Connection
User Manual

Revision 1.2 - July 2011

Connection User Manual

Revision 1.2 - 2011-07-12
Published by Eliwell Controls S.r.l.
Via dell'Industria, 15 Z.I. Paludi
32010 Pieve d’Alpago (BL)

© Eliwell Controls S.r.I. 2010.

All Rights Reserved.

||| |free BULIL

II

user manual

44l

Contents

1. Basic concepts 1
1.1 Entry point and container 1
1.2 Composite applications and Field I/0O 1
1.3 Distributed applications and Binding I/O 1
2. Using the environment 3
2.1 The workspace 3
2.1.1 The main window 3
2.1.2 The output window 4
2.1.3 The project window 5
2.1.4 The catalog window 6
2.2 Layout customization 8
2.3 Toolbars and docking windows 8
2.3.1 Showing/hiding 8
2.3.2 Moving toolbars 8
2.3.3 Moving docking windows 9
3. Managing projects 11
3.1 Creating a new project and main page 11
3.2 Saving the project 12
3.3 Managing existing projects 12
3.3.1 Opening an existing project 12
3.3.2 Closing the project 12
3.4 Building projects 13
3.5 Distributing projects 13
3.5.1 Distributing to other developers 13
3.5.2 Distributing to users or installers 13
4. Managing project elements 15
4.1 FREE Evolution 15
4.1.1 PLC 16
4.1.2 HMI 16
4.1.3 CANopen 17
4.1.4 RS485 20
4.1.5 Ethernet 21
4.2 FREE Evolution EVC 22
4.3 Generic Modbus 23
4.3.1 Modbus messages 23
4.4 Modbus Custom 25
user manual II1

4.4.1
4.4.2
4.4.3
4.4.4

4.5

4.5.1
4.5.2
4.5.3

4.6
4.6.1

4.7

4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6

4.8
4.8.1
4.8.2

4.9

4.9.1
4.9.2
4.9.3

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9
5.1.10
5.1.11
5.1.12
5.1.13
5.1.14

5.2

Creating a new Modbus custom device
Editing an existing Modbus custom device
Deleting a Modbus custom device

Using a Modbus custom device

CAN custom
Importing a new CAN custom device
Deleting a CAN Custom device

Using a CAN custom device

FREE Evolution EVK
CANopen

FREE Evolution EVP
PLC

HMI

Providing HMI pages
CANopen

RS485

Ethernet

FREE Evolution EXP
Using FREE Evolution EXP as CANopen field slave
Using FREE Evolution EXP as RS485 field slave

Virtual channels assignment criteria
CANopen network - virtual SDO servers
Ethernet - TCP Slave Channels

CANopen field - virtual master channels
Technical reference

CANopen protocol

Overview

Physical structure of a CANopen network
COB and COB-ID

The object Dictionary

The Service Data Objects (SDO)

The Process Data Objects (PDO)
PDO transmission modes

The Emergency Object

SYNC Object and Time Stamp Object
Error Control: Node guarding

Error control: Heartbeat

The Network Behavior

The Boot-up Message

The CANopen Device Profiles

Modbus protocol

25
25
26
26

28
28
29
29

31
31

34
34
34
35
35
37
37

37
38
38

39
39
39
39

41

41
41
41
41
41
42
42
42
43
43
43
43
43
44
44

44

v

user manual

IR studio

5.2.1 Overview 44
5.2.2 Data types 44
5.2.3 Function codes 45
5.2.4 Error detection and CRC 45
5.2.5 Protocol versions 45
=
€IIV€" user manual \Y

||| |free BULIL

VI

user manual

divll

1.1

1.2

1.3

BASIC CONCEPTS

ENTRY POINT AND CONTAINER

FREE Studio Connection is an important piece in the FREE Studio software suite.

It is designed to be the “entry point” to create and manage complex projects, made of
different devices and sub-projects; its main purpose is to keep all the pieces together
and to simplify the task of linking the various elements (software components or physical
devices).

For example, with Connection you can create a project (that can be seen as a big “work-
space”) that consists in two or more devices physically linked together on the same
network, that have both a PLC and HMI project, that act as a master and exchange data
with remote slaves, and moreover exchange data between each other, in a peer-to-peer
relationship.

At the end of the developing process, Connection will create a single file containing ALL
the PLC programs, HMI pages, parameters and settings of ALL the devices; then, using
FREE Studio Device, you can distribute and deploy your complex application in the prod-
uct environment with a single click.

Connection can also be seen as the starting point from which all the other tools of the
Suite can be launched, opening their respective documents and projects: Application,
Userlnterface, and Device.

COMPOSITE APPLICATIONS AND FIELD I/0O

Rich and advanced devices (such as FREE Evolution) can both run a PLC program and
show HMI pages on the same hardware.

With Connection you can create the two separate sub-projects by launching the corre-
sponding program (FREE Studio Application for PLC and FREE Studio Userlnterface for
HMI) and keep them together in a single folder on disk.

If the device can act as a master (that is the case of FREE Evolution), it can exchange data
on a local bus talking with one or more slaves, with a protocol like Modbus or CANopen;
with Connection you can describe those master/slave networks, by inserting the slaves
into the project and connecting their remote objects to local PLC variables, making the
PLC program aware of them.

We call this architecture “Field I/0O".

DISTRIBUTED APPLICATIONS AND BINDING I/O

Sometimes a single application on a single device is not enough to solve complex prob-
lems; sometimes it is necessary to create two or more applications that will act together,
communicating and exchanging data on a network to take decisions and cooperate.

This scenario is different from “Field I/O” because there is no master or slave, but a group
of devices of the same kind (like a group of FREE Evolution) that talk to each other in a
peer-to-peer way on a common network, exchanging objects (parameters and values.)

We call this architecture "Binding I/O”, because the various elements are bound to each
other to operate together.

user manual 1

export apps

add tu;pmject
{10 catalog

Connection Prj
opes b

MyProject.CON

AN CAMopen

CAY CANopen
=i, RS465

=1 GenMod1
o L FC-03|

(Developer)

Ul

EvoExp1
Slave

field
(CANopen)

CANopsn
Elgly Evo1

Canpen
OnBoard

Application Prj ig
mEvM_PLC.PPJS N / configure

i [E] EvoExp1 Evol_PLC
%, RS4es =5 HvI
=128 Plugins i : DG Evol_HMI
|] €A CANopen | - ¥ Cfg files
L= ‘ BUILD SI=

-8 BIOS parameters
=8 Application

Config file Evo2_PLC
=45 HMI

Application Prj
Evo2_PLC.PPJS

Userlnterface Prj
Evo2 _HMI.PAJX

||| |free BULIL

Evol

download "]
debug [

download all

dao w_n:lo ad
Device Prj
MyProject.CEN

B~ Evol

+-8 BIOS parameters
=-[{@ Application

A7) Evoz_HMI
(¥ Cfafiles
(User)
download
download all
- debug configure
download
Evo2

PC workbench

CAN-USE
conysrer

Evo2

CaNopen
CnBoard

binding h\\

(CANopen) 1~

R5485
OnBoerd

field
(ModbusRTU)

i

GenModbus1

Slave

user manual

44l

2. USING THE ENVIRONMENT

2.1 THE WORKSPACE

The figure below shows a view of Connection workspace, including many of its more com-
monly used components.

€0 MyProject1.CON - Eliwell Free Studio Connection

_|ol x|
File Edit ‘iew Tools Options Help
DEH % RB(&? &
|F'miect Xl . . ;I |Cata|og Xl
. - RS485 Configuration
MyProjectl Device name I ersion
I?--Eﬂ;eep?&olutmn_l EFreeEvnlutinnExp 460
@ HMI [Mode Generic Modbus 1
LA CAMopen Nk used
----- ‘T, R3485 @)
o 22 Plugins Modbus Master (For Field)
EE FreeEvolution_2
----- 4 PLC —Baud rate
@ HMI
--CAN CAMopen ' 9500 bjs
----- ', RS485 19700 bs
""" 23 Plugins & 38400 bjs
57800 bys
115200 bys
—Serial Mode
|E,8,1 (Even parity, § data bits, 1 stop bit) LI
=l | »
| Olutput Xl
——- Start compilation : wenerdi 15 ottobre 2010 10.28.19 ---
CFN correctly saved as C:%Tewp'MyProjectli\MyProjectl.CFN
——- End compilation : wenerdi 15 ottobre 2010 10.25.19 ——-
Pranto UM v

The following paragraphs give an overview of these elements.

2.1.1 THE MAIN WINDOW

The Main window is the central part of the program window, that is surrounded by tool-
bars and docking windows.

It shows information and configuration pages in a graphical and user-friendly form; the
current page is always determined by the selected item in Project window.

For example, in the previous image you can see that the RS485 node is selected (and
highlighted) in the Project tree and so the Main window shows the RS485 Configura-

tion page.

To change the current selected item and so the current page, just do a single click in the

Project tree.

user manual

2.1.2 THE OUTPUT WINDOW

The Output window is the place where Connection prints its output messages:

informations, debug informations, and compilation results.

FreeEvolutionExp Configuration
PDO Tx - Input
Assign UnAssign
| 1dx | sub|Poo| Bit| coiD| Object Narme Type | size |
1 G000 1 1 o o Fead Input 1h to 8h =lala] 1
2 gEO00 1 1 1 n Fead Input Thto 2h BooL 1
3 OO0 1 1 2.0 Fead Input Thto 8h BooL 1
L) goOoOa 1 1 30 Fead Input Thta 2h BooL 1
5 OO0 1 1 4 0 Read Input Thto 8h BooL 1
g goO0a0 1 1 a0 Fead Input 1hto 8h Bl 1
7 gEO00 1 1 B0 Fead Input Thto 2h BooL 1
g G000 1 1 7on Fead Input Thta 8h Bl 1
9 goon 2 1 g 0 Fead Input 9h to 16h BooL 1
10 (6000 2 1 9 0 Read Input 9h to 16h BooL 1
1 goono 2 1 1m0 0 Fead Input 9h to 16h BaaL 1
12 |&O000 2 1 11 0 Fead Input 9h to 1E6h BooL 1
13 (6401 1 2 0 1] Analogue Input 1 IMT 16
14 6401 2 2 16 0 Analogue Input 2 INT 16
15 (6401 3 2 320 Analogue Input 3 INT 16
16 (6401 4 2 43 0 Analogue Input 4 INT 16
17 |6401 5 3 o o Analogue Input 5 INT 16
18 |6401 6 3 16 0 Analogue Input B IMT 16
19 (2230 0] o o Counter LIDIMNT 32
200 (2232 0] 20 Feguency LIDINT 32
1| |

errors,

|Dumm

—-—— Start compilation

FreeEvolution 1:
FreeEvolution_ 1:
FreeEvolution 1:
FreeEvolution 2:
FresEvolution 2:

——-— End compilation

created
created
created
created
created
CFN correctly saved as C:% Temp' HMyProjecti\MyProjectl.CFN

