarm	0 1		flag
alarm	E109	33373.5	1 bits			R	Valve EEV1 external alarm	0 1		flag

RESOURCE	LABEL	ADDRESS	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEF	U.M.
alarm	E110	33373.6	1 bits			R	Valve EEV1 no-link alarm	0 1		flag
alarm	E111	33373.7	1 bits			R	Valve EEV1 motor alarm: current consumption too high	0 1		flag
alarm	E112	33374	1 bits			R	Valve EEV1 motor alarm: winding 1 not connected	0 1		flag
alarm	E113	33374.1	1 bits			R	Valve EEV1 motor alarm: winding 1 short-circuited	0 1		flag
alarm	E114	33374.2	1 bits			R	Valve EEV1 motor alarm: winding 2 not connected	0 1		flag
alarm	E115	33374.3	1 bits			R	Valve EEV1 motor alarm: winding 2 short-circuited	0 1		flag
alarm	E201	33385.1	1 bits			R	Input error dAi1 EEV2	0 1		flag
alarm	E202	33385.2	1 bits			R	Input error dAi2 EEV2	0 1		flag
alarm	E203	33385.3	1 bits			R	Input error dAi3 EEV2	0 1		flag
alarm	E204	33385.4	1 bits			R	Input error dAi4 EEV2	0 1		flag
alarm	E205	33385.5	1 bits			R	Valve EEV2 superheating probe alarm	0 1		flag
alarm	E206	33385.6	1 bits			R	Valve EEV2 saturation probe alarm	0 1		flag
alarm	E207	33385.7	1 bits			R	Valve EEV2 MOP alarm	0 1		flag
alarm	E208	33386	1 bits			R	Valve EEV2 max output alarm	0 1		flag
alarm	E209	33386.1	1 bits			R	Valve EEV2 external alarm	0 1		flag
alarm	E210	33386.2	1 bits			R	Valve EEV2 no-link alarm	0 1		flag
alarm	E211	33386.3	1 bits			R	Valve EEV2 motor alarm: current consumption too high	0 1		flag
alarm	E212	33386.4	1 bits			R	Valve EEV2 motor alarm: winding 1 not connected	0 1		flag
alarm	E213	33386.5	1 bits			R	Valve EEV2 motor alarm: winding 1 short-circuited	0 1		flag
alarm	E214	33386.6	1 bits			R	Valve EEV2 motor alarm: winding 2 not connected	0 1		flag
alarm	E215	33386.7	1 bits			R	Valve EEV2 motor alarm: winding 2 short-circuited	0 1		flag
net command	Remote_Mute	33822.2	1 bits			w	Manual alarms reset	0 1	0	num.
net command	Remote_Cool	33822.3	1 bits			w	Select COOL mode	0 1	0	num.
net command	Remote_Heat	33822.4	1 bits			w	Select HEAT mode	0 1	0	num.
net command	Remote_StBy	33822.5	1 bits			W	Select STANDBY mode	0 1	0	num.
net command	Remote_Defrost	33822.6	1 bits			W	Manual defrost activation	0 1	0	num.
net command	Remote_OnOff	33822.7	1 bits			W	Select ON/OFF mode	0 1	0	num.
net command	RemoteFormatStorAll	33823	1 bits			w	Reset alarm history	0 1	0	num.
net command	Remote_AS	33823.1	1 bits			w	Select DHW mode	0 1	0	num.
net command	Remote_RemTimeBands	33823.2	1 bits			w	Enable/Disable Time Bands	0 1	0	num.

RESOURCE	LABEL	ADDRESS	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEF	U.M.
net command	CMD_LOCK_DISP_ON	33282.2	1 bits			w	Keypad lock	0 1	0	num.
net command	CMD_LOCK_DISP_OFF	33282.2	1 bits			w	Keypad unlock	0 1	0	num.
net command	CMD_RESET	33280	1 bits			w	Device reset	0 1	0	num.

28 FUNCTIONS (FOLDER FNC)

The Functions menu is used to perform a number of manual functions such as switching the device on/off, acknowledging alarms, deleting the alarm history, running a manual defrost and using the Multi Function key (MFK).

Several of these operations can be performed from the keyboard and main display using the keys - see User Interface chapter. By means of a parameter – see parameters chapter – the functions associated with keys can be disabled and password-only access to these functions can be allowed at a "Service" level. For more details, see the table below:

	Label	Operation	Function activated by [key] if configured
FnC	dEF	Manual defrost	YES [UP]
	tA	Reset alarms	YES [UP+DOWN]
	St	Switch terminal on/off	YES [DOWN]
	CC	Using the Multi Function Key	NO
	EUr	Reset alarm log	NO

To open the Functions menu (folder Fnc) execute steps 1-4 as indicated below

28.1 Manual defrost activation (folder dEF)

See 1-4	Press [esc + set] in the main screen. The label 'PAr' will appear. Scroll with 'UP' and 'DOWN' to display the 'FnC' label. Press 'set'. The label 'dEF' will appear. Scroll with 'UP' and 'DOWN' to display the 'dEF' label.
Press the 'set' key to activate defrost manually from the keyboard	The DEFROST LED will start to blink.

28.2 Manual Reset (folder tA)

See 1-4	Press [esc + set] in the main screen. The label 'PAr' will appear. Scroll with 'UP' and 'DOWN' to display the 'FnC' label. Press 'set'. The label 'dEF' will appear. Scroll with 'UP' and 'DOWN' to display the 'tA' label
	Press the 'set' key for manual reset N.B.: resetting an active alarm will save the alarm in the alarm log.
Press the "set" key to activate defrost manually from the keyboard	The DEFROST LED will start to blink.

28.3 Change On/OFF state (folder St)

28.4 Multi Function key

When connected to the TTL serial port, the Multi Function Key (MFK) allows you to program device parameters (up/download parameter map to or from one or more devices of the same type) rapidly and also program the device's firmware.

Connecting the Multi Function Key

NOTE: Use the YELLOW Cable to make the connection between MFK and SBA600.

For rapid programming of the parameters, the upload (label UL), download (label dL) and multi function key formatting (label Fr) operations are performed as explained below:

UPLOAD (copy from CONTROLLER to MULTI FUNCTION KEY)

This operation serves to download the programming parameters and alarms log from Energy SBA600 to the Multi Function Key. DOWNLOAD (copy from MULTI FUNCTION KEY to CONTROLLER)

This operation serves to upload the programming parameters from the Multi Function Key to the controller.

FORMAT*

Formatting the Multi Function Key consists of deleting its contents

* this should be done prior to Uploading when the key is used for the first time

See 1-4	Upload / Download / Formatting The download procedure is illustrated in the figure. Press [esc + set] in the main screen. The label 'PAr' will appear. Scroll with 'UP' and 'DOWN' to display the 'FnC' label. Press 'set'. The label 'dEF' will appear. Scroll with 'UP' and 'DOWN' to display the 'CC' label.				
The commands you need to use the Multi Function Key are in the "CC" folder. Press 'set' to access the functions.	Use the 'UP' and 'DOWN' keys to display the desired function: UL for upload / dL for download /Fr for format Press the 'set' key and the upload (or download) will be performed (in this example, dL- download) Wait for a few seconds				
diluceli diluce	or a few seconds elly, 'yes' is displayed; otherwise 'Err' is displayed (°).				
On completion, remove the MFK					

28.4.1 Download from reset

Connect the MFK with the device switched off.

Firmware download

At start up, if compatible firmware is installed on the MFK (the MFK can be prepared in this sense with the Device Manager software), the new firmware is downloaded into the device.

- This occurs as follows:
 - firmware verification/update (MFK LED flashes) -
 - termination with successful programming (MFK steadily lit)
 - switch off the device
- If compatible firmware is not loaded into the MFK, no firmware download can occur.

If, on termination, the MFK LED does not remain steadily lit, the operation must be repeated as this means it has failed.

Parameters download

When the device is switched on, if there is a compatible parameter map in the MFK, the programming parameters are loaded into the device;

N.B.:

- if the MFK contains both compatible firmware and a compatible parameter map, the firmware is downloaded first and then (after the device has been switched off and back on again manually) the parameter map is downloaded The formatting function is ONLY REQUIRED FOR UPLOADING (**):
 - to use the Multi Function Key the first time (Multi Function Key that has never been used) and 0 0
 - to use the Multi Function Key with models that are not reciprocally compatible.
 - (**) a pre-programmed card supplied by Eliwell to DOWNLOAD parameters does not need to be 0 formatted. NOTE: Formatting can NOT be cancelled.
- after the download operation, the instrument will work with the newly loaded parameters map/firmware.
- Remove the key on completion of the operation
- (°) if the string Err / dLn (download from reset) appears:
 - Check that the key is connected to the controller
 - Check the Multi Function Key Energy SBA600 connection (check the TTL cable)
 - Check that the key is compatible with the controller
 - Contact Eliwell Technical Support

See 1-4	Press [esc + set] in the main screen. The label 'PAr' will appear. Scroll with 'UP' and 'DOWN' to display the 'FnC' label. Press 'set'. The label 'dEF' will appear. Scroll with 'UP' and 'DOWN' to display the 'EUr' label.
Press the "set" key for 3 seconds [set]	The 'YES' label is displayed to indicate that the alarm log has been deleted

Reset alarm log (folder EUr) 28.5

29 DEVICEMANAGER

The Device Manager software uses the TTL serial connection of the SB600 to simplify and aid in installing and managing the SB600

Main features

- Device parameters management.
- Real-time monitoring and recording of system variables.
- Device alarms records management.
- Firmware updating.

