
Application
User Manual

Revision 1.3 - May 2011

II user manual

Application User Manual

Revision 1.3 - 2011-05-20

Published by Eliwell Controls S.r.l.

Via dell’Industria, 15 Z.I. Paludi

32010 Pieve d’Alpago (BL)

© Eliwell Controls S.r.l. 2010.

All Rights Reserved.

 user manual III

Contents

1. Overview 1

1.1 The workspace 1

1.1.1 The output window 2

1.1.2 The status bar 2

1.1.3 The document bar 2

1.1.4 The watch window 3

1.1.5 The library window 3

1.1.6 The workspace window 5

1.1.7 The source code editors 6

2. Using the environment 7

2.1 Layout customization 7

2.2 Toolbars 7

2.2.1 Showing/hiding toolbars 7

2.2.2 Moving toolbars 7

2.3 Docking windows 9

2.3.1 Showing/hiding tool windows 9

2.3.2 Moving tool windows 10

2.4 Working with windows 11

2.4.1 The document bar 11

2.4.2 The window menu 12

2.5 Full screen mode 12

2.6 Environment options 13

3. Managing projects 15

3.1 Creating a new project 15

3.2 Uploading the project from the target device 15

3.3 Saving the project 17

3.3.1 Persisting changes to the project 17

3.3.2 Saving to an alternative location 17

3.4 Managing existing projects 18

3.4.1 Opening an existing Application project 18

3.4.2 Editing the project 18

3.4.3 Closing the project 18

3.5 Distributing projects 18

3.6 Project options 19

3.7 Selecting the target device 20

3.8 Working with libraries 20

IV user manual

3.8.1 The library manager 20

3.8.2 Exporting to a library 22

3.8.3 Importing from a library or another source 23

4. Managing project elements 25

4.1 Program Organization Units 25

4.1.1 Creating a new Program Organization Unit 25

4.1.2 Editing POUs 26

4.1.3 Deleting POUs 27

4.1.4 Source code encryption 28

4.2 Variables 29

4.2.1 Global variables 29

4.2.2 Local variables 35

4.3 Tasks 36

4.3.1 Assigning a program to a task 36

4.3.2	 Task	configuration	 37

4.4 Derived data types 37

4.4.1 Typedefs 37

4.4.2 Structures 39

4.4.3 Enumerations 41

4.4.4 Subranges 42

4.5 Browsing the project 44

4.5.1 object browser 44

4.5.2 Searching with the Find in project command 53

4.6 Working with Application extensions 55

5. Editing the source code 57

5.1 Instruction List (IL) editor 57

5.1.1 Editing functions 57

5.1.2 Reference to PLC objects 57

5.1.3 Automatic error location 57

5.1.4 Bookmarks 58

5.2 Structured Text (ST) Editor 58

5.2.1 Creating and editing ST objects 58

5.2.2 Editing functions 58

5.2.3 Reference to PLC objects 59

5.2.4 Automatic error location 59

5.2.5 Bookmarks 59

5.3 Ladder Diagram (LD) editor 59

5.3.1 Creating a new LD document 60

5.3.2 Adding/Removing networks 60

5.3.3 Labeling networks 60

 user manual V

5.3.4 Inserting contacts 61

5.3.5 Inserting coils 62

5.3.6 Inserting blocks 62

5.3.7 Editing coils and contacts properties 62

5.3.8 Editing networks 63

5.3.9 Modifying properties of blocks 63

5.3.10 Getting information on a block 63

5.3.11 Automatic error retrieval 63

5.4 Function Block Diagram (FBD) editor 64

5.4.1 Creating a new FBD document 64

5.4.2 Adding/Removing networks 64

5.4.3 Labeling networks 64

5.4.4 Inserting and connecting blocks 65

5.4.5 Editing networks 66

5.4.6 Modifying properties of blocks 66

5.4.7 Getting information on a block 66

5.4.8 Automatic error retrieval 66

5.5 Sequential Function Chart (SFC) Editor 67

5.5.1 Creating a new SFC document 67

5.5.2 Inserting a new SFC element 67

5.5.3 Connecting SFC elements 67

5.5.4 Assigning an action to a step 67

5.5.5 Specifying a constant/a variable as the condition of a transition 69

5.5.6 Assigning conditional code to a transition 69

5.5.7 Specifying the destination of a jump 71

5.5.8 Editing SFC networks 71

5.6 Variables editor 71

5.6.1 Opening a variables editor 72

5.6.2 Creating a new variable 73

5.6.3 Editing variables 73

5.6.4 Deleting variables 75

5.6.5 Sorting variables 76

5.6.6 Copying variables 77

6. Compiling 79

6.1 Compiling the project 79

6.1.1	 Image	file	loading	 79

6.2 Compiler output 80

6.2.1 Compiler errors 80

6.3 Command-line compiler 82

7. Launching the application 83

7.1 Setting up the communication 83

VI user manual

7.1.1 Saving the last used communication port 85

7.2 On-line status 85

7.2.1 Connection status 85

7.2.2 Application status 85

7.3 Downloading the application 86

7.3.1 Controlling source code download 86

7.4 Simulation 88

8. Debugging 89

8.1 Watch window 89

8.1.1 Opening and closing the watch window 89

8.1.2 Adding items to the watch window 90

8.1.3 Removing a variable 93

8.1.4 Refreshment of values 93

8.1.5 Changing the format of data 94

8.1.6 Working with watch lists 95

8.2 Oscilloscope 96

8.2.1 Opening and closing the oscilloscope 97

8.2.2 Adding items to the oscilloscope 98

8.2.3 Removing a variable 100

8.2.4 Variables sampling 100

8.2.5 Controlling data acquisition and display 101

8.2.6 Changing the polling rate 107

8.2.7 Saving and printing the graph 108

8.3 Edit and debug mode 109

8.4 Live debug 110

8.4.1 SFC animation 111

8.4.2 LD animation 111

8.4.3 FBD animation 112

8.4.4 IL and ST animation 112

8.5 Triggers 112

8.5.1 Trigger window 112

8.5.2 Debugging with trigger windows 118

8.6 Graphic triggers 129

8.6.1 Graphic trigger window 129

8.6.2 Debugging with the graphic trigger window 135

9. Application reference 145

9.1 Menus reference 145

9.1.1 File menu 145

9.1.2 Edit menu 146

9.1.3 View menu 146

 user manual VII

9.1.4 Project menu 147

9.1.5 Debug menu 148

9.1.6 Communication menu 148

9.1.7 Scheme menu 149

9.1.8 Variables menu 150

9.1.9	 Definitions	menu	 150

9.1.10 Window menu 150

9.1.11 Help menu 150

9.2 Toolbars reference 151

9.2.1 Main toolbar 151

9.2.2 FBD toolbar 152

9.2.3 LD toolbar 153

9.2.4 SFC toolbar 154

9.2.5 Project toolbar 155

9.2.6 Network toolbar 156

9.2.7 Debug toolbar 156

10. Language reference 157

10.1 Common elements 157

10.1.1 Basic elements 157

10.1.2 Elementary data types 157

10.1.3 Derived data types 158

10.1.4 Literals 160

10.1.5 Variables 161

10.1.6 Program Organization Units 164

10.2 Instruction List (IL) 170

10.2.1 Syntax and semantics 170

10.2.2 Standard operators 171

10.2.3 Calling Functions and Function blocks 172

10.3 Function Block Diagram (FBD) 173

10.3.1 Representation of lines and blocks 173

10.3.2	 Direction	of	flow	in	networks	 174

10.3.3 Evaluation of networks 174

10.3.4 Execution control elements 175

10.4 Ladder Diagram (LD) 177

10.4.1 Power rails 177

10.4.2 Link elements and states 177

10.4.3 Contacts 178

10.4.4 Coils 179

10.4.5 Operators, functions and function blocks 179

10.5 Structured Text (ST) 180

10.5.1 Expressions 180

VIII user manual

10.5.2 Statements in ST 181

10.6 Sequential Function Chart (SFC) 186

10.6.1 Steps 186

10.6.2 Transitions 188

10.6.3 Rules of evolution 189

10.7 Application Language Extensions 191

10.7.1 Macros 191

10.7.2 Pointers 192

 user manual 1

1. OVERVIEW

Application is an IEC61131-3 Integrated Development Environment supporting the whole
range	of	languages	defined	in	the	standard.

In order to support the user in all the activities involved in the development of an applica-
tion, Application includes:

 - textual	 source	 code	 editors	 for	 the	 Instruction	 List	 (briefly,	 IL)	 and	 Structured	 Text	
(briefly,	ST)	programming	languages	(see	Chapter	6.);	

 - graphical	source	code	editors	for	the	Ladder	Diagram	(briefly,	LD),	Function	Block	Dia-
gram	 (briefly,	 FBD),	 and	 Sequential	 Function	 Chart	 (briefly,	 SFC)	 programming	 lan-
guages	(see	Chapter	6.);	

 - a compiler, which translates applications written according to the IEC standard directly
into machine code, avoiding the need for a run-time interpreter, thus making the pro-
gram	execution	as	fast	as	possible	(see	Chapter	7.);

 - a communication system which allows the download of the application to the target
environment	(see	Chapter	8.);

 - a rich set of debugging tools, ranging from an easy-to-use watch window to more pow-
erful tools, which allows the sampling of fast changing data directly on the target envi-
ronment, ensuring the information is accurate and reliable (see Chapter 9.).

1.1 THE WORKSPACE

The	figure	below	shows	a	view	of	Application’s	workspace,	 including	many	of	 its	more	
commonly used components.

2 user manual

The following paragraphs give an overview of these elements.

1.1.1 THE OUTPUT WINDOW

The Output window is the place where Application prints its output messages. This win-
dow contains four tabs: Build, Find in project, Debug, and Resources.

Build

The Build panel displays the output of the following activities:

 - opening	a	project;
 - compiling	a	project;
 - downloading code to a target.

Find in project

This panel shows the result of the Find in project activity.

Debug

The Debug panel displays information about advanced debugging activities (for example,
breakpoints).

Resources

The Resources	panel	displays	messages	related	to	the	specific	target	device	Application	
is interfacing with.

1.1.2 THE STATUS BAR

The Status bar displays the state of the application at its left border, and an animated
control reporting the state of communication at its right border.

1.1.3 THE DOCUMENT BAR

The Document bar lists all the documents currently open for editing in Application.

 user manual 3

1.1.4 THE WATCH WINDOW

The Watch window is one of the many debugging tools supplied by Application. Among
the other debugging tools, it is worth mentioning the Oscilloscope (see Paragraph 9.2),
triggers, and the live debug mode (see Paragraph 9.4).

1.1.5 THE LIBRARY WINDOW

The Library window contains a set of different panels, which fall into the categories ex-
plained in the following paragraphs.

You can choose the display mode by clicking the right button of your mouse. In the View
list mode, each element is represented by its name and icon. Instead, a table appears
in the View details mode, each row of which is associated with one of the embedded
elements. The latter mode also displays the Type (Operator/Function) and the description
of each element.

If you right-click one of the elements of this panel, and you click Object properties from
the dialog box, then a window appears with further details on the element you selected
(input and output supported types, name of input and output pins, etc.).

1.1.5.1 OPERATORS AND STANDARD BLOCKS

This	panel	lists	basic	language	elements,	such	as	operators	and	functions	defined	by	the	
IEC 61131-3 standard.

4 user manual

1.1.5.2 TARGET VARIABLES

This panel lists all the system variables, also called target variables, which are the inter-
face	between	firmware	and	PLC	application	code.

1.1.5.3 TARGET BLOCKS

This	panel	lists	all	the	system	functions	and	function	blocks	available	on	the	specific	target	
device.

1.1.5.4 INCLUDED LIBRARY PANELS

The panels described in the preceding paragraphs are usually always available in the Li-
brary window. However, other panels may be added to this window, one for each library
included in the current Application project. For example, the picture above was taken from
a Application project having two included libraries, basic.pll and thermmodel.pll (see
also Paragraph 4.7).

 user manual 5

1.1.6 THE WORKSPACE WINDOW

The Workspace window consists of three distinct panels, as shown in the following picture.

1.1.6.1 PROJECT

The Project panel contains a set of folders:

 - Program, Function blocks, Functions: each folder contains Program Organization
Units	(briefly,	POUs	-	see	Paragraph	5.1)	of	the	type	specified	by	the	folder	name.

 - Global variables: it is further divided in Variables, I/O Variables, Constants and
Retain variables.	Each	folder	contains	global	variables	of	the	type	specified	by	the	
folder name (see Paragraph 5.2).

 - Tasks: this item lists the system tasks and the programs assigned to each task (see
Paragraph 5.3).

1.1.6.2 DEFINITIONS

The Definitions	panel	contains	the	definitions	of	all	user-defined	data	types,	such	as	
structures or enumerated types.

1.1.6.3 RESOURCES

The contents of the Resources panel depends on the target device Application is interfac-
ing	with:	it	may	include	configuration	elements,	schemas,	wizards,	and	so	on.	

6 user manual

1.1.7 THE SOURCE CODE EDITORS

The Application programming environment includes a set of editors to manage, edit,
and	print	source	files	written	in	any	of	the	5	programming	languages	defined	by	the	IEC	
61131-3 standard (see Chapter 6.).

The	definition	of	both	global	and	local	variables	is	supported	by	specific	spreadsheet-like	
editors.

 user manual 7

2. USING THE ENVIRONMENT

This chapter shows you how to deal with the many UI elements Application is composed
of,	in	order	to	let	you	set	up	the	IDE	in	the	way	which	best	suits	to	your	specific	develop-
ment process.

2.1 LAYOUT CUSTOMIZATION

The layout of Application’s workspace can be freely customized in order to suit your needs.

Application	takes	care	to	save	the	layout	configuration	on	application	exit,	in	order	to	per-
sist your preferences between different working sessions.

2.2 TOOLBARS

2.2.1 SHOWING/HIDING TOOLBARS

In details, in order to show (or hide) a toolbar, open the View>Toolbars menu and select
the desired toolbar (for example, the Function Block Diagram bar).

The toolbar is then shown (hidden).

2.2.2 MOVING TOOLBARS

You can move a toolbar by clicking on its left border and then dragging and dropping it to
the destination.