: wenerdi 15 ottobre 2010 10.46.20 —--—

: wenerdi 15 ottobre 2010 10.46.20 ——-

CiNopen Master cfg 0O (1 =slave=s, 0 wvariables)
CAiNopen Slawve cofg 1 (0 PDOTx, 0O PDORX)

Modbus RTU Master cfg O (0 slaves, 0 messages,
CAiNopen 3lave cfg O (0 PDOTx, O PDORX)

Modbus RTU Master cfg O (0 slaves, 0 wessages,

0 wariahles)

0 wariskhles)

-

In some situations (for example compilation errors) you can double-click on the error in
the output window and you will be brought just at the source of the error, that will be
highlighted with a red box.

user manual

File Edit WYew Tools Options Help

DEHs2@(8 2=
|F'n:|iect X| - -
v _ FreeEvolutionExp Configuri
[MyPraoject1
E1-{=H FreeEvalution_1
E General
[=-CAN CANOpen i
E FreeEvolutionExp_1 —HMetwork settings
% Rsdas
=22 Plugins Mode number (1,,127) ID I
=I-€AY CANopen _
= Binding Mode Guard Period (msec) |2EID
EI"E FresEvolution_2 Life kirne Fackar |3
[PLC
Boot time elapsed IEI
~CAY CAN
| "tl Rnggen Mode heartbeat producer time |EI
=125 Plugins Node heartbeat consumer time |0
.l Ethernet
Master heartbeat consumer kime IEI
Identity object check r

| Dutput

——— Start compilation : wenerdi 15 ottobre 2010 14.35.12 —--
[BuildCfg CANopenMaster) kIIer-.-':E:.li-:l node numwber: O (rwust be in 1..127)

2.1.3 THE PROJECT WINDOW

| Project X|

MyProjectl
EIE FreeEvalukion_1

El% Plugins
El-€AY CAMopen
=
------ = Binding
EI--E FresEvolution_z

LAY CAMopen

E-%, RS485

=1-ff Generic Modbus_1

+ Modbus FC-03_1
0 Modbus FC-03_2
' Modbus FC-D4_1
=25 Plugins

L.l Ethernet

user manual

Co

The Project window shows the elements of the current project in the form a tree, making
easy to see the master/slave and parent/child relationship between them.

Click on the + and - icons next to each item (or press to corresponding keys) to expand

or collapse each item; or press the * key to expand all children of the current item in
depth.

Left-clicking an item opens its configuration page in the Main window (if there is one),
and shows in the Catalog window all objects that can be inserted under the current item
(if there are).

Right-clicking an item selects it and opens its context menu (if there is one), showing
some operations you can do on the current tree item, like Add/Remove/Copy/Paste and
SO on.

Pressing the Delete key also triggers the Remove command.

A single left-click of the item name (or the F2 key) triggers the in-place rename of the
object (if it supports it).

EE FreeEvolution_2
g pLC
A HVD
l:ﬁ! ChMopen
%, msass
222 Plugins

L
add

Change
Remove

copy
Paste

2.1.4 THE CATALOG WINDOW

| Catalog X|

Device name I Wersion
EFreeEmlutianExp 460
Zompressor 1
EiEBFan 2
Ei!i Walve 1
Genetic Modbus 1

4| | »

This window shows a list of objects that can be inserted in the project under the currently
selected item in the Project window; selecting a different item in Project window re-
freshes this list.

By default, only the “major” version number of each device is shown, and the highest
minor version number is implicitly selected; for example, if three different versions of the
same device are present in the catalog (10.0, 10.1, 10.2), the Catalog will show only the
10 (without the minor version) but will select the 10.2 (the highest).

This behavior can be changed by selecting the Show all versions in catalog option in

6 user manual

-

Co

the Options menu in the menu bar; if you activate this option ALL the available versions
(even the older ones) will be shown in the Catalog and you will have the chance to manu-
ally select and add in the project older versions of each device.

Fie Edit Wiew Todls | Options Help Catalog X |

hE | b Show all versgns in catalog Dievice name | version

| Project EFrEEEVDIutiDn 423

Untitled

Fie Edit Wiew Todls | Options Help Catalog X |

E Device name | Version

| Project x| EFrEEEVDIutiDn 423.3

Lintitled EFreeEvnlutiDn 423.2
EFreeEvnlutiDn 4231

To add an object, drag and drop it from the Catalog windowto the Project window, over
the currently selected item (a + icon will appear); it will be added as its last child.

| Project X || | Catalog X |
Untitled Dievice name | version | D¢

EI--E FreeEvolution_1

CANCaMopen 1 Fr

Another way to add an object is to right-click an item in the Project window and choose
Add; a pop-up window will appear, showing the same list of the Catalog window. In this
way you can add an object without having the Catalog visible, useful for example if you
are working with a very small screen.

This window also has a Show all versions option, that behaves like the flag in the 0p-
tions menu described before.

| Project

Unkitled
EIE FreeEwvolution_1

Faste

user manual 7

Ell Device catalog x|
Device name | Version | Descripkion
CANCaMopen 1 FreeEvalution_CAMopen

Jd |

[~ Show all versions

FreeEvalution_Ethernet

1 FreeEvalution_RS485

Seleck :\'E I

2.2 LAYOUT CUSTOMIZATION

The layout of Connection workspace can be freely customized in order to suit your

needs.

Connection takes care of saving the layout configuration on application exit, in order to
persist your preferences between different working sessions.

2.3 TOOLBARS AND DOCKING WINDOWS
2.3.1 SHOWING/HIDING

To show (or hide) a toolbar, open the /iew menu and select the desired toolbar or docking
window (for example, the Catalog dock window).

| Project o

File Edit | wiew Tools Opkions Help

[1 = | v Status Bar

|2

v Dutput
Project

Zatalog

Compiler toolbar

[=1-€AN CAhopen
- -[E] FreeEvolutionExp_L

The element is then shown or hidden.

2.3.2 MOVING TOOLBARS

General

|—Mﬂst recen

You can move a toolbar by clicking on its left border and then dragging and dropping it to

the destination.

File Edit ‘iew Tools Options Help

D BB &% &

|F'ru:uieu:t X| Jﬁ?‘;

y Project
MyProject |]

The toolbar shows up in the new position.
You can change the shape of the toolbar, from horizontal to vertical, either by pressing the

user manual

Shift key or by moving the toolbar next to the vertical border of any window.

File Edit Wiew Tools Options t File Edit Wiew Tools Options
DEd BB &
| Project _D | Project
My Projectl qu MyProjectl
EE FresEwolution_1 EIE FreeEwalution_1
[FLC =] PLC
{20 HM E A5 HM
AN CAMopen [=]-€AN CAMopen
: E FreeEyvaolutionE=p_1 E FreeEwaolutionE:|
'L, RS485 i) ', RS485
=1-28 Plugins — E-E5 Plugins
=-CAY CANopen =) (=l €AY CANopen
2 Binding R = Binding
EI-E FresEwolution_2 I'_—'I--E FreeEwolution_2

PLC
AN HVE

~CAY CAMopen

%, RS485
E-28 Plugins £S5 Plugins
- il Ethernet W Ethernet

13

You can also make the toolbar float, either by pressing the CTRL key or by moving the
toolbar away from any window border.

2.3.3 MOVING DOCKING WINDOWS

In order to move a docking window, click on its name (at the top of the window) and then
drag and drop it to the destination.

File Edt View Toaols Options Help

B IEEE

| Project x|

CANope
- MyProjectl P
=+ [&] FresEvolution_1

[FLC [%

& —Mode
£1 ¢AN CaNopen € hot used
- [E] FresEvol tionExp_1)
% Ra48s @ Master for fielc)
{ =8 Plugins © slave (for bindipa)
| [¢ay CANopen
= Binding —Baud rate —
=5 E FresEvolution_2
[PLC 500 Kbjs
B © zsaks)s
€AY CANopen (.
%, RseEs 125 Kbjs
=23 Plugins ' sakbis
- W Ethernet
—Master Setting;
Hode 10 (1.127) ||t
Heartbeat time {ms) [0
Sync COBID: o
syncoyde(ms |fo

| Output

user manual 9

Co Y studio

You can make the tool window float, by double-clicking on its name, or by pressing the
CTRL key, or by moving the tool window away from the main window borders.

File Edit Wew Tools Options Help

LR

CANopen Config

—Mode

Mot used
% Master (for Field)
' Slave (Far binding)

—Baud rate
Sonkbs
© 250 [T S |
125 MyProject1 a3 -
© 5ok EE FreeEvaolution_1
Master €AN CANopen
Nods 10 (E FreeEvolutionExp_1
ol Rsass
. =25 Plugins
Heartbea | @ E|--l:l|l CaMopen
Sync COE | = Binding
—— EI--E FresEvalution_2
yne Ly [FLC —
A HMI
LAY CANopen
- R5485 hd

A tool window can be resized by clicking-and-dragging on its border until the desired size
is reached.

10 user manual éllwu

3.1

MANAGING PROJECTS

CREATING A NEW PROJECT AND MAIN PAGE

When you open FREE Studio Connection, you are presented with the Main page.

In the General tab you can open the last recently opened projects (shown in upper sec-
tion) or insert a new device in the project, selecting it in the lower panel.

|II

Here you can see all the “top level” devices that you can add, and this window shows
the same content of the Catalog window when the root item is selected in the Project
window; therefore it follows the same behavior with respect to the Show all versions
in catalog flag.

With a just a click in the list, a new device is inserted in the project tree, ready to be con-
figured and programmed.

Project Untitled

J General

—Most recent projects

A TempiMyProject 1Y MyProject L COM
Ch\TempiprovaEvolprovaEvo, COM
ChkemplProgetto_andreatAndrea, COMN

i TempiprovaMultiploiprovaMultiplo . CON

Add new device bo project

E FreeEvalution 423

In the second tab of the Main page, named Networks 1ist, you can manage a list of all
the “virtual networks” to be used in your project with the devices that will be connected
with Binding I/0.

For each network you have to choose a name, the protocol to use (CANopen or Ethernet/
ModbusTCP) and symbolic color to show as a small circle in the project tree; each device
connected to the same network will be shown with the same color.

While by default you already have two predefined networks (one CANopen and one Ether-
net) you can add any number of other networks, to build complex scenarios.

Netwaorks list
Add [d Remove
Mame Type | Color | Description
CAMNopen? CANopen I CAropen Metwork 1
Ethernetl Ethernet Ethernet Metwark 1

user manual 11

3.2 SAVING THE PROJECT

To save the project, you can select the corresponding item of the menu File or the Main
toolbar.

The Connection project is a single file that has .CON extension; it links other sub-com-
ponents (like PLC application or HMI pages) that typically reside in the same containing
folder.

If you are saving a new project (that is still Untitled), you are presented with a dialog
that asks you the new name for the project and the directory where to save it; the pro-
gram will create a folder of the chosen Name under the chosen Directory, and will save
a file named like Name.CON under it.

Save new Connection projeckt ﬂ
Project
harne: |Examp|el
Directary: |Ct\Projects |
K I Cancel I

In the above example, the folder C:\Projects\Exampilel\ will be created and the project
will be saved as C:\Projects\Examplel\Examplel.CON.