All basic components required for the use of DeviceManager are described below.

29.1.1 Device Manager software component

The software has a graphic user interface, which is described in the DeviceManager manual.

The Device Manager software supports both Eliwell and Modbus protocols.

The functionalities available to the customer depend on which Device Manager hardware interface he/she has purchased.

29.1.2 Device Manager interface component

The USB/TTL hardware interface, used in association with the software package, enables:

- use of the software itself.
- connection to devices for controlling them.
- connection to the Multi Function Key component.

There are three different types of interface, corresponding to three user levels:

- DMI 100-1 END USER.
- DMI 100-2 SERVICE.
- DMI 100-3 MANUFACTURER.

Depending on the type purchased, the client has access to the functions described above.

29.1.3 Multi Function Key Component

This is a memory device, which enables: updating the device's parameter values. updating the device's firmware. downloading parameter values from the device. downloading the alarms records from the device.

For more details --> See manual 8MAx0219 Device Manager X = 0 IT; 1 EN; 2 FR; 3 ES; 5 DE; A RU

30 SUPERVISION

The serial TTL – which we will call COM1 – can be used to configure the device, parameters, states, and variables with Modbus via the Modbus protocol.

30.1 Configuration with Modbus RTU

Modbus is a client/server protocol for communication between devices connected in a network. Modbus devices communicate using a master-slave technique in which only one device (master) can send messages. The other devices in the network (slaves) respond, returning the data requested by the master or executing the action specified in the message sent. A slave is a device connected to a network that processes information and sends the results to the master using the Modbus protocol.

The master device can send messages to individual slaves or to the entire network (broadcast) whilst slaves can only respond individually to the master.

The Modbus standard used by Eliwell employs the RTU code for data transmission.

30.1.1 Data format (RTU)

The coding model used defines the structure of messages transmitted on the network and the way in which this information is deciphered. The type of coding is usually selected on the basis of specific parameters (baud rate, parity, etc.)***; furthermore, some devices support only specific coding models, although it must be the same one for all devices connected in a Modbus network.

The protocol uses the RTU binary method with bytes configured as follows:

8 bits for data, even parity bit, 1 stop bit (non-configurable).

***can be set via parameters

CF30- Modbus protocol controller address CF31- Modbus protocol Baudrate

N.B.: the transmission rate must be set to 9600 baud.

Parameter setting allows full configuration of the device

Parameters can be changed using:

- Device keypad
- Multi Function Key
- By sending data via the Modbus protocol straight to individual instruments, or via broadcast, using the address 0 (broadcast)

PC connection / Interface	RS232 cable		
Device / Bus Adapter connection	5-core TTL cable (30cm) (other		
	measurements/lengths available)		
Bus Adapter	BA150		
Bus Adapter / Interface	RS485 cable		
connection	Shielded and twisted (e.g.: Belden cable		
	model 8762)		

30.1.2 Modbus commands available and data areas

The following commands are implemented:

Modbus	Description of command
command	
3	Read multiple registers on Client side
16	Write multiple registers on Client side
43	Read device ID
	DESCRIPTION
	Manufacturer ID
	Model ID
	Version ID

Length restrictions

Maximum length in bytes of messages sent to device	30
	BYTES
Maximum length in bytes of messages received by	30
device	BYTES

Multiple reading of the 2 real setpoints

Measurement	Decimal	Hex	Size
Device address (slave):	1	0x01	bytes
Read command code:	3	0x03	bytes
Start address:	975	0x03CF	Word
Number of words to read:	3	0x0003	Word

Configuration of COOL operating mode

Value 8 written in the word for remote commands at address h2FC.

Measurement	Decimal	Hex	Size
Device address (slave):	1	0x01	bytes
Write command code:	10	0x0A	bytes
Write address:	764	0x02FC	Word
Number of words to write:	1	0x0001	Word
Number of byte (No. word x 2):	2	0x02	Word
Value (word) to write:	8	0x0008	Word

On completion of the operation the device will switch to COOL mode (if enabled).

Configuration of ON/OFF operating mode

Value 128 written in the word for remote commands at address h2FC.

On completion of the operation the device will toggle the On/Off sate (if enabled).

The RAM variables can be monitored and the possible commands are listed below.

List of possible commands:

- Manual alarm reset
- Change operating mode (Heat, Cool and St-By)
- Switch device on/off
- Enable defrost

Following this procedure, additional operations are also possible, including:

- Read alarm log
- Change/set time
- Reset operating time of compressor and pump outputs

Reading the alarm log

The alarm log is saved in EEPROM in a circular buffer composed of logical 7-byte records in the following formats:

Byte	Bits	Index	Data	Values		
0	0	Bit 0	Free alarm record flag	Must always be 0		
	1	Bit 1	Alarm state	0 = alarm reset; 1 = alarm in progress		
	2	Bit 2	Automatic reset alarm	0 = automatic reset; $1 =$ manual reset		
	3	-				
	4	-				
	5	-	Not used			
	6	-				
	7	-				
1	0	Bit 0	Alarm start minutes	0-59 = minutes		
	1	Bit 1		>59 = indeterminate value		
	2	Bit 2				
	3	Bit 3				
	4	Bit 4				
	5	Bit 5				
	6	Bit 0		0-59 = minutes		
	7	Bit 1		>59 = indeterminate value		
2	0	Bit 2	Alarm end minutes			
	1	Bit 3				
	2	Bit 4				
	3	Bit 5				
	4	Bit 0		0-23 = hours		
	5	Bit 1		>23 = indeterminate value		
	6	Bit 2	Alarm start hours			
	7	Bit 3				
3	0	Bit 4				
	1	Bit 0		0-23 = hours		
	2	Bit 1		>23 = indeterminate value		
	3	Bit 2	Alarm end hours			
	4	Bit 3				
	5	Bit 4				
	6	Bit 0		1-31 = day		
	7	Bit 1		0 > 31 = indeterminate value		
4	0	Bit 2	Alarm start date			
	1	Bit 3				
	2	Bit 4				
	3	Bit 0		1-31 = day		
	4	Bit 1	Alarm end date	0 > 31 = indeterminate value		
	5	Bit 2				
	6	Bit 3				
	7	Bit 4				
--	-----------	--------------	---------------------	--------------------------------------	---------------------------------	--
	0	Bit 0			0-23 = hours	
	1	Bit 1	Alarm sta	rt month	>23 = indeterminate value	
	2	Bit 2	7 Hurmi Stu	it month		
5	3	Bit 3				
5	4	Bit 0			0-23 = hours	
	5	Bit 1	Alarm on	d month	>23 = indeterminate value	
	6	Bit 2	Alarin Ch			
	7	Bit 3				
	0	Bit 0			0-99 = alarm code	
	1	Bit 1			>99 Not permitted	
	2	Bit 2				
C	3	Bit 3	Alarma Ca	J.,		
0	4	Bit 4	Alarm Co	de		
	5	Bit 5				
	6	Bit 6				
	7	Bit 7				
Γo find the ind	ex of th	e first reco	ord present.	read variable PntSt	orAll at the address h83A8.	
To find the num	nber of	records pr	esent. read	variable NumStorA	ll at the address h83A9.	
		I I I	,			
Address 0x83A	8 =>	data: (0x0027 = Ii	ndex of first record (the most recent):	
Address 0x83A	8 =>	data: (0x0027 = n	umber of records pre	esent (39):	
				1		
Calculation of	the addr	ess of the	most recen	t record:		
Address EU00	= 51712	2 + (N-1)x	$x_7 = 51712$	+17x7 = 51832 (0x	CA77)	
		(/				
Read EU00						
ГХ: 01. 03. CA	. 77. 00). 07. 8B. (CA.			
RX: 01, 03, 0E	. 00. 82	. 00. DD. (00. CF. 00.	FE. 00. 04. 00. 06. 0	00. 3C. 9B. 13.	
	,,	,,,	,,	1 2,00,01,00,00,00,	,,,,,	
Adress 0xCA77 => date: 0x0082 = Byte 0 of the alarm log record						
Address $0xCA78 =>$ date: $0x00DD =$)x00DD	= Byte 1 of the alar	m log record	
Address 0xCA	79 =>	date: ()x00CF	= Byte 2 of the alar	m log record	
Address 0xCA	7A =>	date: (0x00FE	= Byte 3 of the alar	m log record	
Address 0xCA	7B =>	date: ()x0004	= Byte 4 of the alar	m log record	
Address 0xCA	7C =>	date: ()x0006	= Byte 5 of the alar	m log record	
Address 0xCA	7D =>	date: ()x003C	= Byte 6 of the alar	m log record	
				,		
Free alarm reco	ord flag	= b 0		= 0		
Free alarm reco	ord flag	= b 1		= 1		
Automatic rese	t alarm	= b 0		= 0		
Not Used			= b 1000)0 =	free	
Alarm start mir	nutes	= b 01	1101	= 29		
Alarm end min	utes	= b 11	1111	= 63 (indeterminate)	
Alarm start hours = $b 01100$				= 12		
Alarm end hours $=$ b 11111 $=$ 3				= 31 (indeterminate)	
Alarm start date $=$ b 10011 $=$				= 19		
Alarm end date $= b 00000 = 0$				= 0 (indeterminate)		
Alarm start month $= b 0110$ $= 6$						
Alarm end month= $b 0000 = 0$ (indeterminate)						
Alarm code $= b \ 00111100 = 60$						
The result show	vs that c	on EU00 tl	here is an E	2 r60 started on 19/00	b at 12.19 still active.	
Fo read FU01	the add	ress is det	ermined as	follows		
		1 = 1 ddm	an EU00 7	10110 W S.	~	