The toolbar shows up in the new position.

8 user manual

You can change the shape of the toolbar, from horizontal to vertical, either by pressing the
Shift key or by moving the toolbar next to the vertical border of any window.

You	can	also	make	the	toolbar	float,	either	by	pressing	the	CTRL key or by moving the
toolbar away from any window border.

 user manual 9

2.3 DOCKING WINDOWS

2.3.1 SHOWING/HIDING TOOL WINDOWS

The View>Tool windows menu allows you to show (or hide) a tool window (for example,
the Output window).

The tool window is then shown (hidden).

10 user manual

2.3.2 MOVING TOOL WINDOWS

In order to move a tool window, click on its name (at the top of the window) and then drag
and drop it to the destination.

You	can	make	the	tool	window	float,	by	double-clicking	on	its	name,	or	by	pressing	the	
CTRL key, or by moving the tool window away from the main window borders.

A tool window can be resized by clicking-and-dragging on its border until the desired size
is reached.

 user manual 11

2.4 WORKING WITH WINDOWS

Application allows to open many source code editors so that the workspace could get
rather messy.

You can easily navigate between these windows through the Document bar and the Win-
dow menu.

2.4.1 THE DOCUMENT BAR

The Document bar allows to switch between all the currently open editors, simply by click-
ing on the corresponding name.

You can show or hide the Document bar with the menu option of the same name in the
menu View>Toolbars.

12 user manual

2.4.2 THE WINDOW MENU

The Window menu is an alternative to the Document bar: it lists all the currently open
editors and allows to switch between them.

Moreover, this menu supplies a few commands to automate some basic tasks, such as
closing all windows.

2.5 FULL SCREEN MODE

In order to ease the coding of your application, you may want to switch on the full screen
mode. In full screen mode, the source code editor extends to the whole working area,
making easier the job of editing the code, notably when graphical programming languag-
es (that is, LD. FBD, and SFC) are involved.

You can switch on and off the full screen mode with the Full screen option of the menu
View or with the corresponding command of the Main toolbar.

 user manual 13

2.6 ENVIRONMENT OPTIONS

If you click Options... in the File menu, a multi-tab dialog box appears and lets you
customize some options of Application.

General

Autosave: if the Enable Autosave box is checked, Application periodically saves the
whole project. You can specify the period of execution of this task by entering the number
of minutes between two automatic savings in the Autosave interval text box.

Graphic Editor

This panel lets you edit the properties of the LD, FBD, and SFC source code editors.

Text Editors

Language

You can change the language of the environment by selecting a new one from the list
shown in this panel.

After selecting the new language, press the Select	button	and	confirm	by	clicking	OK.
This change will be effective only the next time you start Application.

Tools

You can add up to 16 commands to the Tools menu. These commands can be associated
with any program that will run on your operating system. You can also specify arguments
for any command that you add to the Tools menu. The following procedure shows you
how to add a tool to the Tools menu.

14 user manual

1) Type	the	full	path	of	the	executable	file	of	the	tool	in	the	Command text box. Other-
wise,	you	can	specify	the	filename	by	selecting	it	from	Windows	Explorer,	which	you	
open by clicking the Browse button.

2) In the Arguments text box, type the arguments - if any - to be passed to the execut-
able command mentioned at step 1. They must be separated by a space.

3) Enter in Menu string the name you want to give to the tool you are adding. This is the
string that will be displayed in the Tools menu.

4) Press Add to effectively insert the new command into the suitable menu.

5) Press OK	to	confirm,	or	Cancel to quit.

For example, let us assume that you want to add Windows calculator to the Tools
menu:

 - Fill	the	fields	of	the	dialog	box	as	displayed.

 - Press Add. The name you gave to the new tool is now displayed in the list box at the
top of the panel.

And in the Tools menu as well.

 user manual 15

3. MANAGING PROJECTS

This chapter focuses on Application projects.

A project corresponds to a PLC application and includes all the required elements to run
that application on the target device, including its source code, links to libraries, informa-
tion about the target device and so on.

The following paragraphs explain how to properly work with projects and their elements.

3.1 CREATING A NEW PROJECT

To start a new project, click New project in the File menu of the Application main win-
dow. The same command is available in the Main toolbar and, if no project is open, in
Application’s Welcome page. This causes the following dialog box to appear.

You are required to enter the name of the new project in the Name control. The string you
enter	will	also	be	the	name	of	the	folder	which	will	contain	all	the	files	making	up	the	Ap-
plication project. The pathname in the Directory control indicates the default location
of this folder.

Target selection allows you to specify the target device which will run the project.

Finally, you can make the project case-sensitive by activating the related option. Note
that, by default, this option is not active, in compliance with IEC 61131-3 standard: when
you choose to create a case-sensitive project, it will not be standard-compliant.

When	you	confirm	your	decision	to	create	a	new	project	and	the	whole	required	informa-
tion has been provided, Application completes the operation, creating the project direc-
tory	and	all	project	files;	then,	the	project	is	opened.

The list of devices from which you can select the target for the project you are creating
depends on the contents of the catalog of target devices available to Application.

When the desired target is missing, either you have run the wrong setup executable or
you have to run a separate setup which is responsible to update the catalog to include
the target device. In both cases, you should contact your hardware supplier for support.

3.2 UPLOADING THE PROJECT FROM THE TARGET DEVICE

Depending on the target device you are interfacing with, you may be able to upload a
working Application project from the target itself.

16 user manual

In order to upload the project from the target device, follow the procedure below:

1) Select the item Import project from target in the menu File.

2) Select the target device you are connecting to, from the list shown in the Target list
window.

3) Set up the communication (refer to Setting up the communication section for details).

4) You may optionally test the connection with the target device.

Application tries to open the connection and reports the test result.

 user manual 17

5)	Confirm	the	operation.

When the application upload completes successfully, the project is open for editing.

3.3 SAVING THE PROJECT

3.3.1 PERSISTING CHANGES TO THE PROJECT

When you make any change to the project (for example, you add a new Program Organi-
zation Unit) you are required to save the project in order to persist that change.

To save the project, you can select the corresponding item of the menu File or the Main
toolbar.

3.3.2 SAVING TO AN ALTERNATIVE LOCATION

When	you	do	not	want	to	(or	cannot	-	for	example,	because	the	file	is	read-only)	overwrite	
the	project	file,	you	may	save	the	modified	version	of	the	project	to	an	alternative	loca-
tion, by selecting Save project as... from the File menu.

Application asks you to select the new destination (which must be an empty directory),
then	saves	a	copy	of	the	project	to	that	location	and	opens	this	new	project	file	for	editing.

18 user manual

3.4 MANAGING EXISTING PROJECTS

3.4.1 OPENING AN EXISTING APPLICATION PROJECT

To open an existing project, click Open project in the File menu of Application’s main
window, or in the Main toolbar, or in the Welcome page (when no project is open). This
causes a dialog box to appear, which lets you load the directory containing the project and
select	the	relative	project	file.

3.4.2 EDITING THE PROJECT

In	order	to	modify	an	element	of	a	project,	you	need	first	to	open	that	element	by	double-
clicking	its	name,	which	you	can	find	by	browsing	the	tree	structure	of	the	project	tab	of	
the Workspace bar.

By double-clicking the name of the object you want to modify, you open an editor consist-
ent with the object type: for example, when you double-click the name of a project POU,
the	appropriate	source	code	editor	is	shown;	if	you	double-click	the	name	of	a	global	vari-
able, the variable editor is shown.

Note that Application prevents you from applying changes to elements of a project, when
at least one of the following conditions holds:

 - You cannot modify any object of the project if you are in debug mode.

 - You cannot edit an object of an included library, whereas you can modify an object that
you imported from a library.

 - The project is opened in read-only mode (view project).

3.4.3 CLOSING THE PROJECT

You can terminate the working session either by explicitly closing the project or by exiting
Application.	In	both	cases,	when	there	are	changes	not	yet	persisted	to	file,	Application	
asks you to choose between saving and discarding them.

To close the project, select the item Close project from the File menu;	Application	
shows the Welcome page, so that you can rapidly start a new working session.

3.5 DISTRIBUTING PROJECTS

When you need to share a project with another developer you can send him/her either
a	copy	of	the	project	file(s)	or	a	redistributable	source	module	(RSM)	generated	by	Ap-
plication.

In	the	former	case,	the	number	of	files	you	have	to	share	depends	on	the	format	of	the	
project	file:

 - PLC	single	project	file	(.ppjs file	extension):	the	project	file	itself	contains	the	whole	
information needed to run the application (assuming the receiving developer has an ap-
propriate target device available) including all source code modules, so that you need
to share only the .ppjs	file.

 - PLC	multiple	project	file	(.ppjx or .ppj file	extension):	the	project	file	contains	only	
the links to the source code modules composing the project, which are stored as single
files	in	the	project	directory.	You	need	to	share	the	whole	directory.

 user manual 19

Alternatively, you can generate a redistributable source module (RSM) with the corre-
sponding item of the Project menu or toolbar.

Application	notifies	you	of	the	name	of	the	RSM	file	and	lets	you	choose	whether	to	protect	
the	file	with	a	password	or	not.	If	you	choose	to	protect	the	file,	Application	asks	you	to	
insert the password.

The	advantages	of	the	RSM	file	format	are:

 - the source code is encoded in binary format, thus it cannot be read by third parties
which	do	not	use	Application,	making	a	transfer	over	the	Internet	more	secure;

 - it	can	be	protected	with	a	password,	which	will	be	required	by	Application	on	file	open-
ing;	

 - being	a	binary	file,	its	size	is	reduced.

3.6 PROJECT OPTIONS

You can edit some basic properties of the project, such as application name and version,
in the window which pops up after you select the item Options... in the Project menu.

The information you enter here is shown in any printed document and may also be down-
loaded to the target device.

20 user manual

3.7 SELECTING THE TARGET DEVICE

You may need to port a PLC application on a target device which differs from that you
originally wrote the code for. Follow the instructions below to adapt your Application pro-
ject to a new target device.

1) Click Select target in the Project menu of the Application main window. This
causes the following dialog box to appear.

2) Select one of the target devices listed in the combo box.

3) Click Change	to	confirm	your	choice,	Cancel to abort.

4) If	you	confirm,	Application	displays	the	following	dialog	box.

Press Yes to complete the conversion, No to quit.

If you press Yes, Application updates the project to work with the new target.

It	also	makes	a	backup	copy	of	the	project	file(s)	in	a	sub-directory	inside	the	project	
directory, so that you can roll-back the operation by manually (i.e., using Windows
Explorer)	replacing	the	project	file(s)	with	the	backup	copy.

3.8 WORKING WITH LIBRARIES

Libraries are a powerful tool for sharing objects between Application projects. Libraries
are	usually	stored	in	dedicated	source	file,	whose	extension	is	.pll.

3.8.1 THE LIBRARY MANAGER

The library manager lists all the libraries currently included in a Application project. It also
allows you to include or remove libraries.

 user manual 21

To access the library manager, click Library manager in the Project menu.

3.8.1.1 INCLUDING A LIBRARY

The following procedure shows you how to include a library in a Application project, which
results in all the library’s objects becoming available to the current project.

Including a library means that a reference to the library’s .pll file	is	added	to	the	cur-
rent project, and that a local copy of the library is made. Note that you cannot edit the
elements of an included library, unlike imported objects.

If you want to copy or move a project which includes one or more libraries, make sure
that references to those libraries are still valid in the new location.

1) Click Library manager in the Project menu, which opens the Library manager
dialog box.

2) Press the Add button, which causes an explorer dialog box to appear, to let you select
the .pll file	of	the	library	you	want	to	open.

3) When you have found the .pll file,	open	it	either	by	double-clicking	it	or	by	press-
ing the Open button. The name of the library and its absolute pathname are now
displayed in a new row at the bottom of the list in the white box.

4) Repeat step 1, 2, and 3 for all the libraries you wish to include.

5) When	you	have	finished	including	libraries,	press	either	OK to	confirm,	or	Cancel to
quit.

3.8.1.2 REMOVING A LIBRARY

The following procedure shows you how to remove an included library from the current
project. Remember that removing a library does not mean erasing the library itself, but
the project’s reference to it.

1) Click Library manager in the Project menu of the Application main window, which
opens the Library manager dialog box.

22 user manual

2) Select the library you wish to remove by clicking its name once. The Remove button
is now enabled.

3) Click the Remove button, which causes the reference to the selected library to disap-
pear from the Project library list.

4) Repeat for all the libraries you wish to include. Alternatively, if you want to remove all
the libraries, you can press the Remove all button.

5) When	you	have	finished	removing	libraries,	press	either	OK to	confirm,	or	Cancel not
to apply changes.

3.8.2 EXPORTING TO A LIBRARY

You may export an object from the currently open project to a library, in order to make
that object available to other projects. The following procedure shows you how to export
objects to a library.

1) Look for the object you want to export by browsing the tree structure of the project
tab of the Workspace bar, then click once the name of the object.

2) Click Export object to library in the Project menu. This causes the following
dialog box to appear.

3) Enter the destination library by specifying the location of its .pll file.	You	can	do	
this by:

 - typing	the	full	pathname	in	the	white	text	box;

 - clicking the Browse button , in order to open an explorer dialog box which allows
you to browse your disk and the network.

4) You may optionally choose to encrypt the source code of the POU you are exporting,
in order to protect your intellectual property.

5) Click OK to	confirm	the	operation,	otherwise	press	Cancel to quit.

If at Step 3 of this procedure you enter the name of a non-existing .pll	file,	Application	
creates	the	file,	thus	establishing	a	new	library.

3.8.2.1 UNDOING EXPORT TO A LIBRARY

So far, it is not possible to undo export to a library. The only possibility to remove an ob-
ject is to create another library containing all the objects of the current one, except the
one you wish to delete.

 user manual 23

3.8.3 IMPORTING FROM A LIBRARY OR ANOTHER SOURCE

You can import an object from a library in order to use it in the current project. When
you import an object from a library, the local copy of the object loses its reference to the
original library and it belongs exclusively to the current project. Therefore, you can edit
imported objects, unlike objects of included libraries.