If you want to save the project with another name, you can choose the command File /
Save as... and specify a new name and location for the . CON file.

IMPORTANT: only the .CON project file is saved, no folder is created nor the linked com-
ponents (PLC or HMI) are copied or moved.

3.3 MANAGING EXISTING PROJECTS
3.3.1 OPENING AN EXISTING PROJECT

To open an existing project, click Open in the File menu of Connection’s main window,
or in the Main toolbar. This will open a dialog box, which lets you browse to the directory
containing the project and select the relative project file.

Otherwise, you can select one of recently opened projects from the File menu or in the
Main page.

3.3.2 CLOSING THE PROJECT

You can terminate the working session either by:

- starting a new project, with the File / New command, or the button in the toolbar;
- explicitly closing the current project with File / Close command;

- by exiting Connection.

In all cases, when there are changes not yet saved to file, the program asks you to choose
between saving and discarding them.

12

user manual z

3.4 BUILDING PROJECTS

Build project

When you press the Build project button in the toolbar (or the F7 key), Connection will
examine the current project and will:

- Print in the output window any error it found in the checking process; you can then
double-click the error to see the source position.

- Generate specific configuration files for each device (for example CONNEC. PAR for FREE
Evolution, with Field and Binding configuration settings).

- Generate a single .CFN file to be used in FREE Studio Device; this file will contain all
the sub-components of the current project (devices configurations, PLC applications and
HMI pages) all contained inside the CFN, in a redistributable form; this file will have the
same name of the . CON project and will reside in the same folder.

Choosing the Tools / Open with FREE Studio Device command, Device will be
launched with the generated CFN file opened.

IMPORTANT: before executing compilation, please make sure that all the PLC and HMI
sub-project have been built with the respective tools (FREE Studio Application and User-
Interface). In fact Connection will include in the CFN the last compilation output of each
sub-component, so you have to build them BEFORE compiling the Connection project.

3.5 DISTRIBUTING PROJECTS

This topic should be discussed in two different parts:

3.5.1 DISTRIBUTING TO OTHER DEVELOPERS

To distribute the full Connection project to other developers (for example for further de-
velopment or debugging) you can give the entire folder containing the . CON file, that has
been created by Connection with the first Save command.

In this way all the sub-components created by Connection (PLC, HMI, CFN file) are all
contained inside, and since the file paths are maintained as relatives the project can be
moved around; so other developers can open the Connection project anywhere and work
normally.

One important exception is for .CON projects that link external components, for example
external PLC projects (on an external directory, or taken from catalog); in this scenario
you will have to distribute all the external components manually, because they are not
self-contained in the main project folder.

3.5.2 DISTRIBUTING TO USERS OR INSTALLERS

In this scenario, it is enough to distribute the CFN file (FREE Studio Device document)
created by Connection; you will be able to download everything (PLC, HMI, config files,
parameters values) only using Device with a single click.

One important exception is for .CON projects that link external components from the
catalog (PLC and HMI), in this case the produced CFN file will not include them; they must
be distributed manually.

user manual 13

||| |free BULIL

14

user manual

divll

I studio

4. MANAGING PROJECT ELEMENTS

4.1 FREE EVOLUTION

FREE Evolution is one of the top-level devices that you can insert in the project.
On its main page you can change its name and see a picture of it.

FreeEvolution Configuration

General
Mame: |FreeEv0Iuti0n_2
Version: | 42352

It can run both a PLC application and HMI pages on the same CPU and has a lot of con-
nectivity capabilities, in terms of on-board connectors and may optional plug-ins.

| Fraoject X|

Untitled '

EIE FreeEvolution_1
[PLC Linked PLC Application
{;‘_:, HrI Linked HMI Pages
g....:nll CaMopen On-board CAMopen pork
-, R5485 On-board RS485 port

-~ CAN CANopen Plugin CAMopen pork
Y%, RS485 Plugin R5485 port
Ll Ethernet Plugin Ethernet part

Follows detailed description of each element.

éllwu user manual 15

Co

4.1.1 PLC

This tree item lets you create or associate a PLC project to the FREE Evolution; the associ-
ated page shows the relative path of the associated PPJS file (Application project).

PLC Configuration

General

* Fram Projeck " Fram Zatalog

PLC Project: |

Browse, .. |

If you do a right-click on the PLC, a pop-up menu will appear with the command 0Open
with FREE Studio Application; if the device has no associated project, you will be
prompted for the name to give to the new application (by default, the name of the device
with the _PLC suffix).

| Project X

MyProjectl
EIE FreeEvaolution_1

EVConneckion il

Application project will be created with name:

b r
..... L_ — o M1 ITI Cancel

Otherwise if a PLC project has already been associated, Application will be launched and
the existing PLC project opened.

If you want to manually associate an existing PLC project to the device, you can choose
between a project on the disk in a particular folder or choosing from the local catalog of
applications.

If a PLC project has been associated, the Export to catalog command in the pop-up

menu will be enabled, allowing you to export the application in the catalog for further
reuse.

4.1.2 HMI

This tree item lets you create or associate a HMI project to the FREE Evolution; the as-
sociated page shows the relative path of the associated PAJX file (UserInterface project).

HMI Configuration

General

* From Project From Catalog

HMI Project: IFreeEvqutiun_l_HMI'l,FreeEvqutiun_l_HMI PRI

Browse, .. |

Reload device list

Mame D
Deyice_0 0 Local

Frotocol | Address

user manual

Co

If you do a right-click on the HMI, a pop-up menu will appear with the command 0Open
with FREE Studio UserlInterface; if the device has no associated project, you will be
prompted for the name to give to the new application (by default, the name of the device
with the _HMI suffix).

| Project xl

i EWC ti x

£l
EE FrecEvalution_t IserInterface project will be created with name:
o[PLC |—Ge neral—

k. I Cancel
| ML FTJ =L, I

B [

Otherwise if a HMI project has already been associated, Userlnterface will be launched
and the existing HMI project opened.

If you want to manually associate an existing HMI project to the device, you can choose
between a project on the disk in a particular folder or choosing from the local catalog of
applications.

If a HMI project has been associated, the Export to catalog command in the pop-up
menu will be enabled, allowing you to export the application in the catalog for further
reuse.

4.1.2.1 RETRIEVING REMOTE DATA FROM LOCAL HMI PAGES

If in your HMI pages project you have imported one or more parameter map, you can
configure the real address of the remote device here.

In fact by default any parameter map is considered as “local”, and if you want to view
in your page any parameter of a remote device you have to insert here (and so outside
and independently from Userlnterface) the used protocol (Modbus RTU, Modbus TCP or
CANopen) and address.

In this way you can design the HMI pages in Userlnterface as they were “local” and then
later change the real address of the remote device without even recompiling the PAJX
project (the change is made only in Connection).

To load or update the list of remote devices (parameter maps) inserted in the Userlnter-
face project, press the Reload device Tist button; please remember to build the PAJX
project with UserInterface to have an updated list before doing this.

4.1.3 CANOPEN

FREE Evolution has one on-board CANopen port, plus another one available as an exter-
nal plug-in. Each port can be configured as Not used (disabled), Master (field), STave
(binding).

4.1.3.1 FIELD
When you configure the CANopen port as Master the FREE Evolution will act as a CANo-

pen master on this port, so you can attach any number of CANopen slave devices here
and exchange data with Field I/0.

user manual 17

—Mode

 mot used
@ Master (for field)
 Slave (for binding)

—Baud rate

& 500 Kbs
' 250Kbjs
125 kbjis
' S0Kbfs

—Master Settings

Mode 1D {1,,127) 127

Heartbeat time {ms): ID
Sync COBID: ID
Sync Cycle (ms): ID

For a CANopen master port, you have to configure (see 5.1 for further informations):
- Baud rate used in this CANopen network (in Kb/s).
Node ID for the master (1..127), by default is 127.

Heartbeat time in ms, by default 0 (heartbeat producer disabled): it is the master pro-
ducer heartbeat time.

The SYNC COBID to use, by default 128.
The period for the SYNC cycle in ms, by default 0 (sync disabled).

Example of possible slaves are the FREE Evolution Expansion module (see 4.5) or generic
custom devices imported from their EDS files (CAN custom, see 4.4).

After you added and configured the various CANopen slaves, you can establish the “link”
between the remote objects of the slave and the internal PLC variables to read or write.

The set of PLC objects you can read or write is made of:
- Status variables, created with FREE Studio Application (not BIOS).
- Field variables, created with FREE Studio Application.

4.1.3.2 BINDING

When you configure the CANopen port as STave the FREE Evolution will act as a CANopen
slave on this port, so you can exchange data with Binding I/O with other FREE Evolution
devices on the CANopen network.

Configuring the port

—Mode

' Naot used
" Master (For Field)
' Slave (For binding)

—Baud rate

& 500Kbjs
" 250kKbjs
125 Kbs
 s0Kbjs

—Slave Settings

Mode ID(1..127): 127

Metwork: I Mone hd l

18

user manual

For a CANopen slave port, you have to configure:
- Baud rate used in this CANopen network (in Kb/s).
- Node ID for the slave (1..127), by default is 127.

- The “virtual network” where this FREE Evolution is attached; in the tree will appear a
small colored circle of same color of the chosen network (same color means same net-
work).

| Project X! Slave Settings
Urititled
EE FreeEvalukion_1 Mode 10 (1..127): IIZ?
- ric =
@ HI Metwork: Im
AR CANopen
----- T R3485
P b 22 Plugins Thete bwio devices are on the same
EE FreeEvaolution_z2 CaAMNopen nebwork, named CaMopeni
..... B8 PLC (red circle indicatar)
~AIED HML
~-CAR CAMopen
----- L R54as
----- 23 Plugins

Netwaorks list

I_ M arme Type | Color |
[CAMopen CAMopen B -ropen Metwork 1
Ethernetl Ethernet B Ethernet Metwork 1

The Binding object

When you configure a CANopen port as Slave, you can add under it a Binding object:
add it if a device wants to READ objects from other ones, while it not needed if the device
only SEND objects on the network.

The set of PLC objects you can send or receive is made of:
- EEPROM parameters, created with FREE Studio Application (not BIOS).
- Status variables, created with FREE Studio Application (not BIOS).

Clicking the Binding object shows its configuration page: here is a grid where you have
to insert all the remote objects to read, and link them to the local destinations.

To do this click the Add button, a window showing all the “public” objects from all other
devices on this same network will appear; here you can apply search filters and choose
which objects to read from (multi-selection is also supported).

Praject x
- MyProjectl

=B Evor
@8 PLC I%Add [[d Remove

L e HMr

--CAN CANopen Source Device |SourceParameter| Addressl Type | Dest Parameter | Addressl Type Period |

Binding Configuration

i %, Rs4ss
H B8 Plugins
| B iap Cotepen]
2 Binding
= Fiter: |
FLC
@HMI Evo2: 16384 evoZ_parl ({NT)
<A CANopen Ewn2: 16385 evol_parz (NMT)
%, R5485

258 Plugins

oK Cancel

user manual 19

Co

Once you inserted the remote objects to read, you have to assign the local destination
locations to write to, choosing with the list in the Dest parameter column or manually
inserting the Address.