To read EU02 continue subtracting 7 from the address EU01 and so on...

N.B.: The minimum limit is the address 51712 (hCA00) after which, if there are still alarms to be read, it starts again from address 52404 (hCCB5) (the buffer is circular and after the 99th record, the older ones are overwritten).

Reading time changes/settings

To write the time, address the structure *DataWrite* to address h82F4. The seconds bytes must be written last!

Example: time setting h11:33 del 28/03/2007

Measurement	Network	Decimal	Hex	Size
0: seconds	H82F4	0	0x0000	bytes
1: minutes	H82F5	33	0x0021	bytes
2: hours	H82F6	11	0x000B	bytes
3: day of week	H82F7	-	-	bytes
4: day of month	H82F8	28	0x001C	bytes
5: month	H82F9	3	0x0003	bytes
6: year	H82FA	7	0x0007	bytes

NOTE: The seconds bytes must be written last!

Write sequence:

The following 6-word sequence is written at address H82F5: 46, 12, 0, 19, 6, 8.

A word equal to 00 is written at address H82F4.

Resetting operating hours

To read and/or clear operating time, address the counters in the device's EEPROM and RAM.

STCPOreFunz[0]	
STCPOreFunz[1]	
STPMOreFunz[0]	
STPMOreFunz[1]	

at address h3AB Operating hours CP1 (in Ram) at address h3AD Operating hours CP2 (in Ram) at address h3B3 Operating hours P1 (in Ram) at address h3B5 Operating hours P2 (in Ram)

*EE_OreFunzCP0*at address h4F20 Operating hours CP1 (in EEPROM) *EE_OreFunzCP1*at address h4F22 Operating hours CP2 (in EEPROM) *EE_OreFunzP0* at address h4F38 Operating hours P1 (in EEPROM) *EE_OreFunzP1* at address h4F38 Operating hours P2 (in EEPROM)

Multiple reading of operating hours CP at address h3AB in RAM. The full command to be sent to the device will be:

Address 0x03AB =>	date: $0x0065 = 101$ operating hours CP1;
Address 0x03AC =>	date: $0x0000 = not used$
Address 0x03AD =>	date: $0x0001 = 1$ operating hour CP2;

Clear time CP1 (in RAM and EEPROM) Write 0 operating hours CP at address h3AB in RAM.

Write 0 operating hours CP at address h4F20 in Eeprom.

Variable list: See Parameters (PAr) Chapter, Client Table

30.2 Configuration of device address

The address of a device (Device Number) in a ModBus message is defined by parameter **CF30 - Modbus protocol controller address**

The address 0 is used for broadcast messages that all slaves recognize. Slaves do not respond to broadcast messages.

30.2.1 Configuration of parameter addresses

The list of addresses is given in the Parameters chapter under the section headed "Parameters Table / ADDRESS column visibility" (parameters addresses) and VIS PAR ADDRESS (addresses visibility parameters).

30.2.2 Configuration of variable addresses / states

The list of addresses is given in the Parameters chapter, under the section headed Client Table ADDRESS column.

31 ANNEXE – XVD DRIVER

XVD is the Eliwell driver platform solution with open board for management of servo-driven electronic stepper expansion valves of the single pole type suitable for a range of requirements on the HVAC/R market and beyond.

The facility to select the type of refrigerant and compatibility with the most popular valve models on the market make KVC a particularly versatile module.

XVD also makes it possible to configure a refrigerant that is not included in the preset factory list.

Operating the valve with a current driven motor and independent operation for heating and cooling by means of double mapping of the regulator improves performance.

In fact, XVD allows very precise, stable and reliable regulation of the flow of refrigerant with a consequent increase in efficiency and energy saving through control of superheating and opening of the valve in accordance with the performance required of the system and different working conditions.

Reliability is guaranteed by isolated serial connections and backup sensors.

XVD is used in association with the Energy Flex SBA series of compact controllers for management of chillers and heat pumps with up to 2 circuits and 4 compressors per circuit.

Parameters configuration

XVD has a Modbus RTU serial communication standard interface and the option of downloading parameter maps and applications via the Multi Function Key.

Ratiometric pressure sensors can also be connected with no need for any further serial interfaces.

All digital inputs and outputs are independent and configurable, meaning they can be adapted to suit any system. The power supply is $24V \sim / 24V =$

31.1.1 Main functions

- Refrigerant selection
- Backup probes for saturation control and evaporator outlet (superheating)
- Parameter settings from SBA or PC
- Multi Function Key (MFK) to download or upload parameter maps and applications
- **Device**Manager software for rapid parametric programming
- Configurable ratiometric NTC inputs, Pt1000, 4...20 mA, 0...10 V, 0...5 V

31.2 Models and Features

-->See Models chapter

31.3 XVD assembly

The boards are set up for installation on the rear of the panel. To install, use plastic spacers to be inserted in the 4 holes in the board

Fit the board in environments in which the temperature does not exceed 55 °C and where there is sufficient air circulation. The board is open and must be adequately protected from dust and water.

The permissible ambient temperature range for correct operation is between -5 and 55 °C with 90% non-condensing relative humidity.

31.4 Electrical connections

31.4.1 General warnings

Before proceeding make sure the controller is connected to a suitable external transformer. The following rules must be followed when connecting boards to each other and to the application:

- Check the rating data of the valve as declared by the manufacturer's manual
- Loads that exceed the maximum limits specified in this manual/product label must not be applied to outputs.
- When connecting loads, follow connection diagrams carefully.
- To avoid electrical coupling, wire SELV services separately from high voltage services.

Before connecting the valve configure the XVD driver appropriately by selecting the valve type from among the compatible options

IMPORTANT!

Make sure the appliance is switched off before working on the electrical connections. All operations must be carried out by qualified personnel.

The connection is made by means of removable screw connectors (use wires with maximum section \leq 2.5mm²) mounted on the boards.

To ensure proper connections, comply with the following:

- Power supplies other than those specified can seriously damage the system.
- Use cables of suitable section for the terminals
- Separate the cables of probes from inductive loads and high voltage connections to prevent any electromagnetic interference. Do not place the probe cables near other electrical equipment (switches, meters, etc.)
- Make connections as short as possible and do not wind them around electrically connected parts.
- To avoid causing static discharges, do not touch the electronic components on the boards.
- The controller must be connected to a suitable transformer that complies with the specifications provided in the Specifications chapter.

Important!

Make sure that the power supply is of the correct voltage for the controller.

Pressure probes

31.4.1.1 Analogue Inputs-Probes

Temperature probes have no connection polarity and can be extended using a normal two-core cable (note that the extension of the probes tends to impact negatively on the instrument's EMC: take great care with the wiring).

Important!

Pressure probes have a specific connection polarity which must be observed.

Signal cables (temperature/pressure probes, digital inputs, TTL serial) must be wired separately from high voltage cables. Eliwell-supplied probes are recommended. Contact the Eliwell sales department for availability.

31.4.1.2 Serial connections

TTL Use a 5-wire TTL cable up to 30cm in length.