There are two ways of getting a POU from a library. The following procedure shows you
how to import objects from a library.

1) Click Import object from library in the Project menu. This causes an explorer
dialog box to appear, which lets you select the .pll file	of	the	library	you	want	to	
open.

2) When you have found the .pll file,	open	it	either	by	double-clicking	it	or	by	pressing	
the Open button. The dialog box of the library explorer appears in foreground. Each
tab in the dialog box contains a list of objects of a type consistent with the tab’s title.

3) Select the tab of the type of the object(s) you want to import. You can also make
simple queries on the objects in each tab by using Filters. However, note that only
the Name filter	actually	applies	to	libraries.	To	use	it,	select	a	tab,	then	enter	the	name	
of the desired object(s), even using the * wildcard, if necessary.

4) Select the object(s) you want to import, then press the Import object button.

5) When	you	have	finished	importing	objects,	press	indifferently	OK or Cancel to close
the Library browser.

3.8.3.1 UNDOING IMPORT FROM A LIBRARY

When you import an object in a Application project, you actually make a local copy of that
object. Therefore, you just need to delete the local object in order to undo import.

24 user manual

 user manual 25

4. MANAGING PROJECT ELEMENTS

This chapter shows you how to deal with the elements which compose a project, namely:
Program	Organization	Units	(briefly,	POUs),	tasks,	derived	data	types,	and	variables.

4.1 PROGRAM ORGANIZATION UNITS

This paragraph shows you how to add new POUs to the project, how to edit and eventu-
ally remove them.

4.1.1 CREATING A NEW PROGRAM ORGANIZATION UNIT

1) Select the New object item in the Project menu.

2) Specify what kind of POU you want to create by clicking one of the items in the sub-
menu which pops up.

3) Select the language you will use to implement the POU.

Enter the name of the new module.

4) Confirm	the	operation	by	clicking	on	the	OK	button.

Alternatively,	you	can	create	a	new	POU	of	a	specific	type	(program,	function	block,	or	
function) by right-clicking on the correspondent item of the project tree.

26 user manual

4.1.1.1 ASSIGNING A PROGRAM TO A TASK AT CREATION TIME

When creating a new program, Application gives you the chance to assign that program
to a task at the same time: select the task you want the program to be assigned to from
the list shown in the Task section of the New program window.

4.1.2 EDITING POUS

All the POUs of the project are listed in the Programs, Function blocks, and Functions
folders in the Project tab of the Workspace bar.

The following procedure shows you how to edit the source code of an existing POU.

1) Open the folder in the Project tab of the workspace that contains the object you
want to edit by double-clicking the folder name.

2) Double-click the name of the object you want to edit. The relative editor opens and
lets you modify the source code of the POU.

You may want to change the name of the POU:

1) Open the Object properties editor from the contextual menu which pops up when
right-clicking the POU name in the project tree (alternatively, select the correspond-
ent item in the Project menu).

 user manual 27

2) Change	the	object	name	and	confirm.

Finally, you can create a duplicate of the POU in this way:

1) Select Duplicate from the contextual menu (or the Project menu).

2) Enter	the	name	of	the	new	POU	and	confirm.

4.1.3 DELETING POUS

Follow this procedure to remove a POU from your project:

1) Open the folder in the Project tab of the workspace that contains the object you
want to delete by double-clicking the folder name.

28 user manual

2) Right-click the name of the object you want to delete. A context menu appears re-
ferred to the selected object.

3) Click Delete object in the context menu, then press Yes	to	confirm	your	choice.

4.1.4 SOURCE CODE ENCRYPTION

You may want to hide the source code of one or more POUs.

Application lets you encrypt POUs and protect them with a password.

To encrypt a POU, perform the following steps:

1) Right-click the POU name in the project tree and choose Crypt from the contextual
menu.

2) Enter the password twice (to avoid any problem which may arise from typos) and
confirm	the	operation.

 user manual 29

To decrypt a POU, right-click the POU name in the project tree and choose Decrypt from
the contextual menu.

Application prompt you to enter the password.

You can choose to encrypt all the unencrypted POUs at once:

the same password applies to all objects.

4.2 VARIABLES

There are two classes of variables in Application: global variables and local variables.

This paragraph shows you how to add to the project, edit, and eventually remove both
global and local variables.

4.2.1 GLOBAL VARIABLES

Global variables can be seen and referenced by any module of the project.

4.2.1.1 CLASSES OF GLOBAL VARIABLES

Global variables are listed in the project tree, in the Global variables folder, where they
are	further	classified	according	to	their	properties	as	Automatic	variables,	Mapped	vari-
ables, Constants, and Retain variables.

 - Automatic variables include all the variables that the compiler automatically allocates to
an appropriate location in the target device memory.

 - Mapped variables, on the other way, do have an assigned address in the target device
logical	addressing	system,	which	shall	be	specified	by	the	developer.

 - Constants list all the variables which the developer declared as having the CONSTANT
attribute, so that they cannot be written.

 - Retain variables list all the variables which the developer declared as having the RE-
TAIN attribute, so that their values are stored in a persistent memory area of the target
device.

4.2.1.2 GROUPS OF GLOBAL VARIABLES

You can further categorize the set of all global variables by grouping them according to
application-specific	criteria.	In	order	to	define	a	new	group,	follow	this	procedure:

30 user manual

1) Select Group from the Variables menu (note that this menu is available only if the
Global variables editor is open).

2) Enter the name of the new variable group, then click Add.

3) You can now use the variable group in the declaration of new global variables.

4.2.1.3 CREATING A NEW GLOBAL VARIABLE

Apply the following procedure to declare a new global variable:

1) Select New object in the Project menu.

2) Select New variable from the menu that shows up.

3) Choose the class of the variable you want to declare (Automatic variables, Mapped
variables, Constants, or Retain variables).

4) Enter the name of the variable (remember that some characters, such as ‘?’, ‘.’, ‘/’,
and	so	on,	cannot	be	used:	the	variable	name	must	be	a	valid	IEC	61131-3	identifier).

 user manual 31

5) Specify the type of the variable either by typing it

or by selecting it from the list that Application displays when you click on the Browse
button.

6) If you want to declare an array, you can specify its size.

7) You may optionally assign the initial value to the variable.

32 user manual

8) Finally,	you	can	add	a	brief	description	and	then	confirm	the	operation.

If you create a new mapped variable, you are required to specify the address of the vari-
able	during	its	definition.	In	order	to	do	so,	you	may	do	one	of	the	following	actions:

 - Click on the button to open the editor of the address, then enter the desired value.

 user manual 33

 - Select from the list that Application shows you the memory area you want to use: the
tool	automatically	chooses	the	address	of	the	first	free	memory	location	of	that	area.

4.2.1.4 EDITING A GLOBAL VARIABLE

To	edit	the	definition	of	an	existing	global	variable:

1) Open the folder in the Project tab of the workspace that contains the variable you
want to edit.

2) Double-click the name of the variable you want to edit: the global variables editor
opens	and	lets	you	modify	its	definition.

If you just want to change the name of the variable:

34 user manual

1) Open the Variable properties editor from the contextual menu which pops up
when right-clicking the variable name in the project tree (alternatively, select the
correspondent item in the Project menu).

2) Change	the	variable	name	and	confirm.

Finally, you can create a duplicate of the variable in this way:

1) Select Duplicate variable from the contextual menu (or the Project menu).

2) Enter	the	name	of	the	new	variable	and	confirm.

 user manual 35

4.2.1.5 DELETING A GLOBAL VARIABLE

Follow this procedure to remove a global variable from you project:

1) Open the folder in the Project tab of the workspace that contains the variable you
want to delete.

2) Right-click the name of the variable you want to delete. A context menu appears re-
ferred to the selected variable.

3) Click Delete variable in the context menu, then press Yes	to	confirm	you	choice.

4.2.2 LOCAL VARIABLES

Local variables are declared within a POU (either program, or function, or function block),
the module itself being the only project element which can refer to and access them.

Local variables are listed in the project tree under the POU which declares them (only
when	that	POU	is	open	for	editing),	where	they	are	further	classified	according	to	their	
class (e.g., as input or inout variables).

36 user manual

In order to create, edit, and delete local variables, you have to open the Program Organi-
zation Unit for editing and use the local variables editor.

Refer to the corresponding section in this manual for details (see Paragraph 6.6.1.2).

4.3 TASKS

4.3.1 ASSIGNING A PROGRAM TO A TASK

Read the instructions below to know how to make a task execute a program.

1) The tasks running on the target device are listed in the Project tab of the Work-
space window. Right-click the name of the task you want to execute the program and
choose Add program from the contextual menu.

2) Select the program you want the task to execute from the list which shows up and
confirm	your	choice.

 user manual 37

3) The program has been assigned to the task, as you can see in the project tree.

Note that you can assign more than a program to a task. From the contextual menu you
can sort and, eventually, remove program assignments to tasks.

4.3.2 TASK CONFIGURATION

Depending on the target device you are interfacing with, you may have the chance to
configure	some	of	the	PLC	tasks’	settings.

1) Select the Task configuration item in the contextual menu which pops up, if you
right-click	on	the	name	of	the	task	you	want	to	configure.

2) In the Task configuration window you can edit the task execution period.

4.4 DERIVED DATA TYPES

The Definitions section of the Workspace window	lets	you	define	derived	data	types.

4.4.1 TYPEDEFS

The following paragraphs show you how to manage typedefs.

38 user manual

4.4.1.1 CREATING A NEW TYPEDEF

In	order	to	define	a	new	typedef	follow	this	procedure:

1) Right-click the TypeDefs folder and choose New TypeDef from the contextual menu.

2) Type the name of the typedef.

3) Select	the	type	you	are	defining	an	alias	for

(if	you	want	to	define	an	alias	for	an	array	type,	you	shall	choose	the	array	size).

 user manual 39

4) Enter	a	meaningful	description	(optional)	and	confirm	the	operation.

4.4.1.2 EDITING A TYPEDEF

The typedefs of the project are listed under the TypeDefs folder. In order to edit a typedef
you just have to double-click on its name.

4.4.1.3 DELETING A TYPEDEF

To delete a typedef, follow this procedure:

1) Right-click the typedef name and choose Delete from the contextual menu.

2) Confirm	your	choice.

4.4.2 STRUCTURES

The following paragraphs show you how to manage structures.

4.4.2.1 CREATING A NEW STRUCTURE

Follow this procedure to create a new structure:

1) Right-click the Structures folder and choose New structure from the contextual
menu.

40 user manual

2) Type the name of the structure.

3) Enter	a	meaningful	description	and	confirm	the	operation.

4.4.2.2 EDITING A STRUCTURE

The structures of the project are listed under the Structures folder. In order to edit a
structure	(for	example,	to	define	its	fields)	you	have	to	double-click	on	its	name.

4.4.2.3 DELETING A STRUCTURE

Follow this procedure to delete a structure:

1) Right-click the structure name and choose Delete from the contextual menu.

2) Confirm	your	choice.

 user manual 41

4.4.3 ENUMERATIONS

The following paragraphs show you how to manage enumerations.

4.4.3.1 CREATING A NEW ENUMERATION

Follow this procedure to create a new enumeration:

1) Right-click the Enumerations folder and choose New enumeration from the contex-
tual menu.

2) Type the name of the enumeration.

3) Enter	a	meaningful	description	and	confirm	the	operation.

4.4.3.2 EDITING AN ENUMERATION

The enumerations of the project are listed under the Enumerations folder. In order to edit
an	enumeration	(for	example,	to	define	its	values)	you	have	to	double-click	on	its	name.

42 user manual

4.4.3.3 DELETING AN ENUMERATION

Follow this procedure to delete an enumeration:

1) Right-click the enumeration name and choose Delete from the contextual menu.

2) Confirm	your	choice.

4.4.4 SUBRANGES

The following paragraphs show you how to manage subranges.

4.4.4.1 CREATING A NEW SUBRANGE

Follow this procedure to create a new subrange:

1) Right-click the Subranges folder and choose New Subrange from the contextual
menu.

2) Type the name of the subrange.

 user manual 43

3) Select the basic type for the subrange.

4) Enter minimum and maximum values of the subrange.

5) Enter	a	meaningful	description	(optional)	and	confirm	the	operation.

44 user manual

4.4.4.2 EDITING A SUBRANGE

The subranges of the project are listed under the Subranges folder. In order to edit a
subrange you just have to double-click on its name.

4.4.4.3 DELETING A SUBRANGE

Follow this procedure to delete a subrange:

1) Right-click the subrange name and choose Delete from the contextual menu.

2) Confirm	your	choice.

4.5 BROWSING THE PROJECT

Projects may grow huge, hence Application provides two tools to search for an object
within a project: the Object browser and the Find in project feature.

4.5.1 OBJECT BROWSER

Application provides a useful tool for browsing the objects of your project: the Object
browser.

 user manual 45

This tool is context dependent, this implies that the kind of objects that can be selected
and that the available operations on the objects in the different context are not the same.

Object browser can be opened in these three main ways:

 - Browser mode.

 - Import object mode.

 - Select object mode.

User interaction with Object browser is mainly the same for all the three modes and is
described in the next paragraph.

4.5.1.1 COMMON CHARACTERISTICS AND USAGE OF OBJECT BROWSER

This section describes the features and the usage of the Object browser that are com-
mon to every mode in which Object browser can be used.

Objects filter

This	is	the	main	filter	of	the	Object browser. User can check one of the available (ena-
bled) object items.

In this example, Programs, Function Blocks, Functions are selected, so objects of this
type are shown in the object list. Variables and User types objects can be selected
by user but objects of that type are not currently shown in the object list. Operators,
Standard functions, Local variables, and Basic types cannot be checked by user
(because of the context) so cannot be browsed.

46 user manual

User can also click Check all button to select all available objects at one time or can click
Check none button to deselect all objects at one time.

Other filters

Selected	objects	can	be	also	filtered	by	name,	symbol	location,	specific	library	and	var	
type.

Filters are all additive and are immediately applied after setting.

Name

Function Filters objects on the base of their name.

Set of legal values All the strings of characters.

Use

Type	a	string	to	display	the	specific	object	whose	name	
matches the string. Use the * wildcard if you want to
display all the objects whose name contains the string in
the Name text box. Type *	if	you	want	to	disable	this	filter.