IMPORTANT: please remember to rebuild the PLC project with Application to see an up-
dated list of public objects here.

Froject x - - - =
Binding Configuration
E-E Evol
: i pLc 73l Add [Remove
E {50 Hr
i €A CANopen Source Device | Source Parameter | Address Type | Dest Parameter | Address | Type Feriod
;ts R5485 Evn2 ey02_pari 16364 INT evol_parl 16384 INT [
23 Plugins —_I
=} ‘“_l CAMopen Evo2 evoZ_par? 16384 INT evol_par2 | 16385 INT o
LT Binding
E'E EwoZ evol_parl
[PLC
@ HMI

€AY CANopen
%, RS485

28 Plugins

In the above example:

- Evol will read from EvoZ the evoZ_parl object and will put it in its local evol_parl
object.

- Evol will read from EvoZ2 the evoZ_par2 object and will put it in its local evol_par2
object.

In the Period you can configure in detail the single period for each parameter; the object
will be updated every “period” ms.

4.1.4 RS485

FREE Evolution has one on-board RS485 port, plus another one available as an external
plug-in. Each port can be configured as Not used (disabled) or Master (field).

4.1.4.1 FIELD

When you configure the RS485 port as Master the FREE Evolution will act as a ModbusRTU
master on this port, so you can attach any number of Modbus slave devices here and ex-
change data with Field I/0.

RS485 Configuration

—Baud rate

9500 bfs
19200 bfs
@ 33400 bfs
" 57600 bfs
115200 bfs

—Serial Mode

|E, 8,1 (Ewven parity, 5 data bits, 1 stop bit) ;I

For a Modbus master port, you have to configure:
- Baud rate used in this Modbus network (in b/s).
- Serial mode (parity, data bits, stop bits).

20 user manual

-

Co

Example of possible slaves are the FREE Evolution Expansion module (see 4.5), Generic
Modbus devices (see 4.2), or custom devices created with the ModbusCustomEditor tool

(see 4.3).

After you added and configured the various Modbus slaves, you can establish the “link”
between the remote objects of the slave and the internal PLC variables to read or write.

The set of PLC objects you can read or write is made of:

- Status variables, created with FREE Studio Application (not BIOS).

- Field variables, created with FREE Studio Application.

4.1.5 ETHERNET

FREE Evolution can have one Ethernet port, available as an external plug-in. The port
always acts a Modbus TCP slave, and additionally can be configured also as Master (bind-

ing).

4.1.5.1 BINDING

Configuring the port

Ethernet Configuration

—General

™ Enable Maodbus Master (For binding)

IP Address: I

Metwork:

—Settings

Mone

-

For an Ethernet port, you have to configure:
- if it acts also a Master (otherwise only S7ave is implied);

- its IP address;

- the “virtual network” where this FREE Evolution is attached; in the tree will appear a
small colored circle of same color of the chosen network (same color means same net-

work).
|F'rniec:t X|
Untitled Settings
= FreeEvolukion_1
Em PLC ’T\Ietwor.': IEthernetl |
@ HMI
~-LAN CAMNopen
ol Ro4ES
I'_—'I% Plugins
Ml Ethernet
== FresEvolution_2
""" 0 pLC These two devices are on the same
@ HMI Ethernet network, named Ethernetl
~-CAN CAlopen {green circle indicator)
----- . RS485
I'_—'I% Plugins
Networks list
Mlarme Tyne | Calar |
CAMNopen1 caropen [CAropen Metwork 1
Ethermeti Ethernet [Ethernet Metwark 1

user manual

21

Co

The Binding object

When you configure a Ethernet port as Master, you can add under it a Binding object:
add it if a device wants to READ objects from other ones, while it not needed if the de-
vice only SEND objects on the network (in this case you do not even need to activate the
Master feature).

The set of PLC objects you can send or receive is made of:
- EEPROM parameters, created with FREE Studio Application (not BIOS).
- Status variables, created with FREE Studio Application (not BIOS).

The configuration page for the Binding object in Modbus TCP is the same of CANopen, so
see 4.1.3.2 for a description and usage of this page.

Because the interface is the same between the two protocols, you can focus on designing
your distributed application without knowing the specific communication protocol details.

The only difference from CANopen Binding is that here you have one more column named
Timeout, where you can configure the specific time-out in ms for each object exchanged.

4.2 FREE EVOLUTION EVC

FREE Evolution EVC is a top-level device that has the same characteristics and network
behaviour of a FREE Evolution device but does not support local HMI. In fact it has no
on-board display to show its own pages. FREE Evolution EVC supports HMI Remote so
its pages can be downloaded and shown by FREE Evolution EVK or FREE Evolution EVP
keyboards.

Project X
8 MyProjectl
E‘E FreeEvolution EVC_1

[0 PLC

@ HMI Remuote
»:n! CAMopen
iC, R5485

.28 Plugins

Please refer to 4.1 - FREE Evolution chapter for a full description of all FREE Evolution EVC
features.

Usage example

Project x

MyProjectl
E‘E FreeEvalution EVC_1

@ HMI Remote

|é|..n:m| CAMNopen
; E FreeEvolution EVK_1

In this scenario FreeEvolution EVC_1 device has a PLC project and has an HMI Remote
project that makes available EVC pages for linked keyboards.

EVC HMI Remote pages can be remoted and shown by FreeEvolution EVK_1 via CANopen

22 user manual

field and by FreeEvolution EVP_1 via Ethernet network.

4.3 GENERIC MODBUS

The Generic Modbus object is a generic Modbus slave that can be inserted under the
RS485 port of the FREE Evolution, when configured as Modbus master.

You can use the Generic Modbus when you want to manually configure and have full con-
trol over the single Modbus messages to send to the slave.

Another typical usage is for third-party devices that you plan to use just once in your
projects, and you do not want to put in the catalog for future reuse.

|F'miec:t X| -
. : Generic Modbus RTU node
Untitled
EE FresEvolution_1)
I FLC J General |
T Settings
¢ 219 Generic Madbus_1 &
: 0 Modbus FC-03_L Marne: IGeneric Modbus_1
- Modbus FC-03_2
" Madbus FC-16_1 Maodbus address; |1 (1., 247)
b Modbus FC-16_2 .
% Plugin = Mode number: 0 (0., 127)

In the main page of the Generic Modbus you can configure:
- A name for the object in the project.
- Its Modbus address (in the range 1..247).

- Its Node number (in the range 0..127); this value is incremented automatically, and can
be used in the PLC program to index the sysMbMRtuNodeStatus[] array, that cointains
diagnostic information about each slave node.

4.3.1 MODBUS MESSAGES

The Generic Modbus object alone will do nothing; you have to add under it one or more
Modbus messages, that are specific Modbus function requests that will be sent on the
bus.

The following messages are supported:

- Function 2 (Read discrete inputs, 0x2): reads one or more read-only digital input (1-bit
objects).

- Function 3 (Read holding registers, 0x3): reads one or more read-write register (16-bit
objects).

- Function 4 (Read input registers, 0x4): reads one or more read-only register (16-bit
objects).

- Function 15 (Write multiple coils, 0xF): writes one or more digital output (1-bit ob-
jects).

Function 16 (Write multiple registers, 0x10): writes one or more register (16-bit ob-
jects).

The messages will be processed in the order they are inserted in the tree.

user manual 23

Co

4.3.1.1

GENERAL TAB

For each message, in its General tab you can configure.

General

Settings
Start address: ID (1..65536)
Polling kirme: ID ms {0 = write on variation)
Time aut; IIDDD ms
‘Wait before send: ID ms

- Start address: address of the first modbus object to read or write (1..65536).

- Polling time: the message will be processed with this period (ms); for writing opera-

tions, 0 means to write it only on variation of the value, for reading operations 0 means
maximum speed.

- Timeout: the operation will fail when this time-out expires (ms).

- Wait before send: this is an additional timeout, to be used with slow slaves that do not
answer if the messages are sent too fast.

4.3.1.2 REGISTERS TAB

Beside the General tab, each different message has a second tab where you can config-
ure the list of objects to read or write.

‘ Holding Reg. ‘
G Add Q Remove Assign Unhssign
Mame | OhjType | Label | DataBlock | Description
1 Register WORD field1 I'Wi11.0
2 Register WORD field2 111
3 Register WORD field3 IWy11.2
4 Register WORD field4 W11.3

Using the Add button, insert one row for each Modbus object to read or write, up to 16 ele-
ments; the first row has the address configured in the Start address box in the General
tab, and the other rows increment and follow.

For each row, press the Assign button to choose the PLC object to link and to be read or
written with this Modbus message; you can not leave unassigned rows in the message.

IMPORTANT: please remember to rebuild the PLC project with Application to see an up-
dated list of PLC variables here.

x
Filter:l
Evo: field] {IMNT)
Evoz: field3 (NT) X
Evoz: fieldd (INT
0K Cancel

24 user manual

Co

4.4 MODBUS CUSTOM

Modbus custom devices can be created and edit directly by the user.

In this way you can use in your project and add in the catalog for future reuse any third-
party Modbus slave, characterizing its Modbus map only the first time and simplifying
its further use, because you do not have to care about Modbus messages and functions
anymore.

4.4.1 CREATING A NEW MODBUS CUSTOM DEVICE

To create a new Modbus custom device, choose Tools / Run ModbusCustomEditor; the
external ModbusCustomEditor tool will be launched, with a new empty document.

€0 ModbusDevicel_1p0 - ModbusCustomEditor

File Edit Wiew Tools Help

DM & B@

i it): I2DDU
Name: IModbusDevicel Max message size (bit)
i B IIZD
Description: ISampIe Modbus device Max message size (reg.)
Version: IID— [Overlapped Bit and Reg maps
[&l Add [[d Remove
Address | Label Twpe Read anly Modhus type | Description
1 1 temperature INT False Haolding Register {16 hit) Temperature value
2 2 pressure UINT False Holding Register (16 hit) Pressure value
3 3 speed INT True Input Register (16 hity Speed reading
4 10 diglnput1 BOCL True Discrete Input First digital input
5 20 digCutput BOCL Falze Coil First digital output

Here you can configure:

- Name of the device.

- Long description for the device.
- A version number.

- Overlapping of bit and register maps: check this if the device has both a 0 register and
a 0 bit (in other words it has different addressing of 16-bit and 1-bit objects), uncheck
this if the address is unique and so duplicated are not allowed, even if the type is dif-
ferent.

- Max message size: insert here the maximum number of registers per message sup-
ported by the device.

Then, using the Add button, add one row for each Modbus object of the device; you have
to insert its address, name, type (note that Type and Read only columns are linked with
the Modbus type column) and optionally a long description.

When you finish, save the current device definition; you will be prompted for a file name
with . PCT extension, by default it will be proposed the current name+version.