An Eliwell-supplied TTL cable is recommended. Contact the Eliwell sales department for availability.

- MFK TTL for connection to MFK
- LAN 3-wire powered LAN serial output available on terminal board (removable quick connector) for connection to the LAN (see Applications section)

Max distance 100m

This connection is to be used to connect the modules of the Flex series (including the SKP 10 terminal)

N.B.: If the driver is connected in a LAN with instruments from the Energy Flex series, XVD will behave as an expansion: <u>the SKP 10 terminal will act on modules of the Flex series (in which the XVD parameters are replicated) and not on XVD</u>. To modify the parameters directly or display the resources of XVD, use the serial port in association with Device Manager

31.5 Wiring diagrams

Terminal	Label	Description	Notes	Parameters SBA Folder 1L/2L
CN3	Open Collector	Load power Open Collector	Max LOAD 100mA Max LOAD 100mA (CN3/12V= + CN10/12V=)	1L91 2L91
CN1	Valve Output	Valve output	DO NOT connect / DO NOT short the 5 th and 6 th wire of the valve, if present	
CN4	Supply	Power supply	In the case of a DC supply, check polarity	
		Ground	We advise connecting the ground wire if possible	
CN6 CN8 CN9	LAN	Voltage serial connection	BLACK= GND; BLUE=SIGNAL; RED=12V (INPUT)	
	GND	Ground		
	5 V 	Probes power supply	For ratiometric probe	
	12V	Probes power supply	Power supply for probes with 420 mA current input Max LOAD 100mA (CN3/12V= + CN10/12V=)	
CN10	AI1	Analogue input 1		1L10 / 1L11 / 1L20 2L10 / 2L11 / 2L20
	AI2	Analogue input 2		1L12 / 1L13 / 1L21 2L12 / 2L13 / 2L21
	AI3	Analogue input 3		1L22 2L22
	AI4	Analogue input 4		1L23 2L23
MFK		Connection to MultiFunctionKey		
CN7	TTL	Televis/MODBUS connection	Via Bus Adapter	

Colours of probes and transducers		
Black	Black	
Blue	Blue	
Brown	Brown	
Red	Red	
White	White	
Yellow	Yellow	
Signal	Signal	
Transducer	Transducer	
Transducer Power Supply	Transducer power supply	

Colour	Colour			
Black	Black			
Blue	Blue			
Brown	Brown			
Red	Red			
White	White			
Yellow	Yellow			
Note				
Check val	ve manufacturer's datasheet			
Check th manufact	e rating data of the valve as shown in the urer's manual			

3-wire LAN powered serial output available on the terminal board for connection to SBA. Max distance 100 \mbox{m}

31.6 Technical Specifications

	Standard	Min.	Max.
Supply voltage	24 V~/		
Supply frequency	50 Hz/60 Hz		
Power consumption	30 VA / 25 W		
Insulation class	2		
Working temperature	25 °C	-5 °C	55 °C
Working humidity (non-condensing)	30%	10%	90%
Storage temperature	25 °C	-20 °C	85 °C
Storage humidity (non-condensing)	30%	10%	90%

Classification		
The product meets the requirements of the following	Directive 2006/95/EC	
European Community Directives:	Directive 89/108/EC	
It also complies with the following harmonized regulations:	EN 60730-2-6 / EN 60730-2-9 / EN 60730-1	
Use	Operating (not safety) device for incorporation	
Mounting	Panel or on DIN Omega bar support.	
Type of action	1.B	
Pollution class	2 (normal)	
Voltage surge category	Π	
Nominal pulse voltage	2500V	
Digital outputs	refer to the label on the controller	
Fire resistance category	D	
Software class and structure	Α	
PTI of materials used for insulation	PTI 250V	
Period of electrical stress of insulating parts	Long period	

31.7 I/O features

Analogue input	NTC probe 103AT 10kΩ	NTC extended range	Pt1000	4-20 mA	Ratiometric 0-5V	0-10 V	Digital input
Al1	•	•	•	•	•	•	-
AI2	•	•	•	-	-	-	-
AI3	•	•	-	-	-	-	•
AI4	•	•	-	-	-	-	•
Measurement range	-50°C +99.9 °C	-40°C +150.0 °C	-0.5 +99.9;	-14.5 +999.9;	-14.5 +999.9;	0.0 +100.0;	-
Accuracy	1% full scale	1% full scale	1% full scale	1% full scale	1% full scale	1% full scale	-
Corrective action	0.1°C	0.1°C	0.1°C	0.1 bar	0.1 bar	0.1 bar	-
Impedance	/	/	/	100Ohm	110KOhm	21KOhm	-

Digital output

Open Collector	1 x Open Collector output
safety extra low voltage SELV DO	Max current 100mA @12V-
Salely Excla low vollage SLLV DO	

Τ

31.8 Serial

Label	Description			
TTL	1 TTL serial for connection with a PC via a suitable interface module			
MFK	1 TTL serial port for connection to MFK to upload/download parameters and/or SW application			
LAN	Removable quick connect terminals for integration of Energy Flex network			

31.9 Transformer

•

The instrument must be connected to a suitable current transformer with the following features:
 Primary voltage: Depending on requirements of the individual device and/or country of installation.
 Secondary voltage: 24 V~/...
 Power supply frequency: 50/60 Hz

- 30 VA / 25 W Power:

Note: cable must be no longer than 10 m

31.9.1 Dimensions

	Length (L) mm	Depth (d) mm	Height (H) mm	Notes		
XVD dimensions	102.6	1.6	107.3	Open board		

31.10 MFK

Download for reset

The **Multi Function Key (MFK)** is an accessory that when connected to the TTL serial port, allows rapid programming of the controller parameters (up/download parameter map to or from one or more controllers of the same type) rapidly and/or the controller's application software.

For rapid programming of the parameters, the upload (label UL), download (label dL) and multi function key formatting (label Fr) operations are performed as explained below:

UPLOAD (copy from CONTROLLER to MFK)

With this operation the programming parameters will be uploaded from EVD to MFK

DOWNLOAD (copy from MFK to CONTROLLER) This operation downloads the programming parameters from MFK to the instrument.

FORMAT*

Formatting **MFK** consists of deleting its contents

* this should be done prior to Uploading when the key is used for the first time

Connect the Key with the controller switched off.

Firmware download

At start up, if compatible firmware is installed on the **MFK** (**MFK** can be prepared with firmware using the Device Manager software), the new firmware is downloaded to the controller.

This occurs as follows:

- firmware verification/update (MFK LED flashes)
- termination with successful programming (MFK LED steadily lit)
- switch off the controller

If compatible firmware is not loaded on the MFK, no firmware download can occur.

If, on termination, the MFK LED does not remain steadily lit, the operation must be repeated as this means it has failed.

Download parameters

When the controller is switched on, if there is a compatible parameter map in the MFK the programming parameters are loaded into the controller;

N.B.:

- If the MFK is loaded with both a compatible firmware and a compatible parameter map, the firmware is downloaded first and then (after the controller has been switched off and back on again manually) the parameter map
- The formatting function is ONLY REQUIRED FOR UPLOADING (**):
- to use the Multi Function Key the first time (Multi Function Key that has never been used) and
- to use the Multi Function Key with models that are not reciprocally compatible.
- (**) a pre-programmed board supplied by Eliwell to DOWNLOAD parameters does not need to be formatted. NOTE: Formatting CANNOT be undone.
- after the download operation the instrument will work with the newly loaded parameters map/firmware.
- Remove the key on completion of the operation

31.11 Operation

XVD is a controller for electronic step type expansion valves that regulates the minimum superheating value at the evaporator outlet.

The regulation value is the percentage opening of the valve, which is translated into a percentage of activation of the valve output on the basis of the following parameters:

• 1E10 / 2E10 - Maximum valve opening percentage (maximum opening of the valve);

• 1E14 / 2E14 - Minimum valve useful opening percentage (minimum effective opening of the valve);

• 1E15 / 2E15 - Maximum valve opening percentage (maximum effective opening of the valve).

If the regulator commands an output greater than or equal to **1E15 / 2E15**, the actual output will be equal to **1E10 / 2E10**. N.B.: If **1E15 > 1E10 (2E15 > 2E15)** the function is disregarded.

If the regulator commands an output less than or equal to dE14, the actual output will be 0.

If the regulator commands an output greater than or equal to **1E10** / **2E10** for a time greater than **1E13** / **2E13** a maximum opening alarm **E108** / **E208** is generated to signal a critical condition of the system, such as low charge, undersized design, etc. N.B.: to disable this signal set **1E13** / **2E13** =0.

Saturation set

XVD calculates the real superheating value using the two analogue inputs for superheating, dA13, and saturation, dA11.