Press Enter when edit box is focused or click on the OK
button	near	the	edit	box	to	apply	the	filter.

Applies to All object types.

 user manual 47

Symbol location

Function Filters objects on the base of their location.

Set of legal values All, Project, Target, Library, Aux. Sources.

Use

All=	Disables	this	filter.

Project= Objects declared in the Application project.

Target= Firmware objects.

Library= Objects contained in a library. In this case, use
simultaneously also the Library	filter,	described	below.

Aux sources= Shows aux sources only.

Applies to All objects types.

Library

Function
Completes	the	specification	of	a	query	on	objects	contained	
in libraries. The value of this control is relevant only if the
Symbol location filter	is	set	to	Library.

Set of legal values All, libraryname1, libraryname2, ...

Use
All= Shows objects contained in whatever library.

LibrarynameN= Shows only the objects contained in the
library named librarynameN.

Applies to All objects types.

48 user manual

Vars Type

Function Filters global variables and system variables (also known
as	firmware	variables)	according	to	their	type.

Set of legal values All, Normal, Constant, Retain

Use

All= Shows all the global and system variables.

Normal= Shows normal global variables only.

Constant= Shows constants only.

Retain= Shows retain variables only.

Applies to Variables.

 user manual 49

Object list

Object list shows	all	the	filtered	objects.	List	can	be	ordered	in	ascending	or	discend-
ing way by clicking on the header of the column. So it is possible to order items by Name,
Type, or Description.

Double-clicking on an item allows the user to perform the default associated operation
(the action is the same of the OK, Import object, or Open source button actions).

When item multiselection is allowed, Select all and Select none buttons are visible.

It is possible to select all objects by clicking on Select all button. Select none dese-
lects all objects.

If at least an item is selected on the list operation, buttons are enabled.

50 user manual

Resize

Window can be resized, the cursor changes along the border of the dialog and allows the
user to resize window. When reopened, Object browser dialog takes the same size and
position of the previous usage.

Close dialog

You have two options for closing the Object browser:

 - Press the button near the right-end border of the caption bar.

 - Press the Cancel/OK	button	below	the	filter	box.

4.5.1.2 USING OBJECT BROWSER AS A BROWSER

To use Object browser in this way click on Object browser in the Project menu. This
causes the Object browser dialog box to appear, which lets you navigate between the
objects of the currently open project.

Available objects

In this mode you can list objects of these types:

 - Programs.

 - Function Blocks.

 - Functions.

 - Variables.

 - User types.

These items can be checked or unchecked in Objects filter section to show or to hide
the objects of the chosen type in the list.

Other types of objects (Operators, Standard functions, Local variables, Basic types) can-
not be browsed in this context so they are unchecked and disabled).

Available operations

 user manual 51

Allowed operations in this mode are:

Open source, default operation for double-click on an item

Function Opens the editor by which the selected object was created
and displays the relevant source code.

Use

If the object is a program, or a function, or a function
block, this button opens the relevant source code editor.

If the object is a variable, then this button opens the
variable editor.

Select the object whose editor you want to open, then click
on the Open source button.

Export to library

Function To export an object to a library.

Use Select the objects you want to export, then press the
Export to library button.

Delete objects

Function Allows you to delete an object.

Use Select the object you want to delete, then press the
Delete object button.

Multi selection

Multi selection is allowed for this mode, Select all and Select none buttons are visible.

4.5.1.3 USING OBJECT BROWSER FOR IMPORT

Object browser is also used to support objects importation in the project from a desired
external library. Select Import object from library in the Project menu, then choose
the desired library.

52 user manual

Available objects

In this mode you can list objects of these types:

 - Programs.

 - Function blocks.

 - Functions.

 - Variables.

 - User types.

These items can be checked or unchecked in Objects filter section to show or to hide
the objects of the chosen type in the list.

Other types of objects (Operators, Standard functions, Local variables, Basic types) can-
not be imported so they are unchecked and disabled.

Available operations

Import objects is the only operation supported in this mode. It is possible to import
selected objects by clicking on Import objects button or by double-clicking on one of
the objects in the list.

Multi selection

Multi selection is allowed for this mode, Select all and Select none buttons are visible.

4.5.1.4 USING OBJECT BROWSER FOR OBJECT SELECTION

Object browser dialog is useful for many operations that requires the selection of a single
PLC object. So Object browser can be used to select the program to add to a task, to se-
lect	the	type	of	a	variable,	to	select	an	item	to	find	in	the	project,	etc..

Available objects

Available objects are strictly dependent on the context, for example in the program as-
signment to a task operation the only available objects are programs objects.

It is possible that not all available objects are selected by default.

Available operations

In this mode it is possible to select a single object by double-clicking on the list or by click-
ing on the OK button, then the dialog is automatically closed.

Multi selection

Multi selection is not allowed for this mode, Select all and Select none buttons are
not visible.

 user manual 53

4.5.2 SEARCHING WITH THE FIND IN PROJECT COMMAND

The Find in project command	retrieves	all	the	instances	of	a	specified	character	string	
in the project. Follow the procedure to use it correctly.

1) Click Find in project... in the Edit menu or in the Main toolbar.

This causes the following dialog box to appear.

2) In the Find what text box, type the name of the object you want to look for.

54 user manual

Otherwise, click the Browse button to the right of the text box, and select the name
of the object from the list of all the existing items.

3) Select one of the values listed in the Location combo box, so as to specify a con-
straint on the location of the objects to be inspected.

4) The frame named Filters contains 7 checkboxes, each of which, if ticked, enables
research of the string among the object it refers to.

5) Tick Match whole word only if you want to compare your string to entire word only.

6) Tick Match case if you want your search to be case-sensitive.

7) Press Find to start the search, otherwise click Cancel to abandon.

 user manual 55

The results will be printed in the Find in project tab of the Output window.

4.6 WORKING WITH APPLICATION EXTENSIONS

Application’s Workspace window may include a section whose contents completely depend
on the target device the IDE is interfacing with: the Resources panel.

If the Resources panel is visible, you can access some additional features related to the
target	device	(configuration	elements,	schemas,	wizards,	and	so	on).

Information about these features may be found in a separate document: refer to your
hardware supplier for details.

56 user manual

 user manual 57

5. EDITING THE SOURCE CODE

PLC editors

Application	includes	five	source	code	editors,	which	support	the	whole	range	of	IEC	61131-
3 programming languages: Instruction List (IL), Structured Text (ST), Ladder Diagram
(LD), Function Block Diagram (FBD), and Sequential Function Chart (SFC).

Moreover,	Application	includes	a	grid-like	editor	to	support	the	user	in	the	definition	of	
variables.

This chapter focuses on all these editors.

5.1 INSTRUCTION LIST (IL) EDITOR

The IL editor allows you to code and modify POUs using IL (i.e., Instruction List), one of
the IEC-compliant languages.

5.1.1 EDITING FUNCTIONS

The IL editor is endowed with functions common to most editors running on a Windows
platform, namely:

 - Text selection.

 - Cut, Copy, and Paste operations.

 - Find and Replace functions.

 - Drag-and-drop of selected text.

Many of these functions are accessible through the Edit menu or through the Main tool-
bar.

5.1.2 REFERENCE TO PLC OBJECTS

If you need to add to your IL code a reference to an existing PLC object, you have two
options:

 - You can type directly the name of the PLC object.

 - You can drag it to a suitable location. For example, global variables can be taken from
the Workspace window, whereas standard operators and embedded functions can be
dragged from the Libraries window, whereas local variables can be selected from the
local variables editor.

5.1.3 AUTOMATIC ERROR LOCATION

The IL editor also automatically displays the location of compiler errors. To know where
a compiler error occurred, double-click the corresponding error line in the Output bar.

58 user manual

5.1.4 BOOKMARKS

You	can	set	bookmarks	to	mark	frequently	accessed	lines	in	your	source	file.	Once	a	book-
mark is set, you can use a keyboard command to move to it. You can remove a bookmark
when you no longer need it.

5.1.4.1 SETTING A BOOKMARK

Move the insertion point to the line where you want to set a bookmark, then press
Ctrl+F2. The line is marked in the margin by a light-blue circle.

5.1.4.2 JUMPING TO A BOOKMARK

Press F2 repeatedly, until you reach the desired line

5.1.4.3 REMOVING A BOOKMARK

Move the cursor to anywhere on the line containing the bookmark, then press Ctrl+ F2.

5.2 STRUCTURED TEXT (ST) EDITOR

The ST editor allows you to code and modify POUs using ST (i.e. Structured Text), one of
the IEC-compliant languages.

5.2.1 CREATING AND EDITING ST OBJECTS

See the Creating and Editing POUs section (Paragraphs 5.1.1 and 5.1.2).

5.2.2 EDITING FUNCTIONS

The ST editor is endowed with functions common to most editors running on a Windows
platform, namely:

 - Text selection.

 - Cut, Copy, and Paste operations.

 - Find and Replace functions.

 - Drag-and-drop of selected text.

Many of these functions are accessible through the Edit menu or through the Main tool-
bar.

 user manual 59

5.2.3 REFERENCE TO PLC OBJECTS

If you need to add to your ST code a reference to an existing PLC object, you
have two options:

 - You can type directly the name of the PLC object.

 - You can drag it to a suitable location. For example, global variables can be taken from
the Workspace window, whereas embedded functions can be dragged from the Librar-
ies window, whereas local variables can be selected from the local variables editor.

5.2.4 AUTOMATIC ERROR LOCATION

The ST editor also automatically displays the location of compiler errors. To know where a
compiler error has occurred, double-click the corresponding error line in the Output bar.

5.2.5 BOOKMARKS

You	can	set	bookmarks	to	mark	frequently	accessed	lines	in	your	source	file.	Once	a	book-
mark is set, you can use a keyboard command to move to it. You can remove a bookmark
when you no longer need it.

5.2.5.1 SETTING A BOOKMARK

Move the insertion point to the line where you want to set a bookmark, then press
Ctrl+F2. The line is marked in the margin by a light-blue circle.

5.2.5.2 JUMPING TO A BOOKMARK

Press F2 repeatedly, until you reach the desired line.

5.2.5.3 REMOVING A BOOKMARK

Move the cursor to anywhere on the line containing the bookmark, then press Ctrl+F2.

5.3 LADDER DIAGRAM (LD) EDITOR

60 user manual

The LD editor allows you to code and modify POUs using LD (i.e. Ladder Diagram), one of
the IEC-compliant languages.

5.3.1 CREATING A NEW LD DOCUMENT

See the Creating and Editing POUs section (Paragraphs 5.1.1 and 5.1.2).

5.3.2 ADDING/REMOVING NETWORKS

Every	POU	coded	 in	LD	consists	of	a	sequence	of	networks.	A	network	 is	defined	as	a	
maximal set of interconnected graphic elements. The upper and lower bounds of every
network	are	fixed	by	two	straight	lines,	while	each	network	is	delimited	on	the	left	by	a	
grey raised button containing the network number.

On each LD network the right and the left power rail are represented, according to the LD
language indication.

On the new LD network a horizontal line links the two power rails. It is called the “power
link”. On this link, all the LD elements (contacts, coils and blocks) are to be placed.

You can perform the following operations on networks:

 - To add a new blank network, click Network>New in the Scheme menu, or press one of
the equivalent buttons in the Network toolbar.

 - To assign a label to a selected network, give the Network>Label command from the
Scheme menu. This enables jumping to the labeled network.

 - To display a background grid which helps you to align objects, press View grid in the
Network toolbar.

 - To add a comment, press the Comment button in the FBD toolbar.

5.3.3 LABELING NETWORKS

You can modify the usual order of execution of networks through a jump statement, which
transfers the program control to a labeled network. To assign a label to a network, double-
click the raised grey button on the left, which bears the network number.

This causes a dialog box to appear, where you can type the label you want to associate
with the selected network.

If you press OK, the label is printed in the top left-hand corner of the selected network.

 user manual 61

5.3.4 INSERTING CONTACTS

To insert new contacts on the network apply one of the following options:

 - Select a contact, a block or a connection. Select the insertion mode between serial or
parallel (using the button on the LD toolbar or the Scheme menu). Insert the appropriate
contact (using the button on the LD toolbar, the Scheme>Object>New or the pop-up
menu option). For serial insertion, the new contact will be inserted on the right side of
the selected contact/block or in the middle of the selected connection depending on the
element selected before the insertion. For parallel insertions, several contacts/blocks
can be selected before performing the insertion. The new contact will be inserted at the
endpoints of the selection block.

 - Drag a boolean variable to the desired place over a connection. For example, global
variables can be taken from the Workspace window, whereas local variables can be se-
lected from the local variables editor. The dialog box shown below will appear, request-
ing	to	define	whether	the	variable	should	be	inserted	as	a	contact,	coil	or	variable	(like	
FBD schemes). Choose the appropriate contact type. Contacts inserted with drag and
drop will always be inserted in series.

62 user manual

5.3.5 INSERTING COILS

To insert new coils on the network apply one of the following options:

 - Press one of the coil buttons in the LD toolbar. The new coil will be inserted and linked
to the right power rail. If other coils are already present in the network, the new coil will
be added in parallel with the previous ones.

 - Drag a boolean variable on the network. For example, global variables can be taken
from the Workspace window, whereas local variables can be selected from the local vari-
ables editor. A dialog box will appear, requesting to indicate whether the variable should
be inserted as a contact, coil or variable. Choose the appropriate coil type.

5.3.6 INSERTING BLOCKS

Operators, functions and function blocks can be inserted into an LD network in the follow-
ing modes:

 - On the power link, as contacts and coils.

 - Outside the power link (to do so, follow the indications as for the FBD blocks).

To insert blocks on the network apply one of the following options:

 - Select a contact, connection or block then click Object>New in the Scheme menu.

 - Select a contact, connection or block, then press the New block button in the FBD
toolbar, which causes a dialog box to appear listing all the objects of the project, then
choose one item from the list. If the block is a constant, a return statement, or a jump
statement, you can directly press the relevant buttons in the FBD toolbar.

 - Drag the selected object (from the Workspace window, the Libraries window or the
local variables editor) over the desired connection.