The file will be saved in the special ModbusCustom folder in the catalog; now you can close
the ModbusCustomEditor and go back in Connection to use the new device.

4.4.2 EDITING AN EXISTING MODBUS CUSTOM DEVICE

To edit an existing Modbus custom device, you can:

- Run the ModbusCustomEditor with the Tools / Run ModbusCustomEditor command,
and then manually open the PCT file with the standard FiTe / Open command.

user manual 25

- When the device you want to edit is visible in the Catalog window (for example when
a RS485 node is selected and is in Master mode), you can right-click on it and choose
the Edit device command; the ModbusCustomEditor will be launched and the selected
device opened.

| Catalog X |

Device name: Version |

[|FreeEvolutionExp 460

1 - IEEEEINE

Delete from catalog

IMPORTANT: when the ModbusCustomEditor is running, Connection is blocked waiting for
it to be closed.

4.4.3 DELETING A MODBUS CUSTOM DEVICE

To delete an existing Modbus custom device, when the device is visible in the Catalog
window do a right-click and choose Delete from catalog (see previous paragraph).

4.4.4 USING A MODBUS CUSTOM DEVICE

When you insert the Modbus custom device as a Modbus slave (for example under a
RS485 port) and click on it on the tree, you will see a page with three tabs.

4.4.4.1 GENERAL TAB

ModbusDevicel Configuration

J General

—Settings

Madbus address: |1 (1., 247)

Mode number: ID (0., 127)

Palling time: ID ms {0 =write on variation)
TimeOut 1000 ms

Wait before send: |D s

In the General tab you can configure:
- Its Modbus address (in the range 1..247).

- Its Node number (in the range 0..127); this value is incremented automatically, and can
be used in the PLC program to index the sysMbMRtuNodeStatus|[] array, that cointains
diagnostic information about each slave node.

- Polling time: the Modbus messages will be processed with this period (ms); for writ-
ing operations, 0 means to write it only on variation of the value, for reading operations
0 means maximum speed.

- Timeout: the operation will fail when this time-out expires (ms).

26 user manual

Co

- Wait before send: this is an additional timeout, to be used with slow slaves that do
not answer if the messages are sent too fast.

Here you can notice that for Modbus customthe Polling time, Timeout and Wait before
send are generic for the whole device, while for the Generic Modbus you can put specific
different values for each single message. This is because with the Modbus custom the
low-level Modbus messages are automatically calculated and you do not have to worry
about them, but as a side-effect you can not “fine-tune” them, because these settings
are global.

4.4.4.2 INPUT/OUTPUT TAB

Then, in the Input and Output tabs you can insert one row for each Modbus object to
read or write; press the Add button and choose the parameters to exchange (multi selec-
tion is supported), and use the Assign button to link them to the PLC object to be read
or written to.

Insert in the Input tab the Modbus objects to READ from the Modbus slave (and to put
into PLC variables), and insert in the Output tab the Modbus objects to WRITE to the
Modbus slave (and to get from the PLC variables).

IMPORTANT: please remember to rebuild the PLC project with Application to see an up-
dated list of PLC variables here.

ModbusDevicel Configuration

| Input |

[& Add [d Remove Assign Unhssign Up Down
Pararmeter | Address | Type | ariahle | Type DataBlock
temperaturel 1 INT
temperature 2 INT
x|
Filter: I

1 temperaturel (INT)
2 temperature? (INT)

3 pressure (LINT)
4 digitallnput (BOOL) k
5 digitalOutput (BOOL)

oK Cancel

FREE Studio Connection will create the correct Modbus messages analyzing the sequence
of addresses and types; if the addresses are consequent and the types are homogenous,
different objects will be grouped in single messages to optimize the communication.

The maximum number of registers configured with the ModbusCustomEditor is also con-
sidered, along with the maximum number of registers per message of the master (that is
16 for the FREE Evolution).

The grouping and generation of the Modbus messages is totally automatic and recalcu-
lated at each compilation, so you do not have to know technical details of the Modbus
protocol.

user manual 27

4.5 CAN CUSTOM

CAN customdevice can be created and added to the Catalog by importing their £DS file. In
this way you can use any third-party CANopen device as a slave, if it provides a standard-
compliant EDS file (Electronic Data Sheet), that follows the DS306 CiA specification.

4.5.1

IMPORTING A NEW CAN CUSTOM DEVICE

To import a new CAN custom device, choose Tools / Import from EDS command.
The Import EDS window will appear.

mportios x|
Source EDS: |Li\TestiCANCustom] . eds Choose, .. |

Mew Marme: IC.ﬁ.NcustDml 1.0
Shark Mame: IC.ﬁ.NcustDml_lpD
Has dvnamic PDO mapping: ¥

Vendor Mame: IEIiweII

Product Mame: IC.ﬁ.NcustDml Revision: IEI.EI

Descripkion: IEDS sample device

Comments:

Mumhber of Objects

Mandatory: |3 Optional: IEI ManuFacturer: I':'

(1] 4 I Cancel I

Here you have to configure:

The source EDS file to import, using the Choose. .. button.
The full name of the device (by default is Product name + Revision).
The short name, this must not include any special character or spaces.

If the device supports dynamic PDO mapping or not: if you activate this option, you will
be able to manually configure and change the default PDO mapping read from the EDS
to match the actual mapping of the slave, otherwise the PDO mapping will be read-only
and determined only by the EDS default values

After you have chosen the EDS file, the window will show a resume of the device charac-
teristic and number of objects (detailed in mandatory, optional, manufacturer).

28

user manual - E

4.5.2

Co

DELETING A CAN CUSTOM DEVICE

When the device you want to delete is visible in the Catalog window (for example when
a CANopen port is selected and is in Master mode), you can right-click on it and choose
the Delete from catalog command.

4.5.3

USING A CAN CUSTOM DEVICE

When you insert a CAN custom device as a CANopen slave (for example under a CANopen
port) and click on it on the tree, you will see the following page.

4.5.3.1

GENERAL TAB

CANcustoml Configuration

J General

—HMetwork settings

Mode number {1..127) |1

Mode Guard Period (ms)

Life time Factor |3

Book kime elapsed {ms) |D

MNode heartbeat producer kime {ms) ID

Mode heartbeat consumer time (s} |D

Masker heartbeat consumer time {ms) ID

Identity object check I

—PD0 Tx communication settings PDO Rx communication settings

{* |JSER DEFIMED Mode
7 S¥NC Mode
= EYENT Made

" 1JSER DEFIMED Mode
€ SYNC Mode
& EVENT Made

© CYCLIC Mode

ID ms

In the General tab you can configure (see 5.1 for further informations):

Node number (1..127).

Node guard periodin ms (default 200ms), 0 to disable node guard for this slave; if not
zero is the interval of node guarding packets sent by the master to the slave.

Life time factor (default 3x), 0 to disable node guard for this slave; if not zero, mul-
tiplied for the Node guarding period is the maximum amount of time the master will
wait for the slave answer of the node guard.

Boot time elapsed: this is the maximum amount of time in ms that the master will
wait for the slave to become pre-operational at boot (default 10s), before signaling an
error.

Node heartbeat producer time in ms, default is 0 (heartbeat disabled); if not zero
the master will enable the heartbeat error handling check for this node.

Node heartbeat consumer time in ms, default is 0 (heartbeat disabled); it is the
maximum amount of time the slave will wait for the heartbeat produced by the master,
before timing out. This should be greater than the Heartbeat time of the master.

user manual 29

4.5.3.2

Master heartbeat consumer time in ms, default is 0 (heartbeat disabled); it is the
maximum amount of time the master will wait for the heartbeat sent by the slave, be-
fore timing out. This should be greater than the Node heartbeat producer time.

Identity object check: when this option is enabled (the default) the master at boot
will check the slave for his identity, verifying that the Identity object fields (object
0x1018) match with EDS default values (Vendor ID, Product code, Revision, Serial); if
the option is not enabled, no check will be done (this is useful for example with slaves
not totally CANopen-compliant or incorrect EDS files).

PDO Tx comm settings: configure here the transmission mode for PDO Tx; depending
on the device features (determined from EDS values), not all options may be avail-
able.

PDO Rx comm settings: configure here the transmission mode for PDO Rx; depending
on the device features (determined from EDS values), not all options may be avail-
able.

SDO SET TAB

CANcustoml Configuration

SO0 Set

[4 Add [dRemove

Label | Index | Sublndesx | Type | Value | Timeout
1 Transmission Type 1400 2 LISINT 255 100
x|
Filter:l
1005.0 COB-ID SYMNC message (UDINT, =

100c.0 Guard Time {UINT)

100d.0 Life Time Factor {USINT

1014.0 COB-ID Emergency Message (UDINT)
10161 Consumer Heartheat Time 1 {JDIMNT)
1017.0 Producer Heartbeat Time {UINT)
14001 COB LIDIMNT)

1600.0 Mumber of mapped objects (USINT) k
16001 1stmapped Object (UDINT)

62001 Write Qutput 1hto 8h (USINT)

2.0 Dummy0002 (SINT)

3.0 Durmmy0003 (INT)

4.0 Dummyd004 (DINT) -

0K | Cancel

In this page you can insert a list of objects and values to send to the slave at boot for
configuration purpose, using SDO packets.

Press the Add button, choose the objects to send and then insert their Value in the grid.

Some objects are handled automatically, for example the Transmission type and Event
timer are configured automatically depending on the PDO Tx comm settings and PDO Rx
comm settings in the General tab.

4.5.3.3 PDO TX AND PDO RX TABS
PDO Tx - Input
[& Add [dRemove Assign UnAssign
| 1dx [2ub | Poo| Bit | coBip| Objact Name Type | Size| Labal DataBlock
1 Gooo 1 1 o o Diglnputg_1 LISINT g
2 Gooo 2 1 & 0 Diglnputd_2 LISINT g
3 6401 1 2 o o Analogue [nput 1 INT 16
4 B401 2 2 16 0 Analogue [nput 2 INT 16
5 E401 3 2 320 Analogue Input 3 INT 16
E 6401 4 2 45 0 Analogue Input 4 INT 16
30 user manual

4.6

Co

In the PDO Tx - Input tab you configure the PDOs (Process Data Object) that the slave
transmits, and so the master will receive in input; in the PDO Rx - Output you configure
the PDOs that the slave receives, and so the master will send in output.

If the CAN custom device was imported with the Dynamic PDO mapping enabled, you will
be able to edit the PDO mapping by adding and removing objects and manually edit the
PDO and Bit columns; otherwise, the Add and Remove buttons will not be available and
you have to use the PDO configuration as-is.

¥ariables List x|

Filter: I

[~ split single bits

1001.0 Efror Register (USINT -
60003 Diglhputs_3 (USINT)
B000.4 Diglhputs_4 (USINT)
G000 Diglhputs_5 (USINT)
BO006 Diglhputs_& (USINT)
G0007 Diglhputs_7 (USINT)
60008 Diglhputs_g (USINT)
60009 Diglhputs_9 (USINT)
G000 Diglnputs_10 (USINT)
6000k Diginputs_11 (USINT)
G000 Diginputi_12 (USINT)
60000 Diginputs_13 (USINT)
6000 Diginputs_14 (USINT)
B000F Diglnputs_15 (USINT -

0K I Cancel I

If you check the Spiit single bits option, the object you choose will be inserted as
splitted single bits to be linked to BOOL variables (that is the default for digital I/O objects
in the DS401 standard).