By means of a PID controller the regulator modulates opening of the valve in such a way that superheating reaches setpoint **1E32 / 2E32**. The algorithm is dynamic: the effective superheating value may fail to reach the programmed setpoint or it may drop below said value temporarily.

If this results in the egress of liquid from the evaporator the **1E32 / 2E32** setpoint value must be increased. N.B.: valid for **1E30=1 (2E30=1)**

System type 1E21 (2E21).

The PID configuration parameters will be uploaded automatically by the controlled by selecting the type of system defined by parameter **1E21 / 2E21**.

MOP (Maximum Operating Pressure)

MOP regulation envisages a threshold defined by the pressure setpoint **1E52** / **2E52**. Once this threshold has been exceeded for a time greater than **1E53** / **2E53**, a MOP alarm will be generated (see **E107** / **E207**).

- MOP regulation can be enabled by means of parameter 1E501/ 2E50.
- MOP regulation can be disabled when the controller is powered on / on return from a defrost condition for a time equal to **1E51 / 2E51**.

31.12 XVD applications

31.12.1.1 Digital Inputs regulation

AI3 and AI4 can be configured as digital inputs.

Setup of digital inputs is performed by means of parameters 1L40 and 1L41 / 2L40 and 2L41

If they are different from zero the digital inputs assume priority over the corresponding serial commands (if they are configured in the same manner AI3 assumes priority).

The command is transmitted on a digital input or serial interface on the basis of parameters dF02 / dF02

Value 1L40/1L41 2L40/2L41			
±1	ON	Regulation activation	Forcing valve opening to value: 1E11/2E11 - Valve actuation percentage after power loss For a period: 1E35/2E35 - Valve opening freeze timer after OFF->ON
	OFF	Regulation deactivation	Valve closing (saving of current percentage to 1E11/2E11)
±2	ON	Defrost	Valve closing Note: the digital input configured ±1 is disregarded until defrost end At the end of the defrost cycle the valve is forced open to the value defined by: 1E12/2E12 - Valve actuation percentage after defrost (If ≠ 0) Otherwise refer to 1E11/2E11
	OFF	No defrost	See regulation ON
+3	ON	Preheat	Valve closing
1.0	OFF	No alarm	/
+1	ON	Preset factory	Activation of regulation with profile defined by 1E22/2E22 – Type of system operating mode HEAT
±4	OFF	regulation	Activation of regulation with profile defined by 1E21/2E21 – Type of system operating mode COOL

31.12.2 Example of 1 circuit heat pump application

• Driver XVD controls the electronic expansion valve (EEV)

• Driver XVD receives commands for defrosting and control of EEV from Energy Flex via the Eliwell LAN. In the absence of communication XVD closes valve EEV and signals an alarm condition.

31.12.3 Example of 2 circuit heat pump

Application 2 XVD drivers - 1 Energy Flex series controller

- The network can manage a maximum of 2 XVD drivers + 1 Energy Flex
- Driver 1 controls electronic expansion valve 1 (first circuit EEV);
- Driver 2 controls electronic expansion valve 2 (second circuit EEV)
- Drivers 1&2 receive commands for defrosting and control of the respective expansion valves EEV (1 per circuit) from Energy Flex via the Eliwell LAN.
- Set the network address using the dipswitches for XVD;
- 0= first circuit);
- 1= second circuit
- In the absence of communication XVD closes valve EEV and signals an alarm condition.

31.13 Alarms

The XVD controller can run full diagnostics on the system, signalling any operating faults with specific alarms, and record and signal, directly on the SBA display, specific user-defined events to achieve greater control over the system as a whole.

Alarm conditions The alarm condition is always signalled by LEDs in correspondence with the alarm icon and by activation of the output on relays, if appropriately configured.

Probe errors are displayed directly on the SBA display

Alarms Table

See SBA600 Alarms section

31.14 Configuration with Modbus RTU

The TTL serial port - which we will call COM0 – can be used to configure the controller, parameters, states, and variables with Modbus via the Modbus protocol.

Modbus is a client/server protocol for communication between devices connected in a network.

Modbus devices communicate using a master-slave technique in which only one device (master) can send messages. The other devices in the network (slaves) respond, returning the data requested by the master or executing the action specified in the message sent. A slave is a device connected to a network that processes information and sends the results to the master using the Modbus protocol.

The master device can send messages to individual slaves or to the entire network (broadcast) whilst slaves can only respond individually to the master.

The Modbus standard used by Eliwell employs the RTU code for data transmission.

31.14.1 Data format (RTU)

The coding model used defines the structure of messages transmitted on the network and the way in which this information is deciphered. The type of coding is usually selected on the basis of specific parameters (baud rate, parity, etc.)***; furthermore, some devices support only specific coding models, although it must be the same one for all devices connected in a Modbus network.

The protocol uses the RTU binary method with bytes configured as follows: 8 bits for data, even parity bit, 1 stop bit (non-configurable).

***can be set via parameters

- dF30 Modbus protocol controller address
- dF31 Modbus protocol baud rate
- dF32 Modbus protocol parity

Parameter setting allows full configurability of the controller. The parameters are editable by sending data via the Modbus protocol directly to an individual controller. The connection diagram when using Modbus is shown below

31.14.2 Modbus commands available and data areas

The following commands are implemented:

Modbus command	Description of command
3	Read multiple registers on Client side
16	Write multiple registers on Client side
43	Read device ID
	DESCRIPTION
	Manufacturer ID
	Model ID
	Version ID

Length restrictions

Maximum length in bytes of messages sent to device	60 BYTES
Maximum length in bytes of messages received by device	60 BYTES

31.15 Configuration of device address

The address of a device (Device Number) in a ModBus message is defined by parameter <u>dF30</u> The address 0 is used for broadcast messages that all slaves recognize. Slaves do not respond to broadcast messages.

31.15.1 Configuration of parameter addresses

The list of addresses is given in the Parameters chapter under the section headed "Parameters Table / ADDRESS column visibility" (parameters addresses) and VIS PAR ADDRESS (addresses visibility parameters).

31.15.2 Configuration of variable addresses / states

List of addresses

31.16 Table of XVD parameters

Folder label	Meaning of acronym (label)	Parameters:
dF	driver protocol conFiguration	Protocols Configuration
dE	Driver valve configuration	Valve configuration

When not indicated otherwise, the parameter is always visible and modifiable, unless customized settings have been configured via serial.

FOLDER	LABEL	VALUE PAR ADDRESS	DATA SIZE	CPL	EXP	VALUE PAR ADDRESS	RESET (Y/N)	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
dE	dE10	40166	BYTE					RW	Lincus protocol controller address COM0 • 2= XVD 1 (MASTER XVD) • 3= XVD 2 (SLAVE XVD) Other values NOT USED	0 15	2	num
dF	dF30	49175	BYTE			49437.6	Y	RW	Modbus protocol controller address NOTE: 0 (zero) is not included	1 255	1	num.
dF	dF31	49176	BYTE			49438	Y	RW	 Modbus protocol Baudrate 0=1200 baud 1=2400 baud 2=4800 baud 3=9600 baud 4=19200 baud 5=38400 baud (maximum speed that can be set using DeviceManager software) 6=57600 baud 7=115200 baud 	0 7	3	num.
dF	dF32	49177	BYTE			49438.2	Y	RW	 Modbus protocol parity 0 = NONE 1 = EVEN 2 = ODD 	0 2	1	num.
dF	dF60	16426	BYTE					RW	Client code 1	0 999	0	num.
dF	dF61	16428	BYTE					RW	Client code 2	0 999	0	num.
Parameters dE01dE09/dE80 are visible and settable only if the SBA600 parameter 1E00 / 2E00 - Valve model =0. The Modbus addresses in the case of 1E00 / 2E00 =0 are shown below Note that visibility of parameters dE01dE09/dE80 cannot be set via serial line Check the data shown in the valve manual supplied by the manufacturer to ensure they are correctly configured												