The two upper pins will be connected to the power link. The EN/ENO pins should be acti-
vated before the insertion.

5.3.7 EDITING COILS AND CONTACTS PROPERTIES

The type of a contact (normal, negated) or a coil (normal, negated, set, reset) can be
changed by one of the following operations:

 - Double-click on the element (contact or coil).

 - Select the element and then press the Enter key.

 - Select the element, activate the pop-up menu with the right mouse button, then select
Properties.

An apposite dialog box will appear. Select the desired element type from the list presented
and then press OK.

 user manual 63

5.3.8 EDITING NETWORKS

The LD editor is endowed with functions common to most graphic applications running on
a Windows platform, namely:

 - Selection of a block.

 - Selection of a set of blocks by pressing Shift+Right button and by drawing a frame
including the blocks to select.

 - Cut, Copy, and Paste operations of a single block as well as of a set of blocks.

 - Drag-and-drop.

All the mentioned functions are accessible through the Edit menu or through the Main
toolbar.

5.3.9 MODIFYING PROPERTIES OF BLOCKS

 - Click Increment pins + in the Scheme menu, or press the Inc pins button in the FBD
toolbar, to increment the number of input pins of some operators and embedded func-
tions.

 - Click Enable EN/ENO pins in the Scheme menu, or press the EN/ENO button in the FBD
toolbar, to display the enable input and output pins.

 - Click Object . Instance name in the Scheme menu, or press the FBD properties but-
ton in the FBD toolbar, to change the name of an instance of a function block.

5.3.10 GETTING INFORMATION ON A BLOCK

You can always get information on a block that you added to an LD document, by selecting
it and then performing one of the following operations:

 - Click Object>Open source in the Scheme menu, or press the View source button in the
FBD toolbar, to open the source code of a block.

 - Click Object properties in the Scheme menu, or press the FBD properties button in
the FBD toolbar, to see properties and input/output pins of the selected block.

5.3.11 AUTOMATIC ERROR RETRIEVAL

The LD editor also automatically displays the location of compiler errors. To reach the
block where a compiler error occurred, double-click the corresponding error line in the
Output bar.

64 user manual

5.4 FUNCTION BLOCK DIAGRAM (FBD) EDITOR

The FBD editor allows you to code and modify POUs using FBD (i.e. Function Block Dia-
gram), one of the IEC-compliant languages.

5.4.1 CREATING A NEW FBD DOCUMENT

See the Creating and editing POUs section (Paragraphs 5.1.1 and 5.1.2).

5.4.2 ADDING/REMOVING NETWORKS

Every	POU	coded	in	FBD	consists	of	a	sequence	of	networks.	A	network	is	defined	as	a	
maximal set of interconnected graphic elements. The upper and lower bounds of every
network	are	fixed	by	two	straight	lines,	while	each	network	is	delimited	on	the	left	by	a	
grey raised button containing the network number.

You can perform the following operations on networks:

 - To add a new blank network, click Network>New in the Scheme menu, or press one of
the equivalent buttons in the Network toolbar.

 - To assign a label to a selected network, give the Network>Label command from the
Scheme menu. This enables jumping to the labeled network.

 - To display a background grid which helps you to align objects, press View grid in the
Network toolbar.

 - To add a comment, press the Comment button in the FBD toolbar.

5.4.3 LABELING NETWORKS

You can modify the usual order of execution of networks through a jump statement, which
transfers the program control to a labeled network. To assign a label to a network, double-
click the raised grey button on the left, that bears the network number.

 user manual 65

This causes a dialog box to appear, which lets you type the label you want to associate
with the selected network.

If you press OK, the label is printed in the top left-hand corner of the selected network.

5.4.4 INSERTING AND CONNECTING BLOCKS

This paragraph shows you how to build a network.

Add a block to the blank network, by applying one of the following options:

 - Click Object>New in the Scheme menu.

 - Press the New block button in the FBD toolbar, which causes a dialog box to appear
listing all the objects of the project, then choose one item from the list. If the block is a
constant, a return statement, or a jump statement, you can directly press the relevant
buttons in the FBD toolbar.

 - Drag the selected object to the suitable location. For example, global variables can be
taken from the Workspace window, whereas standard operators and embedded func-
tions can be dragged from the Libraries window, whereas local variables can be se-
lected from the local variables editor.

Repeat until you have added all the blocks that will make up the network.

Then connect blocks:

 - Click Connection mode in the Edit menu, or press the Connection button in the FBD
toolbar, or simply press the space bar of your keyboard. Click once the source pin, then
move the mouse pointer to the destination pin: the FBD editor draws a logical wire from
the former to the latter.

 - If you want to connect two blocks having a one-to-one correspondence of pins, you can
enable the autoconnection mode by clicking Autoconnect in the Scheme menu, or by
pressing the Autoconnect button in the Network toolbar. Then take the two blocks,
drag them close to each other so as to let the corresponding pins coincide. The FBD edi-
tor automatically draws the logical wires.

If you delete a block, its connections are not removed automatically, but they become in-
valid and they are redrawn red. Click Delete invalid connection in the Scheme menu,
or type Ctrl+B on your keyboard.

66 user manual

5.4.5 EDITING NETWORKS

The FBD editor is endowed with functions common to most graphic applications running
on a Windows platform, namely:

 - Selection of a block.

 - Selection of a set of blocks by pressing Shift + left button and by drawing a frame
including the blocks to select.

 - Cut, Copy and Paste operations of a single block as well as of a set of blocks.

 - Drag-and-drop.

All the mentioned functions are accessible through the Edit menu or through the Main
toolbar.

5.4.6 MODIFYING PROPERTIES OF BLOCKS

 - Click Increment pins + in the Scheme menu, or press the Inc pins button in the FBD
toolbar, to increment the number of input pins of some operators and embedded func-
tions.

 - Click Enable EN/ENO pins in the Scheme menu, or press the EN/ENO button in the FBD
toolbar, to display the enable input and output pins.

 - Click Object>Instance name in the Scheme menu, or press the FBD properties button
in the FBD toolbar, to change the name of an instance of a function block.

5.4.7 GETTING INFORMATION ON A BLOCK

You can always get information on a block that you added to an FBD document, by select-
ing it and then performing one of the following operations:

 - Click Object> Open source in the Scheme menu, or press the View source button in
the FBD toolbar, to open the source code of a block.

 - Click Object properties in the Scheme menu, or press the FBD properties button in
the FBD toolbar, to see properties and input/output pins of the selected block.

5.4.8 AUTOMATIC ERROR RETRIEVAL

The FBD editor also automatically displays the location of compiler errors. To reach the
block where a compiler error occurred, double-click the corresponding error line in the
Output bar.

 user manual 67

5.5 SEQUENTIAL FUNCTION CHART (SFC) EDITOR

The SFC editor allows you to code and modify POUs using SFC (i.e. Sequential Function
Chart), one of the IEC-compliant languages.

5.5.1 CREATING A NEW SFC DOCUMENT

See the creating and editing POUs section (Paragraphs 5.1.1 and 5.1.2).

5.5.2 INSERTING A NEW SFC ELEMENT

You can apply indifferently one of the following procedures:

 - Click Object>New in the Scheme menu, then select the type of the new element (action,
transition, or jump).

 - Press the New step, Add Transition or Add Jump button in the SFC toolbar.

In either case, the mouse pointer changes to:

		for	steps;

		for	transitions;

 for jumps.

5.5.3 CONNECTING SFC ELEMENTS

Follow this procedure to connect SFC blocks:

 - Click Connection mode in the Edit menu, or press the Connection button in the FBD
toolbar, or simply press the space bar on your keyboard. Click once the source pin, then
move the mouse pointer to the destination pin: the SFC editor draws a logical wire from
the former to the latter.

 - Alternatively, you can enable the autoconnection mode by clicking Autoconnect in the
Scheme menu, or by pressing the Autoconnect button in the Network toolbar. Then take
the two blocks, and drag them close to each other so as to let the respective pins coin-
cide, which makes the SFC editor draw automatically the logical wire.

5.5.4 ASSIGNING AN ACTION TO A STEP

This paragraph explains how to implement an action and how to assign it to a step.

5.5.4.1 WRITING THE CODE OF AN ACTION

To start implementing an action, you need to open an editor. Do it by applying one of the
following procedures:

 - Click Code object>New action in the Scheme menu.

 - Right-click on the name of the SFC POU in the Workspace window. A context menu ap-
pears, from which you can select the New Action command.

68 user manual

In either case, Application displays a dialog box like the one shown below.

Select one of the languages and type the name of the new action in the text box at the
bottom	of	the	dialog	box.	Then	either	confirm	by	pressing	OK, or quit by clicking Cancel.

If you press OK, Application opens automatically the editor associated with the language
you selected in the previous dialog box and you are ready to type the code of the new
action.

Note that you are not allowed to declare new local variables, as the module you are now
editing is a component of the original SFC module, which is the POU where local variables
can be declared. The scope of local variables extends to all the actions and transitions
making up the SFC diagram.

5.5.4.2 ASSIGNING AN ACTION TO A STEP

When	you	have	finished	writing	the	code,	double-click	the	step	you	want	to	assign	the	
new action to. This causes the following dialog box to appear.

From the list shown in the Code N box, select the name of the action you want to execute
if the step is active. You may also choose, from the list shown in the Code P (Pulse) box,
the name of the action you want to execute each time the step becomes active (that is,
the action is executed only once per step activation, regardless of the number of cycles
the	step	remains	active).	Confirm	the	assignments	by	pressing	OK.

In the SFC schema, action to step assignments are represented by letters on the step
block:

 - action N	by	letter	N	in	the	top	right	corner;

 - action P by letter P in the bottom right corner.

 user manual 69

If later you need to edit the source code of the action, you can just double-click these
letters. Alternatively, you can double-click the name of the action in the Actions folder of
the Workspace window.

5.5.5 SPECIFYING A CONSTANT/A VARIABLE AS THE CONDITION OF
A TRANSITION

As stated in the relevant section of the language reference, a transition condition can be
assigned through a constant, a variable, or a piece of code. This paragraph explains how
to	use	the	first	two	means,	while	conditional	code	is	discussed	in	the	next	paragraph.

First of all double-click the transition you want to assign a condition to. This causes the
following dialog box to appear.

Select True if you want this transition to be constantly cleared, False if you want the PLC
program to keep executing the preceding block.

Instead, if you select Variable the transition will depend on the value of a Boolean vari-
able. Click the corresponding bullet, to make the text box to its right available, and to
specify the name of the variable.

To this purpose, you can also make use of the objects browser, that you can invoke by
pressing the Browse button shown here below.

Click OK to	confirm,	or	Cancel to quit without applying changes.

5.5.6 ASSIGNING CONDITIONAL CODE TO A TRANSITION

This paragraph explains how to specify a condition through a piece of code, and how to
assign it to a transition.

70 user manual

5.5.6.1 WRITING THE CODE OF A CONDITION

Start by opening an editor, following one of these procedures:

 - Click Code object>New transition in the Scheme menu.

 - Right-click on the name of the SFC POU in the Workspace window, then select the New
transition command from the context menu that appears.

In either case, Application displays a dialog box similar the one shown in the following
picture.

Note that you can use any language except SFC to code a condition. Select one of the
languages and type the name of the new condition in the text box at the bottom of the
dialog	box.	Then	either	confirm	by	pressing	OK, or quit by clicking Cancel.

If	you	press	OK,	Application	opens	automatically	the	editor	associated	with	the	language	
you selected in the previous dialog box and you can type the code of the new condition.

Note that you are not allowed to declare new local variables, as the module you are now
editing is a component of the original SFC module, which is the POU where local variables
can be declared. The scope of local variables extends to all the actions and transitions
making up the SFC diagram.

5.5.6.2 ASSIGNING A CONDITION TO A TRANSITION

When	you	have	finished	writing	the	code,	double-click	the	transition	you	want	to	assign	
the new condition to. This causes the following dialog box to appear.

Select	the	name	of	the	condition	you	want	to	assign	to	this	step.	Then	confirm	by	press-
ing OK.

If later you need to edit the source code of the condition, you can double-click the name

 user manual 71

of the transition in the Transitions folder of the Workspace window.

5.5.7 SPECIFYING THE DESTINATION OF A JUMP

To specify the destination step of a jump, double-click the jump block in the Chart area.
This causes the dialog box shown below to appear, listing the name of all the existing
steps. Select the destination step, then either press OK	to	confirm	or	Cancel to quit.

5.5.8 EDITING SFC NETWORKS

The SFC editor is endowed with functions common to most graphic applications running
on a Windows platform, namely:

 - Selection of a block.

 - Selection of a set of blocks by pressing Ctrl + left button.

 - Cut, Copy, and Paste operations of a single block as well as of a set of blocks.

 - Drag-and-drop.

Some of these functions are accessible through the Edit menu or through the Main tool-
bar.

5.6 VARIABLES EDITOR

Application includes a graphical editor for both global and local variables that supplies a
user-friendly interface for declaring and editing variables: the tool takes care of the trans-
lation of the contents of these editors into syntactically correct IEC 61131-3 source code.

As an example, consider the contents of the Global variables editor represented in the
following	figure.

72 user manual

The corresponding source code will look like this:

VAR_GLOBAL

 gA : BOOL := TRUE;

 gB : ARRAY[0..4] OF REAL;

 gC AT %MD60.20 : REAL := 1.0;

 END_VAR

 VAR_GLOBAL CONSTANT

 gD : INT := -74;

 END_VAR

5.6.1 OPENING A VARIABLES EDITOR

5.6.1.1 OPENING THE GLOBAL VARIABLES EDITOR

In order to open the Global variables editor, double-click on Global variables in the
project tree.

5.6.1.2 OPENING A LOCAL VARIABLES EDITOR

To open a local variables editor, just open the Program Organization Unit the variables you
want to edit are local to.

 user manual 73

5.6.2 CREATING A NEW VARIABLE

In order to create a new variable, you may click on the Insert record item in the Pro-
ject toolbar.

Alternatively, you may access the Variables menu and choose Insert.

5.6.3 EDITING VARIABLES

Follow this procedure to edit the declaration of a variable in a variables editor (all the fol-
lowing steps are optional and you will typically skip most of them when editing a variable):

1) Edit the name of the variable by entering the new name in the corresponding cell.