IMPORTANT: please note that the PDO mapping configuration you enter here is NOT sent
to the device, its only purpose is to match an already configured PDO mapping on the
device.

Then with the Assign button you can link each CAN object with the PLC variable to read
(PDO Tx) or write (PDO RXx).

IMPORTANT: please remember to rebuild the PLC project with Application to see an up-
dated list of PLC variables here.

FREE EVOLUTION EVK

FREE Evolution EVK is a keyboard with a display. It is used to show HMI Remote pages
that are made available by FREE Evolution or FREE Evolution EVC devices.

EVK keyboard has not PLC, HMI and HMI Remote features and it has one on-board CANo-
pen port.

EVK can maintain on-board no more than one HMI set of remote device pages.

Project X
B MyProject
E‘E FreeEvolution EVK_1

L...AN CANopen

4.6.1 CANOPEN

FREE Evolution EVK can be connected to FREE Evolution or to FREE Evolution EVC in field
mode or in network mode.

user manual 31

4.6.1.1 FIELD MODE

In this connection mode FREE Evolution EVK has to be considered a slave of FREE Evolu-
tion. EVK will be able to show only the remote pages of the master device which is linked
to.

To configure network in this way select FREE Evolution or FREE Evolution EVC and add it
as first level node; then configure its PLC, HMI, and HMI Remote projects normally.

The project associated to FreeEvolution_1 - HMI Remote node will be shown by FREE
Evolution EVK device.

Froject , X CANopen Configuration i Catal_og
WyProjectl Device name
EE FreeEvolution 1 EFreeE\rolution EVK
g ::II_\J('I:I [~ Mode FreeE\rolution EVP
@ HMI Remote £ Notused EXP |FreeEvelutionExp
g....m (% Master {for field)
"E\ RS485 " slave (for binding)
.28 Plugins
—Baud rate
* 500 Kbfs
" 250 Kb/s
" 125Kbfs
" S0Kbfs

— Master Settings

Mode ID (1.,127): 127

Heartbeat time (ms): |0
Sync COBID: 123
Sync Cyde (ms): 0

Click on CANopen and select Master (for field) option in Mode tab and configure CANopen
settings. Then FREE Evolution EVK device can be selected from Catalog, dragged and
dropped over CANopen node.

Select FreeEvolution EVK_1 device child node and adjust network settings.

Project X

MyProjectl
- FreeEvolution_1

FreeEvolution EVK Configuration

""" [m pLC — General
@ HMI
@ HMI Remote MName: ‘FreeEvquh’on EVK_1
EI-4AN CANopen Version: [a0
E FreeEvolution EVK_1
-, RS485
.28 Plugins —Metwork settings
Node number (1..127): 127

32

user manual

Co

As resulting output of the compiling process we see the output line:
FreeEvolution 1: added field CAN keyboard ‘FreeEvolution EVK 1’ (with
virtual master nodeID 124)

FreeEvolution EVK_1 device communicates with FreeEvolution_1 using this CAN nodelD.
This node ID will be used for navigating remote pages.

4.6.1.2 NETWORK MODE

In this connection mode free Evolution EVK can be linked to one of the remote devices
that are available on the network to navigate HMI Remote pages provided by other de-
vices.

Using Connection it is possible to do so indicating one of the available HMI Remote device
of the network. Let’s see how with an example.

We have a CANOpen network with FreeEvolution_1 and FreeEvolution EVC_1, then add as
first level node FreeEvolution EVK_1 to the network taking it from Catalog panel.

Click on CANOpen node of FreeEvolution EVK_1 and select Master (for HMI remoting)
node, assign univoque Node ID and select network CANOpenl.

Project X . .
_ CANopen Configuration

MyProject2
EE FreeEvolution_1

..... [PLC —Mode

) HMI

@ HMI Rermote £ Mot used

LAY CANopen %" Master (for HMI remoting)

..... %, RS485

----- 23 Plugins —Baud rate
== FreeEvolution EVC_1

EEE pLC * 500 Kbfs

@ HMI Rermote kb

LY CANopen 125Kbfs

..... %, Rs485 € s0Kbfs

----- 23 Plugins
=[5 FreeEvolution EVK_1 — Master Settings

T CANopen

- Mode ID (1..127): 127
Metwark: CAMopenl =

Once linked to the CANopenl network it is possible to select the HMI remote pages to
navigate with FreeEvolution EVK_1.

Click on the device node then click on Add. Window Add HMI Remote pages will be shown.
It is possible to select to navigate pages of FreeEvolution_1 or FreeEvolution EVC_1 be-
cause they are on the same network of the keyboard and provide HMI Remote pages.

user manual 33

|||Im Studio

Project x . -
| - | FreeEvolution EVK Configuration
MyProject2
= FresEvolution_1
""" i pLC — General
@ HMI
@ HMI Remote Mame: |FreeE\rquﬁon EVK_1
<Ay CANopen Version: | 475.0
..... ‘E RS485
----- 22 Plugins o
5] Freekvolution EVC_L —HMI Remote Pages—{ Add HMI Remote pages ‘ [
""" g PLC [@Add 2 Remoy
-4) HMIRemote Fiter: |
--CAY CANopen I
----- ., R5485 FreeEvolution_1
----- 23 Plugins FreeEvolution EVC_1

El-- Freebvolution EVE_1
5----“’ CANopen

Click on freeEvolution_1, then click on OK. Selected device will be added to HMI Remote
Pages. It is not possible to navigate more than one remote device at a time.

4.7 FREE EVOLUTION EVP

FREE Evolution EVP is an advanced keyboard with display that can be used to navigate
HMI Remote pages and offers more connectivity (CANopen, RS485, Ethernet) than FREE
Evolution EVK. It can also run PLC and local HMI pages and it is also provided with probes.

| Project X

MyProject3
EE FreeEvolution EVP_1

4.7.1 PLC

FREE Evolution EVP can run PLC. This configuration step can be done in the same way of
FREE Evolution and is fully described in section 4.1.1 - PLC.

4.7.2 HMI

FREE Evolution EVP can run local HMI project with its own pages. This configuration step
can be done in the same way of FREE Evolution and is fully described in section 4.1.2 -
HMI.

34 user manual 4"V€"

I studio

4.7.3 PROVIDING HMI PAGES

This feature is not supported by FREE Evolution EVP. No linked device can upload HMI
pages from FREE Evolution EVP device.

4.7.4 CANOPEN

FREE Evolution EVP can be connected using CANopen in field mode or in network mode.

4.7.4.1 FIELD MODE

To connect FREE Evolution EVP in this mode select FREE Evolution or FREE Evolution
EVC CANopen node and select the option Master (for field) then take FREE Evolution EVP
device from Catalog tab and drop it over CANopen node.

Proj x
J:ﬂdyPrUJeCtZ | FreeEvolution EVP Configuration

=& Freebvolution_ 1 General Probes - Input

—General

[=-cAN CAMNopen
E FreeEvolution EVP_L MName: IFreeEvo\ution EVP_1

@ HMI Version: I 489.0

..... ia\ RS485

—Network settings

Node number (1..127): 127

Polling time: IIDDD

dli/ell “os

Select FreeEvolution EVP_1 child node and configure Network settings.

Probes

FreeEvolution_1 can access on board FreeEvolution EVP_1 on-board probes. To do so
select Probes-Input tab then it is possible to map a FreeEvolution_1 parameter to let it
obtain the value of an on-board free Evolution probe.

Choose one of the probe and click on Assign button. Take one of the FreeEvolution_1 INT
parameter and click 0K button.

QIIW" user manual 35

|||Im Studio

FreeEvolution EVP Configuration
% Assign % UnAssign
| 1ox |sus|PDO| coBiD| Object Name Type | Size| Label DataBlock
1 2090 0 1 1] AIL1 -Analogue input 1 INT 16 ail_evp_1 MW110.0
2 2091 0 1 0 AILZ -Analogue input 2 INT 16
3 2092 0 1 1] AIL3 -Analogue input 3 INT 16
4 2093 0 1 0 AlL4 - Analogue input 4 INT 16
' '
Choose PLC variable - u
Filter: I
FreeEvolution_1: ail_evp_1 (INT)
‘l 0K Cancel ||
HMI

It is possible to associate to a FREE Evolution EVP (configured as CANopen field slave) an
HMI project with local pages. FREE Evolution EVP would be able to show its own target
variables and parameters of the master CANopen which belongs to.

4.7.4.2 NETWORK MODE

In this connection mode FREE Evolution EVP can be linked to one of the remote devices
that are available on the network to navigate HMI Remote pages provided by other de-
vices.

Using Connection it is possible to do so by indicating one of the available HMI Remote
device of the network. Let’s see how with an example.

We have a CANopen network with FreeEvolution_1 and FreeEvolution EVC_1 then add as
first level node FreeEvolution EVP_1 to the network taking it from Catalog panel.

Click on CANOpen node of FreeEvolution EVP_1 and select Master (for HMI remoting and
binding) node, assign univoque Node ID and select network CANOpenl.

Binding of variables between FreeEvolution EVP_1 and FreeEvolution EVC_1 and FreeEvo-
lution_1 is allowed in a network of this type (see 4.1.3.2 for more details).

36 user manual éllwu

HMI Remote pages

In CANopen network mode it is possible to configure FREE Evolution EVP in order to be
linked to 0 to 10 remote devices that can provide HMI Remote pages to the keyboard.

Project X
MyProject2

=+ FreeEvolution_1

..... M PLC —General

@ HMI

@ HMI Remote MName: |FreeEvolution EVP_1

E£1-CRY CANopen Version: ’T

... 2= Binding

FreeEvolution EVP Configuration

----- 25 Plugins — HMI Remote Pages
[—]E FreeEvolution EVC_1 G Add Q Remove

FreeEvolution_1
@ HMI Remote FreeEvolution EVC_1
[£-eAg CAMopen
L. 5% Binding

* @ o

To add HMI Remote pages select Freefvolution EVP_I1 node, then press Add on the HMI
Remote pages box thus all available devices will be shown and the user can select the
pages to navigate.

4.7.5 RS485

The usage of this communication feature is the same of FREE Evolution (see 4.1.4 -
RS485 paragraph).

4.7.6 ETHERNET

FREE Evolution EVP is provided with on-board Ethernet. Ethernet configuration and fea-
tures for this kind of device is similar to the configuration of the Ethernet plugin of FREE
Evolution (see 4.1.5 - Ethernet).

4.8 FREE EVOLUTION EXP

FREE Evolution EXP is a device that can be linked in a CANopen field or Modbus RTU field
network whose master can be a FREE Evolution, a FREE Evolution EVC or a FREE Evolu-
tion EVP device.