FOLDER	LABEL	VALUE PAR ADDRESS	DATA SIZE	CPL	EXP	VALUE PAR ADDRESS	RESET (Y/N)	R/W	DESCRIPTION	RANGE	DEFAULT	W. D
dE	dE01	16720	WORD			1	Y	RW	Stepper motor maximum speed Establishes the maximum speed of the valve motor to ensure the steps are precise and complete	-1999 9999	See table A	Steps (step/s)
dE	dE02	16752	WORD			/		RW	Stepper motor complete opening Defines the maximum number of valve steps. Total excursion is referred to FULL STEP mode (dE07=0) Complete opening of the valve is determined by arrival at said value	0 9999	See table A	Steps
dE	dE03	49552	BYTE			/		RW	Stepper motor extra movement in total closure Defines the number of extra steps of the valve beyond the full stroke position to ensure correct total closure. A total closure command means the valve will be positioned at zero plus an additional number of steps dE03	0 255	See table A	Steps
dE	dE04	16800	WORD			1		RW	Stepper motor winding maximum current Defines the maximum current per phase utilised by the valve (maximum torque)	0 9999	See table A	mA
dE	dE05	49600	BYTE			1		RW	Stepper motor winding resistance Defines the electrical resistance of each phase winding (connection faults check)	0 255	See table A	Ohms
dE	dE06	16848	WORD			1		RW	Stepper motor winding rated current Defines the current circulating in the phases in the valve stopped condition (minimum torque)	0 9999	See table A	mA
dE	dE07	16848	BYTE			/		RW	Type of stepper motor control Defines the control mode. 0= FULL STEP • 1= FULL STEP 2= MICRO STEP Note that current control is at the maximum value for FULL STEP mode while for the other two modes modulating the winding current value allows higher resolution and smoother movements although with lower torque. Refer to stepper motor literature for more details	0 2	See table A	num.
dE	dE08	50960	BYTE			1		RW	Activate / disable stepper motor duty cycle In the case of Superheating of the valve reduce the activation duty cycle to give it time to cool	0 100	See table A	%
dE	dE09	50976	BYTE			/		RW	Stepper motor acceleration / deceleration Defines acceleration/deceleration at motor start/stop. The time between one step and the next is reduced by dE09 ms at each step until dE01 is reached If =0 no acceleration is applied	0 255	See table A	10*ms/step
dE	dE80	49648	BYTE			1		RW	Stepper motor minimum speed for acceleration / deceleration Defines the minimum speed at which the motor starts and stops	0 255	See table A	Steps Steps/s

FOLDER	LABEL	VALUE PAR ADDRESS	DATA SIZE	CPL	EXP	VALUE PAR ADDRESS	RESET (Y/N)	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
dE	dE19	49648	BYTE			/		RW	Tolerance on stepper motor winding resistance (the value is expressed as a percentage of dE05) Defines the extent to which the load resistance is considered to be variable with respect to the parameter defined by dE05 (wiring faults check)	0 255	255	%
dE	dE93	49231	BYTE			49444.2	Y	RW	Motor activation / disabling time Defines the period of stepper motor activation / deactivation cycles (Duty cycle. See dE08	0 255	10	Sec*10
Parameters dE30dE38/dE50dE53 can be displayed and set on the basis of parameters dE21dE23 The Modbus addresses in the case of dE21=0 are shown below Note that visibility of these parameters cannot be set via serial line												
dE	dE30	49308	BYTE			49445.6		RW	Enable reference superheating recalculation Makes it possible to enable automatic recalculation of the W reference setpoint for superheating control 0 0 = recalculation disabled. Setpoint = dE32; 1 = automatic recalculation		0	num.
dE	dE31	16512	WORD		-1	49446		RW	Superheating upper threshold Makes it possible to set setpoint SP4 a to dE31 (SP2) for control of superheating after a power loss or on exit from a defrost cycle. Active for the time defined by dE51 (or during disabling of MOP function)	01000	60	°C/°F
dE	dE32	16510	WORD		-1	49446.2		RW	Superheating lower threshold Makes it possible to program setpoint SP2 for control of superheating (target superheating) If dE30=1 and the calculated setpoint < 1E32, the dynamic setpoint will be set = dE32.	01000	60	°C/°F
dE	dE33	16514	WORD			49446.4		RW	Superheating reference recalculation period Valid for dE30=1 Defines period of recalculation of the dynamic setpoint (every dE33 seconds)	0999	20	sec
dE	dE34	16516	WORD		-1	49446.6		RW	Superheating recalculation step The dynamic setpoint varies by dE34 degrees in accordance with the superheating value with respect to dE32.	01000	1	°C/°F
dE	dE35	16470	WORD			49447		RW	Valve opening freezing timer after OFF->ON	01999	0	sec
dE	dE36	16518	WORD	Y	-1	49447.2		RW	Superheating proportional band	-99991	-100	К
dE	dE37	16520	WORD			49447.4		RW	Superheating full time	01999	40	sec
dE	dE38	16522	WORD			49447.6		RW	Superheating derivative time	01999	0	sec
dE	dE50	49270	BYTE			49450.4		RW	Enable MOP 0=MOP disabled; 1=MOP enabled.	0 1	0	num.

FOLDER	LABEL	VALUE PAR ADDRESS	DATA SIZE	CPL	EXP	VALUE PAR ADDRESS	RESET (Y/N)	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
dE	dE51	16478	WORD			49450.6		RW	MOP disable duration Delay time for MOP activation at startup or return from a defrost cycle.	0999	0	sec
dE	dE52	16472	WORD	Y	-1	49451		RW	Evaporator temperature upper threshold MOP setpoint	-60 100	0	°C/°F
dE	dE53	49271	BYTE			49451.2		RW	Min time that temperature upper threshold is exceeded for alarm activation If threshold dE52 is exceeded for a time longer than dE53 the MOP alarm is tripped.	0 255	180	sec

The default values for compatible values (selectable via **1E00 / 2E00 – Value Model** \neq **0**) are factory settings and cannot be edited Refer to the summary table with the default values

1E00 - 2E00	VALVE type	dE01	dE02	dE03	dE04	dE05	dE06	dE07	dE08	dE09	dE80
		Steps/s	steps	steps	mA	Ohms	mA	Num.	%	10*ms/step	Steps/s
0	customisable	-45	250	50	105	92	35	1	100	50	10
112, 15	NOT USED	/	/	/	/	/	/	/	/	/	/
13	ALCO EXM / EXL	45	250	50	200	133	70	1	100	50	10
14	SANHUA QA(Q)	-45	250	50	105	92	35	1	100	50	10

The default values of the factory preset configurations can be altered via serial line. Refer also to the following table

31.16.1 Table A

Valve	configuration	paran	neters	dE01.	.dE09	, dE80 wi	th 1E	00 / 2	2E00 –	Valve m	odel	≠0
				~								-

1E00/2E00	VALVE	LABEL	VALUE PAR ADDRESS	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
0	customisable	rameters	neters / visibility table								
13	ALCO EXM / EXL	dE01	16746	WORD			RW	Stepper motor maximum speed	0 9999	45	steps/s
13	ALCO EXM / EXL	dE02	16778	WORD			RW	Stepper motor complete opening	0 9999	250	steps
13	ALCO EXM / EXL	dE03	49565	BYTE			RW	Stepper motor extra movement in total closure	0 255	50	steps
13	ALCO EXM / EXL dE04 16826 WC		WORD			RW	Stepper motor winding maximum current	0 9999	200	mA	
13	ALCO EXM / EXL dE05 49613 BYTE			BYTE			RW	Stepper motor winding resistance	0 255	133	ohms
13	ALCO EXM / EXL dE06 16874 WOR		WORD			RW	Stepper motor winding rated current	0 9999	70	mA	
13	ALCO EXM / EXL dE07 49661 BYTE RW Type of stepper motor control		0 2	1	num.						
13	ALCO EXM / EXL	dE08	50973	BYTE			RW	Activate/disable stepper motor duty cycle	0 100	100	%
13	ALCO EXM / EXL	dE09	50989	BYTE			RW	Stepper motor acceleration / deceleration	0 255	50	ms*10/step
13	ALCO EXM / EXL	dE80	51005	BYTE			RW	Stepper motor minimum speed for acceleration/deceleration	0 255	10	steps/s
14	SANHUA QA(Q)	dE01	16748	WORD			RW	Stepper motor maximum speed	0 9999	-45	steps/s
14	SANHUA QA(Q)	dE02	16780	WORD			RW	Stepper motor complete opening	0 9999	250	steps
14	SANHUA QA(Q)	dE03	49566	BYTE			RW	Stepper motor extra movement in total closure	0 255	50	steps
14	SANHUA QA(Q)	dE04	16828	WORD			RW	Stepper motor winding maximum current	0 9999	105	mA
14	SANHUA QA(Q)	dE05	49614	BYTE			RW	Stepper motor winding resistance	0 255	92	ohms
14	SANHUA QA(Q)	dE06	16876	WORD			RW	Stepper motor winding rated current	0 9999	35	mA
14	SANHUA QA(Q)	dE07	49662	BYTE			RW	Type of stepper motor control	0 2	1	num.
14	SANHUA QA(Q)	dE08	50974	BYTE			RW	Activate / disable stepper motor duty cycle	0 100	100	%
14	SANHUA QA(Q)	dE09	50990	BYTE			RW	Stepper motor acceleration / deceleration	0 255	50	ms*10/step
14	SANHUA QA(Q) dE80 5100		51006	BYTE			RW	Stepper motor minimum speed for acceleration/deceleration	0 255	10	steps/s