2) Change the variable type, either by editing the type name in the corresponding cell
or by clicking on the button in that cell and select the desired type from the list that
pops up.

74 user manual

3) Edit the address of the variable by clicking on the button in the corresponding cell
and entering the required information in the window that shows up. Note that, in the
case of global variables, this operation may change the position of the variable in the
project tree.

4) In the case of global variables, you can assign the variable to a group, by selecting
it from the list which opens when you click on the corresponding cell. This operation
will change the position of the variable in the project tree.

5) Choose	whether	a	variable	is	an	array	or	not;	if	it	is,	edit	the	size	of	the	variable.

 user manual 75

6) Edit the initial values of the variable: click on the button in the corresponding cell and
enter the values in the window that pops up.

7) Assign an attribute to the variable (for example, CONSTANT or RETAIN), by selecting it
from the list which opens when you click on the corresponding cell.

8) Type a description for the variable in the corresponding cell. Note that, in the case of
global variables, this operation may change the position of the variable in the project
tree.

9) Save the project to persist the changes you made to the declaration of the variable.

5.6.4 DELETING VARIABLES

In order to delete one or more variables, select them in the editor: you may use the CTRL
or the SHIFT keys to select multiple elements.

76 user manual

Then, click on the Delete record in the Project toolbar.

Alternatively, you may access the Variables menu and choose Delete.

Notice that you cannot delete the RESULT of an IEC61131-3 FUNCTION.

5.6.5 SORTING VARIABLES

You	can	sort	the	variables	in	the	editor	by	clicking	on	the	column	header	of	the	field	you	
want to use as the sorting criterion.

 user manual 77

5.6.6 COPYING VARIABLES

The variables editor allows you to quickly copy and paste elements. You can either use
keyboard shortcuts or the Edit menu to access these features.

78 user manual

 user manual 79

6. COMPILING

Compilation consists of taking the PLC source code and automatically translating it into
binary code, which can be executed by the processor on the target device.

6.1 COMPILING THE PROJECT

Before starting actual compilation, make sure that at least one program has been as-
signed to a task.

When this pre-condition does not hold, compilation aborts with a meaningful error mes-
sage.

In order to start compilation, click the Compile button in the Project toolbar.

Alternatively, you can choose Compile from the Project menu or press F7 on your key-
board.

Note that Application automatically saves all changes to the project before starting the
compilation.

6.1.1 IMAGE FILE LOADING

Before	performing	the	actual	compilation,	the	compiler	needs	to	load	the	image	file	(img
file), which contains the map of memory of the target device. If the target is connected
when	compilation	is	started,	the	compiler	seeks	the	image	file	directly	on	the	target.	Oth-
erwise,	it	loads	the	local	copy	of	the	image	file	from	the	working	folder.	If	the	target	device	
is	disconnected	and	there	is	no	local	copy	of	the	image	file,	compilation	cannot	be	carried	
out: you are then required to connect to a working target device.

80 user manual

6.2 COMPILER OUTPUT

If the previous step was accomplished, the compiler performs the actual compilation, then
prints a report in the Output bar. The last string of the report has the following format:

m warnings, n errors

It tells the user the outcome of compilation.

Condition Description

n>0 Compiler error(s). The PLC code contains one or more serious errors,
which cannot be worked around by the compiler.

n=0, m>0

Emission of warning(s). The PLC code contains one or more minor
errors, which the compiler automatically spotted and worked around.
However, you are informed that the PLC program may act in a
different way from what you expected: you are encouraged to get rid
of these warnings by editing and re-compiling the application until no
warning messages are emitted.

n=m=0 PLC code entirely correct, compilation accomplished. You should
always work with 0 warnings, 0 errors.

6.2.1 COMPILER ERRORS

When your application contains one or more errors, some useful information is printed in
the Output window for each of those errors.

As you can see, the information includes:

 - the	name	of	the	Program	Organization	Unit	affected	by	the	error;

 - the	number	of	the	source	code	line	which	procured	the	error;

 - whether it is a fatal error (error) or one that the compiler could work around (warn-
ing);

 - the	error	code;

 - the error description.

 user manual 81

Refer to the appropriate section for the compiler error reference.

If you double-click the error message in the Output bar, Application opens the source
code and highlights the line containing the error.

You can then solve the problem and re-compile.

82 user manual

6.3 COMMAND-LINE COMPILER

Application’s compiler can be used independently from the IDE: in Application’s directory,
you	can	find	an	executable	file,	Command-line compiler, which can be invoked (for ex-
ample,	in	a	batch	file)	with	a	number	of	options.

In order to get information about the syntax and the options of this command-line tool,
just launch the executable without parameters.

 user manual 83

7. LAUNCHING THE APPLICATION

In order to download and debug the application, you have to establish a connection with
the target device. This chapter focuses on the operations required to connect to the target
and to download the application, while the wide range of Application’s debugging tools
deserves a separate chapter (see Chapter 9.).

7.1 SETTING UP THE COMMUNICATION

In order to establish the connection with the target device, make sure the physical link is
up	(all	the	cables	are	plugged	in,	the	network	is	properly	configured,	and	so	on).

Follow this procedure to set up and establish the connection to the target device:

1) Click Settings in the Communication menu of the Application main window. This
causes the following dialog box to appear.

The elements in the list of communication protocols you can select from depend on
the setup executable(s) you have run on your PC (refer to your hardware provider if
a protocol you expect to appear in the list is missing).

2) Choose the appropriate protocol and make it the active protocol.

84 user manual

3) Fill	 in	 all	 the	 protocol-specific	 settings	 (e.g.,	 the	 address	 or	 the	 communication	
timeout - that is how long Application must wait for an answer from the target before
displaying a communication error message).

4) Apply the changes you made to the communication settings.

Now you can establish communication by clicking Connect in the Communication menu,
or by pressing the Connect button in the Project toolbar.

 user manual 85

7.1.1 SAVING THE LAST USED COMMUNICATION PORT

When you connect to target devices using a serial port (COM port), you usually use the
same port for all devices (many modern PCs have only one COM port). You may save the
last used COM port and let Application use that port to override the project settings: this
feature proves especially useful when you share projects with other developers, which
may use a different COM port to connect to the target device.

In order to save your COM port settings, enable the Use last port option in File > Op-
tions... menu.

7.2 ON-LINE STATUS

7.2.1 CONNECTION STATUS

The state of communication is shown in a small box next to the right border of the Status
bar.

If you have not yet attempted to connect to the target, the state of communication is set
to Not connected.

When you try to connect to the target device, the state of communication becomes one
of the following:

 - Error: the communication cannot be established. You should check both the physical
link and the communication settings.

 - Connected: the communication has been established.

7.2.2 APPLICATION STATUS

Next to the communication status there is another small box which gives information
about the status of the application currently executing on the target device.

When the connection status is Connected, the application status takes on one of the fol-
lowing values.

 - No code: no application is executing on the target device.

86 user manual

 - Diff. code: the application currently executing on the target device is not the same as
the	one	currently	open	in	the	IDE;	moreover,	no	debug	information	consistent	with	the	
running application is available: thus, the values shown in the watch window or in the
oscilloscope are not reliable and the debug mode cannot be activated.

 - Diff. code, Symbols OK: the application currently executing on the target device is
not	the	same	as	the	one	currently	open	in	the	IDE;	however,	some	debug	information	
consistent with the running application is available (for example, because that applica-
tion has been previously downloaded to the target device from the same PC): the values
shown in the watch window or in the oscilloscope are reliable, but the debug mode still
cannot be activated.

 - Source OK: the application currently executing on the target device is the same as the
one currently open in the IDE: the debug mode can be activated.

7.3 DOWNLOADING THE APPLICATION

A compiled PLC application must be downloaded to the target device in order to have
the processor execute it. This paragraph shows you how to send a PLC code to a target
device. Note that Application can download the code to the target device only if the latter
is connected to the PC where Application is running. See the related section for details.

To download the application, click on the related button in the Project toolbar.

Alternatively, you can choose Download code from the Project menu or press the F5 key.

Application checks whether the project has unsaved changes. If this is the case, it auto-
matically starts the compilation of the application. The binary code is eventually sent to
the target device, which then undergoes automatic reset at the end of transmission. Now
the code you sent is actually executed by the processor on the target device.

7.3.1 CONTROLLING SOURCE CODE DOWNLOAD

Whether the source code of the application is downloaded along with the binary code or
not, depends on the target device you are interfacing with: some devices host the appli-
cation source code in their storage, in order to allow the developer to upload the project
in a later moment.

If this is the case, you can control some aspects of the source code download process, as
explained in the following paragraphs.

 user manual 87

7.3.1.1 SUSPENDING SOURCE CODE DOWNLOAD

In order to speed up the development cycle, you may want to disable source code down-
load: uncheck the Source code download item in the Communication menu.

When you stop developing the application, you can enable source code download again by
checking the same menu item.

When you disconnect from the target device, Application checks if the application cur-
rently executing on the target and the source code available on-board match, alerting you
if they do not.

7.3.1.2 PROTECTING THE SOURCE CODE WITH A PASSWORD

You may want to protect the source code downloaded to the target device with a pass-
word, so that Application will not open the uploaded project unless the correct password
is entered.

Open the Project options window (Project > Options ... menu) and set the pass-
word.

88 user manual

You may opt to disable the password, instead.

7.4 SIMULATION

Depending on the target device you are interfacing with, you may be able to simulate the
execution of the PLC application with Application’s integrated simulation environment:
Simulation.

In order to start the simulation, just click on the appropriate item on the Project toolbar.

Refer to Simulation’s manual to gain information on how to control the simulation.

 user manual 89

8. DEBUGGING

Application provides several debugging tools, which help the developer to check whether
the application behaves as expected or not.

All these debugging tools basically allow the developer to watch the value of selected vari-
ables while the PLC application is running.

Application debugging tools can be gathered in two classes:

 - Asynchronous debuggers. They read the values of the variables selected by the devel-
oper with successive queries issued to the target device. Both the manager of the de-
bugging tool (that runs on the PC) and, potentially, the task which is responsible to an-
swer those queries (on the target device) run independently from the PLC application.
Thus, there is no guarantee about the values of two distinct variables being sampled in
the same moment, with respect to the PLC application execution (one or more cycles
may	have	occurred);	for	the	same	reason,	the	evolution	of	the	value	of	a	single	variable	
is not reliable, especially when it changes fast.

 - Synchronous	debuggers.	They	require	the	definition	of	a	trigger	in	the	PLC	code.	They	
refresh simultaneously all the variables they have been assigned every time the proces-
sor reaches the trigger, as no further instruction can be executed until the value of all
the variables is refreshed. As a result, synchronous debuggers obviate the limitations
affecting asynchronous ones.

This chapter shows you how to debug your application using both asynchronous and syn-
chronous tools.

8.1 WATCH WINDOW

The Watch window allows you to monitor the current values of a set of variables. Being
an asynchronous tool, the Watch window does not guarantee synchronization of values.
Therefore, when reading the values of the variables in the Watch window, be aware of
the possibility that they may refer to different execution cycles of the corresponding task.

The Watch window contains an item for each variable that you added to it. The informa-
tion shown in the Watch window includes the name of the variable, its value, its type, and
its location in the PLC application.

8.1.1 OPENING AND CLOSING THE WATCH WINDOW

To open the Watch window, click on the Watch button of the Main toolbar.

To close the Watch window, click on the Watch button again.

90 user manual

Alternatively, you can click on the Close button in the top right corner of the Watch win-
dow.

In both cases, closing the Watch window means simply hiding it, not resetting it. As a
matter of fact, if you close the Watch window and then open it again, you will see that it
still contains all the variables you added to it.

8.1.2 ADDING ITEMS TO THE WATCH WINDOW

To watch a variable, you need to add it to the watch list.

Note that, unlike trigger windows and the Graphic trigger window, you can add to the
Watch window all the variables of the project, regardless of where they were declared.

8.1.2.1 ADDING A VARIABLE FROM A TEXTUAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Watch window from a textual (that is, IL or
ST) source code editor: select a variable, by double-clicking on it, and then drag it into
the watch window.

The same procedure applies to all the variables you wish to inspect.

8.1.2.2 ADDING A VARIABLE FROM A GRAPHICAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Watch window from a graphical (that is, LD,
FBD, or SFC) source code editor:

1) Press the Watch button in the FBD bar.

2) Click on the block representing the variable you wish to be shown in the Watch win-
dow.

 user manual 91

3) A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked on.

In order to display the variable in the Watch window, select Watch, then press OK.

The variable name, value, and location are now displayed in a new row of the Watch win-
dow.

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Watch window all the variables you want to observe, you
should click on the Select/Move button in the FBD bar: the mouse cursor turns to its
original shape.

92 user manual

8.1.2.3 ADDING A VARIABLE FROM A VARIABLES EDITOR

In order to add a variable to the Watch window, you can select the corresponding record
in the variables editor and then either drag-and-drop it in the Watch window

or press the F8 key.

8.1.2.4 ADDING A VARIABLE FROM THE PROJECT TREE

In order to add a variable to the Watch window, you can select it in the project tree and
then either drag-and-drop it in the Watch window

or press the F8 key.

 user manual 93

8.1.2.5 ADDING A VARIABLE FROM THE WATCH WINDOW TOOLBAR

You can also click on the appropriate item of the Watch window inner toolbar, in order to
add a variable to it.

You shall type (or select by browsing the project symbols) the name of the variable and
its location (where it has been declared).

8.1.3 REMOVING A VARIABLE

If you want a variable not to be displayed any more in the Watch window, select it by
clicking on its name once, then press the Del key.

8.1.4 REFRESHMENT OF VALUES

8.1.4.1 NORMAL OPERATION

Let us consider the following example.

94 user manual

The watch window manager reads periodically from memory the value of the variables.

However, this action is carried out asynchronously , that is it may happen that a higher-
priority	task	modifies	the	value	of	some	of	the	variables	while	they	are	being	read.	Thus,	
at the end of a refreshment process, the values displayed in the window may refer to dif-
ferent execution states of the PLC code.