FREE Evolution EXP main feature is to provide a lot of I/O signal to its field master device.
I/0 signals mapping can be configured by using Connection.

z E user manual 37

Co

4.8.1

USING FREE EVOLUTION EXP AS CANOPEN FIELD SLAVE

In this configuration sample we want to use FREE Evolution EXP as expansion of a FREE
Evolution device. The same can be done for FREE Evolution EVC and FREE Evolution EVP.

Configure FREE Evolution CANopen in Master (for field) mode. From the Catalog panel it
is possible to select FreeEvolutionExp node and drop it on the CANopen node.

Pt - i FreeEvolutionExp Configuration
MyProjectd
=[5 FreeEvolution_1 ’m‘
[PLC
g :m; Remote Assign Unassign
cm ChNopen # [10 | suo|Poo] it | comp| Object Name Type [size| Label DataBlock
i 1.5 FreeEvolutionExp_1
. Rs485 1 6000 1 1 (U] Read Input 1h to 8h BOOL 1
----- 23 Plugins 2 |gooo 1 1 10 Read Input 1h to 8h BoOL 1
3 6000 1 1 2 0 Read Input 1h to 8h BOOL 1
4 6000 1 1 30 Read Input 1h to 8h BOOL 1
5 6000 1 1 4 0 Read Input 1h to 8h BOOL 1
6 6000 1 1 5 0 Read Input 1h to 8h BOOL 1
7 |6000 A 1 6 0 Read Input 1h ta 8h BOOL 1
8 6000 1 1 T 0 Read Input Thto 8h BOOL 1
9 G000 2 1 g 0 Read Input@h to 16h BOOL 1
10 |B000 2 1 a9 0 Read Input@h to 16h BOOL 1
11 6000 2 1 10 0 Read Input2h to 16h BOOL 1
12 |BO00 2 1 Mn o Read Input 9h to 16h BOOL 1
13 |B401 1 2 0 0 Analogue Input 1 INT 16 PLC_VAR_INT IW11.0
14 |B401 2 2 16 0 Analogue Input 2 INT 16
15 |6401 3 2 32 0 Analogue Input 3 INT 16
16 |6401 4 2 43 0 Analogue Input 4 INT 16
17 |6401 B 3 0 0 Analogue Input 5 INT 16
18 |6401 6 3 16 0 Analogue Input 6 INT 16
19 2220 O 5 o0 Counter UDINT 32
20 2232 0 5 320 Frequency UDINT 32

FreeEvolution EXP configuration is quite similar to CAN Custom configuration (see 4.5.3 -
Using a CAN custom device) with dynamic PDO mapping feature disabled. Available Input/
Output objects that can be mapped on FREE Evolution PLC variables via PDO are listed in
PDO TX-Input and PDO RX-Output.

Connection knows the FREE Evolution EXP dictionary. Each object can be here linked to
FreeEvolution_1 PLC variable as it has been done in the above figure for Analogue Input
1 signal.

4.8.2 USING FREE EVOLUTION EXP AS RS485 FIELD SLAVE

In this configuration sample we want to use FREE Evolution EXP as expansion of a FREE
Evolution device. The same can be done for FREE Evolution EVC and FREE Evolution EVP.

Configure FREE Evolution RS485 in Modbus Master (for field) mode. From the Catalog
panel it is possible to select FreeEvolutionExp node and drop it on the RS485 node.

e - X FreeEvolutionExp Configuration
MyProjectd
=& FreeEvolution_1 m
0 PLC
8 Em; Remote [d Add [d Remove Assign UnAssign Up Down
E‘nt:n E;E;pen Parameter ‘ Address | Type ‘ Variable Type DataBlock
I FreeEvolutionExp_1 DLt 1 BooL
22 Plugins DIL2 2 BOOL
DIL2 3 BOOL
DiL4 4 BOOL
DILS 5 BOOL
DILG 6 BOOL
DiL? 7 BOOL
DiLe 8 BOOL
SW1 9 BOOL
sSW2 10 BOOL
SW3 " BOOL
SW4 12 BOOL
AL 8336 INT PLC_VAR_INT INT IW11.0
AlL2 8337 INT
AIL2 833 INT
AlL4 8329 INT
AlLS 8340 INT
AILG 8341 INT
Counter 8752 UDINT
Frequency 8754 UDINT

38

user manual

4.9

-

Co

FreeEvolution EXP_1 configuration is quite similar to a Modbus Custom device configura-
tion (see 4.4.4 - Using a Modbus custom device) in which it is possible to assign available
FREE Evolution EXP dictionary I/O objects to FreeEvolution_1 PLC variables.

Connection knows the FREE Evolution EXP dictionary. Input and Output objects can be
added, removed, assigned, unassigned or changed in position. Only assigned objects will
be requested by FreeEvolution_1 device.

VIRTUAL CHANNELS ASSIGNMENT CRITERIA

This paragraph concerns the criteria used by Connection to assign virtual node IDs due to
the network configuration.

4.9.1 CANOPEN NETWORK - VIRTUAL SDO SERVERS

When CANopen is in use on a FREE Evolution or FREE Evolution EVC device in sTave mode
(network for binding) three SDO servers are activated on it.

First SDO server is used to process requests that arrives to its physical node ID (the ID
assigned by user in the configuration box). Supervisor PC should be connected using this
node ID. CANopen physical node ID addr must be chosen in a range between 1 to 42.

Two other virtual SDO servers are opened on this device and are dedicated to the com-
munication with keyboards (max 2 for each CANopen network). So the device is able to
process requests addressed to these node IDs.

Virtual SDO servers node IDs are calculated with this criteria:
ch 1 =124 - 2 * (addr - 1)
ch 2 =123 - 2 * (addr - 1)
The first keyboard on the network communicates to the destination FREE Evolution device
using ch 1, channel ch 2 is dedicated to the second.
Example:
addr =1 -> ch 1 =124, ch 2 = 123
addr = 2 -> ch 1 =122, ch 2 121

4.9.2 ETHERNET - TCP SLAVE CHANNELS

If Ethernet network communication is enabled on a FREE Evolution or FREE Evolution EVC
device two TCP slave channels are always opened to support the communication with
keyboards.

4.9.3 CANOPEN FIELD - VIRTUAL MASTER CHANNELS

When CANopen is in use on a FREE Evolution or FREE Evolution EVC device in master
mode (field) three master channels are opened.

First master channel is used to process requests that arrive to its physical node ID (the
ID assigned by user in the configuration box). Supervisor PC should be connected using
this node ID. CANopen physical node ID addr must be chosen in a range between 1 to
122 or 125.

Two other virtual master channels are opened on this device and are dedicated to the
communication with keyboards (max 2 for each CANopen network).

Virtual master node IDs have fixed values :
ch 1 =123
ch 2 = 124

user manual 39

||| |free BULIL

40

user manual

divll

5. TECHNICAL REFERENCE

5.1 CANOPEN PROTOCOL
5.1.1 OVERVIEW

CANopen realizes a communication model using the serial bus network Controller Area
Network (CAN).

Developed originally for passenger cars, the CAN two-wire bus system is already in use in
over one million industrial control devices, sensors and actuators.

CiA (CANopen in Automation) maintains the CANopen specifications, including device pro-
files for I/O modules (CiA DS-401), for electric drive systems (CiA DSP-402) and many
more. The process of defining new profiles is continually performed. An independent test
and certification process is available at CiA.

A number of CANopen implementations (OEM code) and many CANopen products are al-
ready available. CiA regularly publishes an up-to-date catalog of CANopen products and
of certified ones.

5.1.2 PHYSICAL STRUCTURE OF A CANOPEN NETWORK

The underlying CAN architecture defines the basic physical structure of the CANopen net-
work. Therefore, a line (bus) topology is used; to avoid reflections of the signals, both
ends of the network must be terminated. In addition, the maximum permissible branch
line lengths for connection of the individual network nodes must be observed.

Additionally, for CANopen, two additional conditions must be fulfilled:
- all nodes must be configured to the same bit rate and
- no node-ID may exist twice.

Unfortunately there are no mechanisms automatically ensuring these conditions. The sys-
tem integrator has to check the bit rate and node-ID of every single network node when
wiring a network and adjust if necessary.

5.1.3 COB AND COB-ID

CANbus, the physical layer of CANopen, can transmit short packages of data (called COB,
Communication Object), that have a 11-bit ID or 29-bit ID (in version CAN 2.0 B); this
ID of a CAN-frame is known as Communication Object Identifier, or COB-ID. In case of a
transmission collision, the bus arbitration used in the CANbus allows the frame with the
smallest ID to be transmitted first and without a delay. Thus giving a low code number for
time critical functions ensures the lowest possible delay.

5.1.4 THE OBJECT DICTIONARY

All device parameters are stored in an object dictionary. This object dictionary contains the
description, data type and structure of the parameters as well as the address from others
point of view. The address is being composed of a 16 bit index and a 8 bit sub-index; the
sub-index refers to the elements of complex data types, like arrays and records.

There are a range of mandatory entries in the dictionary which ensures that all CANopen
devices of a particular type show the same behavior. The object dictionary concept ca-
ters for optional device features which means a manufacturer does not have to provide
certain extended functionality on his device, but if he wishes to do so he hasto do itin a
pre-defined fashion. Additionally, there is sufficient address space for truly manufacturer
specific functionality.

user manual 41

5.1.5 THE SERVICE DATA OBJECTS (SDO)

Service Data Messages, in CANopen called Service Data Objects (SDO), are used for read
and write access to all entries of the object dictionary of a device. Main usage of this type
of messages is the device configuration; SDOs are typically transmitted asynchronously.
The requirements towards transmission speed are not as high as for PDOs; the SDO mes-
sage contains information to address data in the device object dictionary and the data
itself.

5.1.6 THE PROCESS DATA OBJECTS (PDO)

Process Data Messages, in CANopen called Process Data Objects (PDO), are used to per-
form the real-time data transfer between different automation units. PDOs have to be
transmitted quickly, without any protocol overhead and within a predefined structure.

The contents of the PDO is encoded in the PDO mapping entries. A PDO can contain up
to 8 bytes or 64 single data elements from the object dictionary (in the case of 64, that
are bit data); the data are described via its index, sub-index and length. The mapping
parameter of a PDO resides also in the object dictionary.

The mapping for the PDO can be static or changeable. If the mapping can be changed,
it is called dynamic PDO mapping; changing of mapping can be done in the state pre-
operational (default) or operational.

5.1.7 PDO TRANSMISSION MODES

For the PDOs different transmission modes are distinguished:

- SYNC: PDO are transmitted according to the SYNC clock transmitted by the master.
- EVENT: PDO are transmitted when the value changes (asynchronous).

- CYCLIC: PDO transmission is periodic and timer-based.

- RTR: PDO are transmitted only on master request.

The communication parameters of a PDO reside in the object dictionary. The indices for
PDOs are built like follow:

- PDO Tx: 0x1800 + PDO number.
- PDO Rx: 0x1400 + PDO number.