31.16.2 Table B

Working modes

The default values for operating modes (selectable via SBA600 parameters 1E21/2E21 1E22/2E22 \neq 0) are preset in the factory and cannot be edited Refer to the summary table with the default values

		Flag	K	Κ	sec	K	sec	Κ	sec	sec	Flag	sec	°C	sec
1E21/1E22 2E21/2E22	Parameters	1E30 2E30	1E31 2E31	1E32 2E32	1E33 2E33	1E34 2E34	1E35 2E35	1E36 2E36	1E37 2E37	1E38 2E38	 1E50 2E50	1E51 2E51	1E52 2E52	1E53 2E53
0	Customisable See parameters 1E301E38, 1E501E53 SBA600	0	50	50	20	1	0	-100	40	0	10	10	10	10
1E21/1E22 2E21/2E22	Operating mode	dE30	dE31	dE32	dE33	dE34	dE35	dE36	dE37	dE38	 dE50	dE51	dE52	dE53
12	COOL	0	60	60	20	1	0	-100	40	0	0	0	0	180
13	HEAT	0	60	60	20	1	0	-60	60	0	0	0	0	180
14		0	60	60	20	1	0	-30	100	0	0	0	0	180
15		0	60	60	20	1	0	-20	150	0	0	0	0	180
16		0	60	60	20	1	0	-15	100	0	0	0	0	180

The default values of the factory preset configurations can be altered via serial line. Refer also to the following table

FOLDER	LABEL	ADDRESS	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	υ.м.
Vx	V12_dE30	50397	BYTE			RW	Enable reference Superheating recalculation	0 1	0	flag
Vx	V12_dE31	17632	WORD		-1	RW	Superheating upper threshold	0 1000	60	К
Vx	V12_dE32	17630	WORD		-1	RW	Superheating lower threshold	0 1000	60	К
Vx	V12_dE33	17634	WORD			RW	Superheating reference recalculation period	0 999	20	seconds
Vx	V12_dE34	17636	WORD		-1	RW	Superheating recalculation step	0 1000	1	К
Vx	V12_dE35	17658	WORD			RW	Valve opening freezing timer after OFF->ON	0 1999	0	seconds
Vx	V12_dE36	17638	WORD	Y	-1	RW	Superheating proportional band	-99991	-100	К
Vx	V12_dE37	17640	WORD			RW	Superheating full time	0 1999	40	seconds
Vx	V12_dE38	17642	WORD			RW	Superheating derivative time	0 1999	0	seconds
Vx	V12_dE50	50396	BYTE			RW	Enable MOP	0 1	0	flag
Vx	V12_dE51	17600	WORD			RW	Duration of MOP disable time at start-up	0 999	0	seconds
Vx	V12_dE52	17602	WORD	Y	-1	RW	Evaporator temperature upper threshold	-600 1000	0	°C
Vx	V12_dE53	50395	BYTE			RW	Min time that temp upper threshold is exceeded for alarm activation	0 255	180	seconds
Vx	V13_dE30	50461	BYTE			RW	Enable reference superheating recalculation	0 1	0	flag
Vx	V13_dE31	17696	WORD		-1	RW	Superheating upper threshold	0 1000	60	К
Vx	V13_dE32	17694	WORD		-1	RW	Superheating lower threshold	0 1000	60	К
Vx	V13_dE33	17698	WORD			RW	Superheating reference recalculation period	0 999	20	seconds

FOLDER	LABEL	ADDRESS	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
Vx	V13_dE34	17700	WORD		-1	RW	Superheating recalculation step	0 1000	1	К
Vx	V13_dE35	17722	WORD			RW	Valve opening freezing timer after OFF->ON	0 1999	0	seconds
Vx	V13_dE36	17702	WORD	Y	-1	RW	Superheating proportional band	-99991	-60	К
Vx	V13_dE37	17704	WORD			RW	Superheating full time	0 1999	60	seconds
Vx	V13_dE38	17706	WORD			RW	Superheating derivative time	0 1999	0	seconds
Vx	V13_dE50	50460	BYTE			RW	Enable MOP	0 1	0	flag
Vx	V13_dE51	17664	WORD			RW	Duration of MOP disable time at start-up	0 999	0	seconds
Vx	V13_dE52	17666	WORD	Υ	-1	RW	Evaporator temperature upper threshold	-600 1000	0	°C
Vx	V13_dE53	50459	BYTE			RW	Min time max temp threshold exceeded for alarm activation	0 255	180	seconds
Vx	V14_dE30	50525	BYTE			RW	Enable reference superheating recalculation	0 1	0	flag
Vx	V14_dE31	17760	WORD		-1	RW	Superheating upper threshold	0 1000	60	к
Vx	V14_dE32	17758	WORD		-1	RW	Superheating lower threshold	0 1000	60	к
Vx	V14_dE33	17762	WORD			RW	Superheating reference recalculation period	0 999	20	seconds
Vx	V14_dE34	17764	WORD		-1	RW	Superheating recalculation step	0 1000	1	К
Vx	V14_dE35	17786	WORD			RW	Valve opening freezing timer after OFF->ON	0 1999	0	seconds
Vx	V14_dE36	17766	WORD	Υ	-1	RW	Superheating proportional band	-99991	-30	К
Vx	V14_dE37	17768	WORD			RW	Superheating full time	0 1999	100	seconds
Vx	V14_dE38	17770	WORD			RW	Superheating derivative time	0 1999	0	seconds
Vx	V14_dE50	50524	BYTE			RW	Enable MOP	0 1	0	flag
Vx	V14_dE51	17728	WORD			RW	Duration of MOP disable time at start-up	0 999	0	seconds
Vx	V14_dE52	17730	WORD	Y	-1	RW	Evaporator temperature upper threshold	-600 1000	0	°C
Vx	V14_dE53	50523	BYTE			RW	Min time max temp threshold exceeded for alarm activation	0 255	180	seconds
Vx	V15_dE30	50589	BYTE			RW	Enable reference superheating recalculation	0 1	0	flag
Vx	V15_dE31	17824	WORD		-1	RW	Superheating upper threshold	0 1000	60	К
Vx	V15_dE32	17822	WORD		-1	RW	Superheating lower threshold	0 1000	60	к
Vx	V15_dE33	17826	WORD			RW	Superheating reference recalculation period	0 999	20	seconds
Vx	V15_dE34	17828	WORD		-1	RW	Superheating recalculation step	0 1000	1	К
Vx	V15_dE35	17850	WORD			RW	Valve opening freezing timer after OFF->ON	0 1999	0	seconds
Vx	V15_dE36	17830	WORD	Υ	-1	RW	Superheating proportional band	-99991	-20	К
Vx	V15_dE37	17832	WORD			RW	Superheating full time	0 1999	150	seconds
Vx	V15_dE38	17834	WORD			RW	Superheating derivative time	0 1999	0	seconds
Vx	V15_dE50	50588	BYTE			RW	Enable MOP	0 1	0	flag
Vx	V15_dE51	17792	WORD			RW	Duration of MOP disable time at start-up	0 999	0	seconds
Vx	V15_dE52	17794	WORD	Y	-1	RW	Evaporator temperature upper threshold	-600 1000	0	°C
Vx	V15_dE53	50587	BYTE			RW	Min time max temp threshold exceeded for alarm activation	0 255	180	seconds
Vx	V16_dE30	50653	BYTE			RW	Enable reference superheating recalculation	0 1	0	flag
Vx	V16_dE31	17888	WORD		-1	RW	Superheating upper threshold	0 1000	60	К

FOLDER	LABEL	ADDRESS	DATA SIZE	CPL	EXP	R/W	DESCRIPTION	RANGE	DEFAULT	U.M.
Vx	V16_dE32	17886	WORD		-1	RW	Superheating lower threshold	0 1000	60	К
Vx	V16_dE33	17890	WORD			RW	Superheating reference recalculation period	0 999	20	seconds
Vx	V16_dE34	17892	WORD		-1	RW	Superheating recalculation step	0 1000	1	К
Vx	V16_dE35	17914	WORD			RW	Valve opening freezing timer after OFF->ON	0 1999	0	seconds
Vx	V16_dE36	17894	WORD	Y	-1	RW	Superheating proportional band	-99991	-15	К
Vx	V16_dE37	17896	WORD			RW	Superheating full time	0 1999	100	seconds
Vx	V16_dE38	17898	WORD			RW	Superheating derivative time	0 1999	0	seconds
Vx	V16_dE50	50652	BYTE			RW	Enable MOP	0 1	0	flag
Vx	V16_dE51	17856	WORD			RW	Duration of MOP disable time at start-up	0 999	0	seconds
Vx	V16_dE52	17858	WORD	Y	-1	RW	Evaporator temperature upper threshold	-600 1000	0	°C
Vx	V16_dE53	50651	BYTE			RW	Min time max temp threshold exceeded for alarm activation	0 255	180	seconds