8.1.4.2 TARGET DISCONNECTED

If the target device is disconnected, the Value column contains three dots.

8.1.4.3 OBJECT NOT FOUND

If the PLC code changes and Application cannot retrieve the memory location of an object
in the Watch window, then the Value column contains three dots.

If you try to add to the Watch window a symbol which has not been allocated, Application
gives the following error message.

8.1.5 CHANGING THE FORMAT OF DATA

When you add a variable to the Watch window, Application automatically recognizes its
type	(unsigned	integer,	signed	integer,	floating	point,	hexadecimal),	and	displays	its	value	
consistently.	Also,	if	the	variable	is	floating	point,	Application	assigns	it	a	default	number	
of	decimal	figures.

However, you may need the variable to be printed in a different format.

 user manual 95

To impose another format than the one assigned by Application, press the Format value
button in the toolbar.

Choose	the	format	and	confirm	your	choice.

8.1.6 WORKING WITH WATCH LISTS

You	can	store	to	file	the	set	of	all	the	items	in	the	Watch window, in order to easily restore
the status of this debugging tools in a successive working session.

Follow this procedure to save a watch list:

1) Click on the corresponding item in the Watch window toolbar.

2) Enter	the	file	name	and	choose	its	destination	in	the	file	system.

96 user manual

In order to load a watch list, follow this procedure:

1) Click on the corresponding item in the Watch window toolbar.

2) Browse	the	file	system	and	select	the	watch	list	file.

The set of symbols in the watch list is added to the Watch window.

8.2 OSCILLOSCOPE

The Oscilloscope allows you to plot the evolution of the values of a set of variables. Be-
ing an asynchronous tool, the Oscilloscope cannot guarantee synchronization of samples.

Opening the Oscilloscope causes a new window to appear next to the right-hand border
of the Application frame. This is the interface for accessing the debugging functions that
the Oscilloscope makes available. The Oscilloscope consists of three elements, as shown
in the following picture.

 user manual 97

The toolbar allows you to better control the Oscilloscope. A detailed description of the
function of each control is given later in this chapter.

The Chart area includes several items:

 - Plot: area containing the curve of the variables.

 - Vertical cursors: cursors identifying two distinct vertical lines. The values of each vari-
able at the intersection with these lines are reported in the corresponding columns.

 - Scroll bar: if the scale of the x-axis is too large to display all the samples in the Plot
area, the scroll bar allows you to slide back and forth along the horizontal axis.

The lower section of the Oscilloscope is a table consisting of a row for each variable.

8.2.1 OPENING AND CLOSING THE OSCILLOSCOPE

To open the Oscilloscope, click on the Async button of the Main toolbar.

To close the Oscilloscope, click on the Async button again.

Alternatively, you can click on the Close button in the top right corner of the Oscillo-
scope window.

98 user manual

In both cases, closing the Oscilloscope means simply hiding it, not resetting it. As a mat-
ter of fact, if you open again the Oscilloscope after closing it, you will see that plotting of
the curve of all the variables you added to it starts again.

8.2.2 ADDING ITEMS TO THE OSCILLOSCOPE

In order to plot the evolution of the value of a variable, you need to add it to the Oscil-
loscope.

Note that unlike trigger windows and the Graphic trigger window, you can add to the
Oscilloscope all the variables of the project, regardless of where they were declared.

8.2.2.1 ADDING A VARIABLE FROM A TEXTUAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Oscilloscope from a textual (that is, IL or
ST) source code editor: select a variable by double-clicking on it, and then drag it into the
Oscilloscope window.

The same procedure applies to all the variables you wish to inspect.

8.2.2.2 ADDING A VARIABLE FROM A GRAPHICAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Oscilloscope from a graphical (that is, LD,
FBD, or SFC) source code editor:

1) Press the Watch button in the FBD bar.

2) Click on the block representing the variable you wish to be shown in the Oscilloscope.

 user manual 99

3) A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked on.

Select Oscilloscope, the press OK. The name of the variable is now displayed in the
Track column.

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Oscilloscope all the variables you want to observe, you should
click on the Select/Move button in the FBD bar: the mouse cursor turns to its original
shape.

8.2.2.3 ADDING A VARIABLE FROM A VARIABLES EDITOR

In order to add a variable to the Oscilloscope, you can select the corresponding record in
the variables editor and then either drag-and-drop it in the Oscilloscope

or press the F10 key and choose Oscilloscope from the list of debug windows which pops
up.

100 user manual

8.2.2.4 ADDING A VARIABLE FROM THE PROJECT TREE

In order to add a variable to the Oscilloscope, you can select it in the project tree and then
either drag-and-drop it in the Oscilloscope

or press the F10 key and choose Oscilloscope from the list of debug windows which
pops up.

8.2.3 REMOVING A VARIABLE

If you want to remove a variable from the Oscilloscope, select it by clicking on its name
once, then press the Del key.

8.2.4 VARIABLES SAMPLING

8.2.4.1 NORMAL OPERATION

Let us consider the following example.

 user manual 101

The Oscilloscope manager periodically reads from memory the value of the variables.

However, this action is carried out asynchronously, that is it may happen that a higher-
priority	task	modifies	the	value	of	some	of	the	variables	while	they	are	being	read.	Thus,	
at the end of a sampling process, data associated with the same value of the x-axis may
actually refer to different execution states of the PLC code.

8.2.4.2 TARGET DISCONNECTED

If the target device is disconnected, the curves of the dragged-in variables get frozen,
until communication is restored.

8.2.5 CONTROLLING DATA ACQUISITION AND DISPLAY

The Oscilloscope includes a toolbar with several commands, which can be used to control
the acquisition process and the way data are displayed. This paragraph focuses on these
commands.

Note that all the commands in the toolbar are disabled if no variable has been added to
the Oscilloscope.

8.2.5.1 STARTING AND STOPPING DATA ACQUISITION

When you add a variable to the Oscilloscope, data acquisition begins immediately.

However, you can suspend the acquisition by clicking on Pause acquisition.

102 user manual

The curve freezes (while the process of data acquisition is still running in background),
until you click on Restart acquisition.

In order to stop the acquisition you may click on Stop acquisition.

In this case, when you click on Restart acquisition, the evolution of the value of the
variable is plotted from scratch.

8.2.5.2 SETTING THE SCALE OF THE AXES

When you open the Oscilloscope, Application applies a default scale to the axes. However,
if you want to set a different scale, you may follow this procedure:

1) Open the graph properties by clicking on the corresponding item in the toolbar.

 user manual 103

2) Set the scale of the horizontal axis, which is common to all the tracks.

3) For each variable, you may specify a distinct scale for the vertical axis.

4) Confirm	your	settings.	The	graph	adapts	to	reflect	the	new	scale.

104 user manual

You can also zoom in and out with respect to both the horizontal and the vertical axes.

Finally, you may also quickly adapt the scale of the horizontal axis, the vertical axis, or
both to include all the samples, by clicking on the corresponding item of the toolbar.

 user manual 105

8.2.5.3 VERTICAL SPLIT

When you are watching the evolution of two or more variables, you may want to split the
respective tracks. For this purpose, click on the Vertical split item in the Oscillo-
scope toolbar.

8.2.5.4 VIEWING SAMPLES

If you click on the Show samples item in the Oscilloscope toolbar, the tool highlights
the single values detected during data acquisition.

You can click on the same item again, in order to go back to the default view mode.

106 user manual

8.2.5.5 TAKING MEASURES

The Oscilloscope includes two measure bars, which can be exploited to take some meas-
ures	on	the	chart;	in	order	to	show	and	hide	them,	click	on	the	Show measure bars item
in the Oscilloscope toolbar.

If you want to measure a time interval between two events, you just have to move one
bar	to	the	point	in	the	graph	that	corresponds	to	the	first	event	and	the	other	to	the	point	
that corresponds to the second one.

The time interval between the two bars is shown in the top left corner of the chart.

You can use a measure bar also to read the value of all the variables in the Oscilloscope
at a particular moment: move the bar to the point in the graph which corresponds to the
instant you want to observe.

 user manual 107

In the table below the chart, you can now read the values of all the variables at that par-
ticular moment.

8.2.5.6 OSCILLOSCOPE SETTINGS

You can further customize the appearance of the Oscilloscope by clicking on the Graph
properties item in the toolbar.

In the window that pops up you can choose whether to display or not the Background
grid, the Time slide bar, and the Track list.

8.2.6 CHANGING THE POLLING RATE

Application periodically sends queries to the target device, in order to read the data to be
plotted in the Oscilloscope.

The	polling	rate	can	be	configured	by	following	this	procedure:

1) Click on the Graph properties item in the toolbar.

108 user manual

2) In the window that pops up edit the Sampling polling rate.

3) Confirm	your	decision.

Note that the actual rate depends on the performance of the target device (in particular,
on the performance of its communication task). You can read the actual rate in the Oscil-
loscope settings window.

8.2.7 SAVING AND PRINTING THE GRAPH

Application	allows	you	to	persist	the	acquisition	either	by	saving	the	data	to	a	file	or	by	
printing a view of the data plotted in the Oscilloscope.

8.2.7.1 SAVING DATA TO A FILE

You	can	save	the	samples	acquired	by	the	Oscilloscope	to	a	file,	in	order	to	further	analyze	
the data with other tools.

1) You	may	want	to	stop	acquisition	before	saving	data	to	a	file.

2) Click on the Save tracks data into file in the Oscilloscope toolbar.

3) Choose	between	the	available	output	file	format:	OSC	is	a	simple	plain-text	file,	con-
taining	 time	 and	 value	 of	 each	 sample;	 OSCX	 is	 an	 XML	 file,	 that	 includes	more	
complete information, which can be further analyzed with another tool, provided
separately from Application.

4) Choose	a	file	name	and	a	destination	directory,	then	confirm	the	operation.

 user manual 109

8.2.7.2 PRINTING THE GRAPH

Follow this procedure to print a view of the data plotted in the Oscilloscope:

1) Either suspend or stop the acquisition.

2) Move the time slide bar and adjust the zoom, in order to include in the view the ele-
ments you want to print.

3) Click on the Print graph item.

8.3 EDIT AND DEBUG MODE

While both the Watch window and the Oscilloscope do not make use of the source code,
all the other debuggers do: thus, Application requires the developer to switch on the de-
bug mode, where changes to the source code are inhibited, before (s)he can access those
debugging tools.

To switch on and off the debug mode, you can click on the corresponding item in the De-
bug toolbar.

110 user manual

Alternatively, you can choose Debug mode from the Project menu.

The status bar shows whether the debug mode is active or not.

Note that you cannot enter the debug mode if the connection status differs from Con-
nected.

8.4 LIVE DEBUG

Application can display meaningful animation of the current and changing state of execu-
tion over time of a Program Organization Unit (POU) coded in any IEC 61131-3 program-
ming language.

To switch on and off the live debug mode, you may click on the corresponding item in the
Debug toolbar

or choose Live debug mode from the Project menu.

 user manual 111

8.4.1 SFC ANIMATION

As explained in the relevant section of the language reference, an SFC POU is structured
in a set of steps, each of which is either active or inactive at any given moment. Once
started	up,	this	SFC-specific	debugging	tool	animates	the	SFC	documents	by	highlighting	
the active steps.

Animation OFF Animation ON

In the left column, a portion of an SFC network is shown, diagram animation being off.

In the right column the same portion of network is displayed when the live debug mode
is active. The picture in the right column shows that steps S1 and S3 are currently active,
whereas Init, S2, and S4 are inactive.

Note that the SFC animation manager tests periodically the state of all steps, the user not
being allowed to edit the sampling period. Therefore, it may happen that a step remains
active for a slot of time too short to be displayed on the video.

The fact that a step is never highlighted does not imply that its action is not executed, it
may simply mean that the sampling rate is too slow to detect the execution.

8.4.1.1 DEBUGGING ACTIONS AND CONDITIONS

As explained in the SFC language reference, a step can be assigned to an action, and a
transition can be associated with a condition code. Actions and conditions can be coded in
any of the IEC 61131-3 languages. General-purpose debugging tools can be used within
each action/condition, as if it was a stand-alone POU.

8.4.2 LD ANIMATION

In live debug mode, Ladder Diagram schemes are animated by highlighting the contacts
and coils whose value is true (in the example, i1 and i2).

112 user manual

Note that the LD animation manager tests periodically the state of all the elements. It
may happen that an element remains true for a slot of time too short to be displayed
on the video. The fact that an element is never highlighted does not imply that its value
never becomes true (the sampling rate may be too slow).

8.4.3 FBD ANIMATION

In live debug mode, Application displays the values of all the visible variables directly in
the graphical source code editor.

This works for both FBD and LD programming language.

Note that, once again, this tool is asynchronous.

8.4.4 IL AND ST ANIMATION

The live debug mode also applies to textual source code editors (the ones for IL and ST).
You can quickly watch the values of a variable by hovering with the mouse over it.

8.5 TRIGGERS

8.5.1 TRIGGER WINDOW

The Trigger window tool allows you to select a set of variables and to have them updated
synchronously in a special pop-up window.

 user manual 113

8.5.1.1 PRE-CONDITIONS TO OPEN A TRIGGER WINDOW

No need for special compilation

Application debugging tools operate at run-time. Thus, unlike other programming lan-
guages such as C++, the compiler does not need to be told whether or not to support trig-
ger windows: given a PLC code, the compiler’s output is unique, and there is no distinction
between debug and release version.

Memory availability

A	trigger	window	takes	a	segment	in	the	application	code	sector,	having	a	well-defined	
length.	Obviously,	in	order	to	start	up	a	trigger	window,	it	is	necessary	that	a	sufficient	
amount of memory is available, otherwise an error message appears.

Incompatibility with graphic trigger windows

A graphic trigger window takes the whole free space of the application code sector. There-
fore, once such a debugging tool has been started, it is not possible to add any trigger
window, and an error message appears if you attempt to start a new window. Once the
graphic trigger window is eventually closed, trigger windows are enabled again.

Note that all the trigger windows existing before the starting of a graphic trigger window
keep working normally. You are simply not allowed to add new ones.

8.5.1.2 TRIGGER WINDOW TOOLBAR

Trigger window icons are part of the Debug toolbar and are enabled only if Application is
in debug mode.