The range of the PDO numbers is 1..512. that means up to 512 receive PDOs (RPDO) and
up to 512 transmit PDOs (TPDO) are possible for a device.

The communication parameter of PDOs are described with a structure: only sub-index 1
and 2 are mandatory.

Subindex 1 describes the used COB-ID of the PDO: a PDO communication channel be-
tween two devices is created by setting the TPDO COB-ID of the first device to the RPDO
COB-ID of the second device. For PDOs a 1:1 and a 1:n communication is possible: that
means there is always only one transmitter, but an unlimited number of receivers.

The transmission type (sub-index 2) describes the kind of transmission; transmission type
1 means PDO will be triggered with each SYNC Object. If this entry has the value 240, the
PDO will be sent/received with each 240th SYNC. If the entry is 255, the transmission is
EVENT or CYCLIC, depending on the event timer (see below).

The optional entry inhibit time (sub-index 3) defines a minimum time period between two
PDO transmissions. This feature ensures that messages with lower priorities than the ac-
tual PDO can be transmitted in the case of continuous transmission of the actual PDO.

The optional entry event timer (sub-index 5) is only relevant for asynchronous Transmit
PDOs: if this value is greater then zero, indicates the time to elapse for the CYCLIC; oth-
erwise means EVENT (on variation).

42

user manual

Co

5.1.8 THE EMERGENCY OBJECT

The Emergency Message (EMCY) is a service which signs internal fatal device errors.

The EMCY is transmitted with highest priority; CANopen defines EMCY-Server and EMCY-
Clients, the server transmits EMCYs and the clients receive them.

The EMCY telegram consists of 8 bytes: it contains an emergency error code, the contents
of object and 5 byte of manufacturer specific error code.

5.1.9 SYNC OBJECT AND TIME STAMP OBJECT

The SYNC Object is a network wide system clock. It is the trigger for synchronous mes-
sage transmission; the SYNC has a very high priority and contains no data in order to
guarantee a minimum of jitter. The SYNC COB-ID is by default 128, but can be config-
ured.

The Time Stamp Object provides a common time reference; it is transmitted with high
priority.

5.1.10 ERROR CONTROL: NODE GUARDING

The Node Guarding is the periodical monitoring of certain network nodes; each node can
be checked by the master with a certain period called “Node guard period”. If the node
does not answer after a time calculated as the guard period x “Life time factor”, the con-
nection should be considered lost.

This feature is enabled for a slave when both parameters are not zero; please note that
when it is enabled it has a big impact on network load.

5.1.11 ERROR CONTROL: HEARTBEAT

The Heartbeat is an error control service without need for remote frames: the Heartbeat
producer transmits periodically a heartbeat message; one or more heartbeat consumer
receive this message and monitor this indication.

Each heartbeat producer can use a certain period (heartbeat producer time); the heart-
beat starts immediately if the heartbeat producer time is zero.

The heartbeat consumer has to monitor the heartbeat producer; it has an entry for each
heartbeat producer in its own object dictionary. The heartbeat consumer time can be dif-
ferent for each heartbeat producer but should be greater than the heartbeat producer
time.

Heartbeat has a big impact on network load, but in practice the half of the load of the
node guarding.

5.1.12 THE NETWORK BEHAVIOR

Devices have four operative states: the initialization, the pre-operational, the
stopped and the operational one; the difference between master and slave devices is
the initiation of the state transitions.

The master controls the state transitions of each device in the network: after power-on
a device goes in the initialization, and then in the pre-operational automatically;
in this state reading and writing to its object dictionary via the service data object (SDO)
is possible. Therefore the device can now be configured: this means setting of objects or
changing of default values in the object dictionary like preparing PDO transmission.

Afterwards the device can be switched into the operational” state via the command
Start Remote Node in order to start PDO communication. PDO communication can be
stopped by the network master by simply switching the remote node back to pre-opera-
tional by using the Enter Pre-Operational State command.

user manual 43

Via the Stop Remote Node command the master can force the slave(s) to the stopped
state. In this state no services besides network and error control mechanism are avail-
able.

The command Reset Communication resets the communication on the node: all commu-
nication parameters will be set to their defaults.

The application will be reset by Reset Node command, that resets all application param-
eter and then calls Reset Communication command.

5.1.13 THE BOOT-UP MESSAGE

After a CANopen node has finished its own initialization and entered in the node state
pre-operational it has to send the Boot-up Protocol Message; this message indicated
that the slave is ready for work (e.g. configuration).

The master can wait for this message up to Boot time elapsed ms.

5.1.14 THE CANOPEN DEVICE PROFILES

5.2

A device profile defines a standard kind of device: for these standard devices a basic
functionality has been specified, that every device has to implement. The CANopen Device
Profiles ensure a minimum of identical behavior for a kind of devices, and this guarantees
an high degree of interoperability and vendor independence.

Each device has to fulfill the requirements on the behavior; furthermore it has to support
all mandatory objects: these objects are parameter and data for the device.

Additionally the manufacturer can decide about supported optional objects; all param-
eters and data, which are not covered by the standardized device profiles can be realized
as manufacturer specific objects.

For example, two of the most commonly used Device Profiles are DS401 (Generic I/0O
Modules) and DS402 (Drives and Motion Control).

MODBUS PROTOCOL

5.2.1 OVERVIEW

Modbus is a serial communication protocol. In simple terms, it is a method used for trans-
mitting information over serial lines between electronic devices. The device requesting
the information is called the Modbus Master and the devices supplying information are
Modbus Slaves. In a standard Modbus network, there is one Master and up to 247 Slaves,
each with a unique Slave Address from 1 to 247; the Master can also write information
to the Slaves.

Address 0 is used as broadcast address.

5.2.2 DATATYPES

Information is stored in the S7ave device in four different types: two types are on/off
discrete values (coils) and two are numerical values (registers).

- Discrete Input Contacts (read only), 1-bit.

Discrete Output Coils (read/write), 1-bit.

Analog Input Registers (read only), 16-bit.

Analog Output Holding Registers (read/write), 16-bit.

To handle more complex data types (like 32-bit integers or floating point) you have to use
two or more following registers and read or write them together.

44

user manual

5.2.3

FUNCTION CODES

The Modbus protocol specifies different “function codes” for each Modbus message:

5.2.4

01 (0x01): Read Discrete Output Coils.

05 (0x05): Write single Discrete Output Coil.

15 (OxOF): Write multiple Discrete Output Coils.

02 (0x02): Read Discrete Input Contacts.

04 (0x04): Read Analog Input Registers.

03 (0x03): Read Analog Output Holding Registers.

06 (0x06): Write single Analog Output Holding Register.

16 (0x10): Write multiple Analog Output Holding Registers.

ERROR DETECTION AND CRC

CRC stands for Cyclic Redundancy check: it is two bytes added to the end of every Mod-
bus message for error detection. Every byte in the message is used to calculate the CRC.
The receiving device also calculates the CRC and compares it to the CRC from the sending
device: if even one bit in the message is received incorrectly, the CRCs will be different
and an error will result.

5.2.5

PROTOCOL VERSIONS

Versions of the Modbus protocol exist for serial port and for Ethernet and other networks
that support the Internet protocol suite. There are many variants of Modbus protocols:

Modbus RTU: This is used in serial communication (RS232 or RS485) and makes use
of a compact, binary representation of the data for protocol communication. The RTU
format follows the commands/data with a cyclic redundancy check checksum as an er-
ror check mechanism to ensure the reliability of data. Modbus RTU is the most common
implementation available for Modbus. A Modbus RTU message must be transmitted con-
tinuously without inter-character hesitations. Modbus messages are framed (separated)
by idle (silent) periods.

Modbus ASCII: This is used in serial communication and makes use of ASCII characters
for protocol communication. The ASCII format uses a longitudinal redundancy check
checksum. Modbus ASCII messages are framed by leading colon (*:’) and trailing new-
line (CR/LF).

Modbus TCP: This is a Modbus variant used for communications over TCP/IP networks.
It does not require a checksum calculation as lower layer takes care of the same.

user manual 45

	1.	Basic concepts
	1.1	Entry point and container
	1.2	Composite applications and Field I/O
	1.3	Distributed applications and Binding I/O

	2.	Using the environment
	2.1	The workspace
	2.1.1	The main window
	2.1.2	The output window
	2.1.3	The project window
	2.1.4	The catalog window

	2.2	Layout customization
	2.3	Toolbars and docking windows
	2.3.1	Showing/hiding
	2.3.2	Moving toolbars
	2.3.3	Moving docking windows

	3.	Managing projects
	3.1	Creating a new project and main page
	3.2	Saving the project
	3.3	Managing existing projects
	3.3.1	Opening an existing project
	3.3.2	Closing the project

	3.4	Building projects
	3.5	Distributing projects
	3.5.1	Distributing to other developers
	3.5.2	Distributing to users or installers

	4.	Managing project elements
	4.1	FREE Evolution
	4.1.1	PLC
	4.1.2	HMI
	4.1.3	CANopen
	4.1.4	RS485
	4.1.5	Ethernet

	4.2	FREE Evolution EVC
	4.3	Generic Modbus
	4.3.1	Modbus messages

	4.4	Modbus Custom
	4.4.1	Creating a new Modbus custom device
	4.4.2	Editing an existing Modbus custom device
	4.4.3	Deleting a Modbus custom device
	4.4.4	Using a Modbus custom device

	4.5	CAN custom
	4.5.1	Importing a new CAN custom device
	4.5.2	Deleting a CAN Custom device
	4.5.3	Using a CAN custom device

	4.6	FREE Evolution EVK
	4.6.1	CANopen

	4.7	FREE Evolution EVP
	4.7.1	PLC
	4.7.2	HMI
	4.7.3	Providing HMI pages
	4.7.4	CANopen
	4.7.5	RS485
	4.7.6	Ethernet

	4.8	FREE Evolution EXP
	4.8.1	Using FREE Evolution EXP as CANopen field slave
	4.8.2	Using FREE Evolution EXP as RS485 field slave

	4.9	Virtual channels assignment criteria
	4.9.1	CANopen network - virtual SDO servers
	4.9.2	Ethernet - TCP Slave Channels
	4.9.3	CANopen field - virtual master channels

	5.	Technical reference
	5.1	CANopen protocol
	5.1.1	Overview
	5.1.2	Physical structure of a CANopen network
	5.1.3	COB and COB-ID
	5.1.4	The object Dictionary
	5.1.5	The Service Data Objects (SDO)
	5.1.6	The Process Data Objects (PDO)
	5.1.7	PDO transmission modes
	5.1.8	The Emergency Object
	5.1.9	SYNC Object and Time Stamp Object
	5.1.10	Error Control: Node guarding
	5.1.11	Error control: Heartbeat
	5.1.12	The Network Behavior
	5.1.13	The Boot-up Message
	5.1.14	The CANopen Device Profiles

	5.2	Modbus protocol
	5.2.1	Overview
	5.2.2	Data types
	5.2.3	Function codes
	5.2.4	Error detection and CRC
	5.2.5	Protocol versions