32 MODELS AND ACCESSORIES

32.1 Models

32.1.1 Models SB • SD • SC

Model	Digital inputs (§)	Digital inputs (*)	Analogue outputs (*)	PWM analogue outputs (**)	Analogue outputs (**)	Analogue inputs (**)	Digital outputs
	(DI1DI6)	(DO1DO4) (+ DO6)	(TC1)	(AO1-AO2)	(AO3-AO5)	(AI)	(DO5)
646	6	4	1	2	3	5	1
655	6	5	//	2	3	5	1
Model	(DI1DI6)	(DO1 DO2 DO3)	(TC1, TC2)	(A01)	(AO3-AO5)	(AI)	(DO4, DO5)
636	6	3	2	1	3	5	2

32.1.2 Expansion modules

Model	Digital inputs (§)	Digital inputs (*)	Analogue outputs (*)	PWM analogue outputs (**)	Analogue outputs (**)	Analogue inputs (**)	Digital outputs
	(DI1DI6)	(DO1DO4) (+ DO6)	(TC1)	(AO1-AO2)	(AO3-AO5)	(AI)	(DO5)
SE632	6	3	//	2	//	3	1
SE646	6	4	1	2	3	5	1
SE655	6	5	//	2	3	5	1

TTL supplied as standard (*) high voltage (**) low voltage (SELV: SAFETY EXTRA LOW VOLTAGE) (§) voltage free (§§) instead of OC: PPM outputs Open Collector PWM Pulse Width Modulation PPM Pulse Position Modulation **PPM Pulse Position Modulation** /S integrated RS485 serial /C indicates the presence of an RTC (Real Time Clock) NOTE: TC2 corresponds to AO2 (TC2=AO2) - see chapter Plant configuration (folder PAr/CL-Cr-CF)

32.1.3 Models XVD

Model	Voltage-free analogue Safety low voltage (SELV)	Digital Output Open Collector	LAN	Power supply
XVD Open	4	1	YES	24 V~/ Imax 0.8 A/ph

32.1.4 List of compatible valves

Driver XVD is compatible with the valves listed below. For use with other valves consult Eliwell Technical Support. Eliwell cannot assume liability in relation to data supplied by the valve manufacturer, including technical alterations and updates. Always consult the valve manufacturer's technical manual to check the rating data and correct operation of the valve.

Model	Power supply	Notes
SANHUA QA(Q)12		single pole
ALCO EXM246		single pole
ALCO EXM246		single pole

32.1.5 Terminals

Model		Mounting	Dimensions	Display	Voltage-free analogue Safety low voltage (SELV)
SKP10	ê <u>798</u> ê ê	Panel	74x32x30 mm	LED / 4 digit	-
SKW22		Wall	137x96.5x31.3 mm	LCD	1 integrated NTC 1 configurable V/I input
SKW22L		Wall	137x96.5x31.3 mm	LCD backlit	1 integrated NTC 1 configurable V/I input
SKP22	:	Panel (°)	160x96x10mm	LCD	1 NTC input
SKP22L		Panel (°)	160x96x10mm	LCD backlit	NTC/DI/420 mA input

Power supply from base (*) Contact the Eliwell Sales Office for wall-mounting accessories.

32.2 Accessories

N.B.: The photos are purely guideline to show the *accessories*. The dimensions shown in the figures are not to scale.

Name		Part number	Description		Documentation / Notes
		TF411205	230V~/12V (protected)	6VA transformer	
Transformer		TF411210	230V~/12V (protected)	11VA transformer	
Multi Function Key		MFK100T000000	Programming ke to upload/down Alarms and appl	y load parameters ications log	
Expansion module EXP11	中語 王 王 王 王 王 王 王 王 王 王 王 王 王	MW320100	230V 10A expan fitted to DIN gui	sion module with base de	
	Ø	COLV0000E0100	Wiring (connected to connect safet low voltage inpu	or + 1m cables) y ts and outputs (SELV)	
Cables	Ø	COLV0000035100	WIRING for serial port RS	5-485	
	Q	COLV000042100	WIRING Smart – AO3-4-5 (connector + 1m		
EMC filter		FT111201	LC filter, networ recommended for with fan speed c	k filter, or applications ontrol.	
	000	SN691150	NTC probe 103A wire cable)	T, 1.5m (plastic cap, 2-	
	<u>)))</u>	SN8DED11502C0	NTC103AT 1.5m IP 68 5x20 -50+1	10°C	
Temperature probes		SN8DED13002C0	NTC103AT 3.0m IP 68 5x20 -50+1	10°C	Double insulated
		SN8DAE11502C0	NTC103AT 1.5m IP 68 6x20 -50+1	10°C	Cable
		SN8DAE13002C0	NTC103AT 3.0m IP 68 6x20 -50+1	10°C	
		TD420010	Ratiometric tran EWPA 010 R connector	sducer 0/5V 0/10BAR Female	
Ratiometric transducers		TD420030	Ratiometric tran EWPA 030 R connector	sducer 0/5V 0/30BAR Female	Includes packard IP67 2m cable
		TD420050	Ratiometric tran EWPA 050 R connector	sducer D/5V 0/50BAR Female	
Pressure transducers(1)	A State	(1)	Male TD220050° TD240050* TD220007°	Female TD320050° TD340050* TD320007°	EWPA050 420mA/050bar IP54° / IP67* EWPA007 420mA/-0.57bar IP54° / IP67*
			TD240007*	TD340007*	Instruction sheet 9IS64173 EWPA EN-IT-ES-DE-FR-RU

Name		Part number	Description	Documentation / Notes
		(1)	HR range (automatic reset) - minimum 100,000 ON/OFF cycles	
Pressure switches		(1)	HL range (manual reset) - minimum 6,000 ON/OFF cycles	
		(1)	HC series (automatic reset) - minimum 250,000 ON/OFF cycles	
	For codes See instruction sheet (1)		CFS FAN MODULES Single-phase speed controllers for currents from 2A to 9A	Instruction sheet 8FI40014 CFS - Fan Speed Modules GB-I-E-D-F
Fan modules		MW991300	CF-REL FAN MODULE 6A 230V relay	Instruction sheet 8FI40014 CFS - Fan Speed Modules GB-I-E-D-F
	9	MW991012	FAN MODULE CFS05 TANDEM TRIAC 5+5A 230V	Instruction sheet 8FI40016 CFS05 - Fan Speed Module GB-I-E-D-F
		Contact Eliwell Sales Department	THREE-PHASE FAN CONTROLLER	Contact Eliwell Sales Department
Interface modules		DM1003002000	DM100-3 Manufacturer	

Name		Part number	Description	Documentation / Notes
		BA11250N3700	Bus Adapter 130 TTL RS485 communication interface TTL/RS- 485 12V aux. output for power supply to device. TTL cable L = 1m (²)	Instruction Sheet 9IS43084 BusAdapter 130-150-350 GB-LE-DE
Connections		BA10000R3700	Bus Adapter 150 TTL RS485 communication interface TTL/RS- 485 TTL cable L = 1m (²)	
		BARF0TS00NH00 (¹)	RadioAdapter TTL/WIRELESS 802.15.4	Instruction Sheet 8FI40023 RadioAdapter GB-I-E-D-F Manual 9MAX0010 RadioAdapter GB-I-E-D-F
	Webdapter	WA0ET00X700	WebAdapter	Instruction sheet 9IS44065 WebAdapter GB-I-E-D-F- RUS Manual 8MA00202 WebAdapter X = 0 IT; 1 EN; 2 FR; 3 ES; 5 DE; A RU
	E.	WA0WF00X700	WebAdapter Wi-Fi	
Software Tools	Device 🍫	Contact Eliwell Sales Department	Device Manager	Contact Eliwell Sales Department
Demo Case		VAL00031K	Demo case	

(1) Various part numbers available. Contact the Sales Department(2) Various lengths can be requested

GENERAL NOTES: COHV and COLV wiring are not necessary if they are made by the manufacturer. Connection of remote keyboard via 3-way cables with no optional modules. Eliwell also has multiple NTC probes for each different cable type (PVC or silicone) and length.

Eliwell Controls S.r.l.

Via dell' Industria, 15 Zona Industriale Paludi 32010 Pieve d' Alpago (BL) Italy Telephone +39 0437 986 111 Facsimile +39 0437 989 066

Sales:

+39 0437 986 100 (Italy) +39 0437 986 200 (other countries) saleseliwell@invensys.com

Technical helpline: +39 0437 986 300 E-mail techsuppeliwell@invensys.com

www.eliwell.it