Button Command Description

Set/Remove trigger

In order to actually start a trigger window,
select the point of the PLC code where to insert
the relative trigger and then press this button.
The same procedure applies to trigger window
removal:	in	order	to	definitely	close	a	debug	
window, click once the instruction/block where the
trigger was inserted, then press this button again.

Graphic trace

This button operates exactly as the above Set/
Remove trigger, except for that it opens a
graphic trigger window. It can be used likewise
also to remove a graphic trigger window. Shortcut
key: pressing Shift + F9 is equivalent to clicking
on Set/Remove trigger button.

Remove all
triggers

Pressing this key causes all the existing trigger
windows and the graphic trigger window to be
removed simultaneously. Shortcut key: pressing
Ctrl+Shift+F9 is equivalent to clicking on this
button.

Trigger list
This key opens a dialog listing all the existing
trigger windows. Shortcut key: pressing Ctrl+I is
equivalent to clicking on this button.

114 user manual

Each record refers to a trigger window, either graphic or textual. The following table ex-
plains	the	meaning	of	each	field.

Field Description

Type
T: trigger window.

G: graphic trigger window.

Module

Name of the program, function, or function block where
the trigger is placed. If the module is a function block, this
field	contains	its	name,	not	the	name	of	its	instance	where	
you actually put the trigger.

Line
For the textual languages (IL, ST) indicates the line in
which the trigger is placed. For the other languages the
value is always -1.

8.5.1.3 TRIGGER WINDOW INTERFACE

Setting a trigger causes a pop-up window to appear, which is called Interface window:
this is the interface to access the debugging functions that the trigger window makes
available. It consists of three elements, as shown below.

Caption bar

The Caption bar of the pop-up window shows information on the location of the trigger
which causes the refresh of the Variables window, when reached by the processor.

The text in the Caption bar has the following format:

Trigger n° X at ModuleName#Location

 user manual 115

where

X Trigger	identifier.

ModuleName Name of the program, function, or function block where
the trigger was placed.

Location

Exact location of the trigger, within module ModuleName.

If ModuleName is in IL, Location has the following format:

N1

Otherwise, if ModuleName is in FBD, it becomes:

N2$BT:BID

where:

N1 = instruction line number

N2 = network number

BT = block type (operand, function, function block, etc.)

BID	=	block	identifier

Controls section

This dialog box allows the user to better control the refresh of the trigger window to get
more information on the code under scope. A detailed description of the function of each
control is given in the Trigger window controls section (see 9.5.2.11).

All controls except Ac, the Accumulator display button, are not accessible until at least
one variable is dragged into the debug window.

The Variables section

This lower section of the Debug window is a table consisting of a row for each variable that
you	dragged	in.	Each	row	has	four	fields:	the	name	of	the	variable,	its	value,	its	type,	and	
its location (@task:ModuleName) read from memory during the last refresh.

8.5.1.4 TRIGGER WINDOW: DRAG AND DROP INFORMATION

To watch a variable, you need to copy it to the lower section of the Debug window.

This section is a table consisting of a row for each variable you dragged in. You can drag
into the trigger window only variables local to the module where you placed the relative
trigger, or global variables, or parameters. You cannot drag variables declared in another
program, or function, or function block.

116 user manual

8.5.1.5 REFRESH OF THE VALUES

Let us consider the following example.

The value of variables is refreshed every time the window manager is triggered, that is
every time the processor executes the instruction marked by the green arrowhead. How-
ever, you can set controls in order to have variables refreshed only when triggers satisfy
the	more	limiting	conditions	you	define.	

Note that the value of the variables in column Symbol is read from memory just before
the marked instruction (in this case: the instruction at line 5) and immediately after the
previous instruction (the one at line 4) has been performed.

Thus, in the above example the second ST statement has not been executed yet when the
new value of a is read from memory and displayed in the trigger window. Thus the result
of the second ST a is 1.

8.5.1.6 TRIGGER WINDOW CONTROLS

This paragraph deals with the trigger window controls, which allows you to better super-
vise the working of this debugging tool, to get more information on the code under scope.

Trigger	window	controls	act	in	a	well-defined	way	on	the	behavior	of	the	window,	regard-
less for the type of the module (either IL or FBD) where the related trigger has been
inserted.

All controls except the Accumulator display are not accessible until at least one variable
is dragged into the Variables window.

Window controls are made accessible to users through the grey top half of the debug
window.

 user manual 117

Button Command Description

Start/Stop

This control is used to start a triggering session.
If system is triggering you can click this button to
force stop. Otherwise session automatically stops
when conditions are reached. At this point you
can press this button to start another triggering
session.

Single step
execution

This control is used to execute a single step
trigger. It is enabled only when there is no active
triggering session and None is	selected.	Specified	
condition is considered. After the single step
trigger is done, triggering session automatically
stops.

Accumulator
display

This control adds the Accumulator to the list of
variables already dragged into the trigger window.
A new row is added at the bottom of the table of
variables, containing the string Accumulator in
column Symbol, the accumulator’s value in column
Value, Type is	not	specified	and	Location is set
to	global	as	shown	in	the	following	figure.

In order to remove the accumulator from the table, click its name in Symbol column, and
press the Del key.

This control can be very useful if a trigger was inserted before a ST statement, because
it allows you to know what value is being written in the destination variable, during the
current execution of the task. You can get the same result by moving the trigger to an
instruction following the one marked by the green arrowhead.

Trigger counter

This read-only control counts how many times the debug window manager has been trig-
gered, since the window was installed.

The window manager automatically resets this counter every time a new triggering ses-
sion is started.

118 user manual

Trigger state

This read-only control shows the user the state of the Debug window. It can assume the
following values.

The trigger has not occurred during the current task execution.

The trigger has occurred during the current task execution.

System is not triggering. Triggering has not been started yet
or it has been stopped by user or an halt condition has been
reached.

Communication with target interrupted, the state of the trigger
window cannot be determined.

User-defined condition

If	you	define	a	condition	by	using	this	control,	the	values	in	the	Debug window are re-
freshed	every	time	the	window	manager	 is	triggered	and	the	user-defined	condition	 is	
true.

After	you	have	entered	a	condition,	the	control	displays	its	simplified	expression.

Counters

These	controls	allow	the	user	to	define	conditions	on	the	trigger	counter.	

The trigger window can be in one of the following three states.

 - None:	no	counter	has	been	started	up,	thus	no	condition	has	been	specified	upon	the	
trigger.

 - For: assuming that you gave the counter limit the value N, the window manager adds
1 to the current value of the counter and refreshes the value of its variables, each time
the debug window is triggered. However, when the counter equals N, the window stops
refreshing the values, and it changes to the Stop state.

 - After: assuming that you gave the counter limit the value N, the window manager re-
sets the counter and adds 1 to its current value each time it is triggered. The window
remains in the Ready state and does not update the value of its variables until the
counter reaches N.

8.5.2 DEBUGGING WITH TRIGGER WINDOWS

8.5.2.1 INTRODUCTION

The trigger window tool allows the user to select a set of variables and to have their val-
ues displayed and updated synchronously in a pop-up window. Unlike the Watch window,
trigger windows refresh simultaneously all the variables they contain, every time they are
triggered.

 user manual 119

8.5.2.2 OPENING A TRIGGER WINDOW FROM AN IL MODULE

Let us assume that you have an IL module, also containing the following instructions.

Let us also assume that you want to know the value of b, d, and k, just before the ST k
instruction is executed. To do so, move the cursor to line 12.

Then you can click the Set/Remove trigger button in the Debug toolbar

or you can press the F9 key.

In both cases, a green arrowhead appears next to the line number, and the related trigger
window pops up.

Not all the IL instructions support triggers. For example, it is not possible to place a trig-
ger at the beginning of a line containing a JMP statement.

8.5.2.3 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN IL MODULE

In order to watch the value of a variable, you need to add it to the trigger window. To this
purpose, select a variable by double-clicking it, and then drag it into the Variables win-
dow, that is the lower white box in the pop-up window. The variable’s name now appears
in the Symbol column.

The same procedure applies to all the variables you wish to inspect.

120 user manual

8.5.2.4 OPENING A TRIGGER WINDOW FROM AN FBD MODULE

Let us assume that you have an FBD module, also containing the following instructions.

Let us also assume that you want to know the values of C, D, and K, just before the ST
k instruction is executed.

Provided that you can never place a trigger in a block representing a variable such as

you	must	select	the	first	available	block	preceding	the	selected	variable.	In	the	example	
of	the	above	figure,	you	must	move	the	cursor	to	network	3,	and	click	the	ADD block.

You can click the Set/Remove trigger button in the Debug bar

or you can press the F9 key.

In both cases, the color of the selected block turns to green, a white circle with a number
inside appears in the middle of the block, and the related trigger window pops up.

 user manual 121

When preprocessing FBD source code, the compiler translates it into IL instructions. The
ADD instruction in network 3 is expanded to:

LD k

ADD 1

ST k

When	you	add	a	trigger	to	an	FBD	block,	you	actually	place	the	trigger	before	the	first	
statement of its IL equivalent code.

8.5.2.5 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN FBD MODULE

In order to watch the value of a variable, you need to add it to the trigger window. Let
us assume that you want to inspect the value of variable k	of	the	FBD	code	in	the	figure	
below.

To this purpose, press the Watch button in the FBD bar.

The cursor will become as follows.

Now you can click the block representing the variable you wish to be shown in the trigger
window.

In the example we are considering, click the button block.

A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

In order to display the variable k in the trigger window, select its reference in the Debug
windows column, then press OK. The name of the variable is now printed in the Symbol
column.

122 user manual

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press the normal cursor button, so as to let the cursor take back its original
shape.

8.5.2.6 OPENING A TRIGGER WINDOW FROM AN LD MODULE

Let us assume that you have an LD module, also containing the following instructions.

You can place a trigger on a block such as follows.

 user manual 123

In this case, the same rules apply as to insert a trigger in an FBD module on a contact

or a coil

In this case, follow the SE instructions. Let us also assume that you want to know the
value of some variables every time the processor reaches network number 1.

First you must click one of the items making up network number 1. Now you can click the
Set/Remove trigger button in the Debug bar.

Alternatively you can press the F9 key.

In both cases, the grey raised button containing the network number turns to green, and
a white circle with the number of the trigger inside appears in the middle of the button,
while the related trigger window pops up.

Unlike the other languages supported by Application, LD does not allow you to insert a
trigger into a single contact or coil, as it lets you select only an entire network. Thus the
variables in the trigger window will be refreshed every time the processor reaches the
beginning of the selected network.

8.5.2.7 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN LD MODULE

In order to watch the value of a variable, you need to add it to the trigger window. Let
us assume that you want to inspect the value of variable b in the LD code represented in
the	figure	below.

To this purpose, press the Watch button in the FBD bar.

The cursor will become as follows.

124 user manual

Now you can click the item representing the variable you wish to be shown in the trigger
window.

A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

In order to display variable B in the trigger window, select its reference in the Debug win-
dow column, then press OK.

The name of the variable is now printed in the Symbol column.

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press the Normal cursor button, so as to restore the original shape of
the cursor.

 user manual 125

8.5.2.8 OPENING A TRIGGER WINDOW FROM AN ST MODULE

Let us assume that you have an ST module, also containing the following instructions.

Let us also assume that you want to know the value of e, d, and f, just before the in-
struction

f := f+ SHR(d, 16#04)

is executed. To do so, move the cursor to line 6.

Then you can click the Set/Remove trigger button in the Debug toolbar

or you can press the F9 key.

In both cases, a green arrowhead appears next to the line number, and the related trigger
window pops up.

Not all the ST instructions support triggers. For example, it is not possible to place a trig-
ger on a line containing a terminator such as END_IF, END_FOR, END_WHILE, etc..

8.5.2.9 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN ST MODULE

In order to watch the value of a variable, you need to add it to the trigger window. To
this purpose, select a variable, by double clicking it, and then drag it into the Variables
window, that is the the lower white box in the pop-up window. The variable name now
appears in the Symbol column.

126 user manual

The same procedure applies to all the variables you wish to inspect.

8.5.2.10 REMOVING A VARIABLE FROM THE TRIGGER WINDOW

If you want a variable not to be displayed any more in the trigger window, select it by
clicking its name once, then press the Del key.

8.5.2.11 USING CONTROLS

This paragraph deals with trigger windows controls, which allow you to better supervise
the working of this debugging tool to get more information on the code under scope. The
main	purpose	of	trigger	window	controls	is	to	let	you	define	more	limiting	conditions,	so	
that variables in Variables window are refreshed when the processor reaches the trig-
ger	location	and	these	conditions	are	satisfied.	If	you	do	not	use	controls,	variables	are	
refreshed every single time the processor reaches the relative trigger.

Enabling controls

When you set a trigger, all the elements in the Control window look disabled.

As a matter of fact, you cannot access any of the controls, except the Accumulator dis-
play, until at least one variable is dragged into the Debug window. When this happens
triggering automatically starts and the Controls window changes as follows.

Triggering can be started/stopped with the apposite button.

 user manual 127

Fixing the number of refresh

If	you	want	the	values	to	be	refreshed	the	first	time	the	window	is	triggered,	select	None,
and press the single step button, otherwise set the counter to 1 and select For.

If	you	want	the	values	to	be	refreshed	the	first	X times the window is triggered, set the
counter to X and select For.

If you want the values to be refreshed after Y times the window is triggered, set the coun-
ter to Y and select After.

Triggers and conditions settings become the actual settings when the triggering is (re)
started.

Watching the accumulator

As stated in the Refresh of values section (see 9.5.1.5), when you insert a trigger on an
instruction line, you establish that the variables in the relative debugging window will be
updated every time the processor reaches that location, before the instruction itself is ex-
ecuted. In some cases, for example when a trigger is placed before a ST statement, it can
be useful to know the value of the accumulator. This allows you to forecast the outcome
of the instruction that will be executed after all the variables in the trigger window have
been updated. To add the accumulator to the trigger window, click on the Accumulator
display button.

Defining a condition

This control enables users to set a condition on the occurrences of a trigger. By default,
this condition is set to TRUE, and the values in the debug window are refreshed every time
the window manager is triggered.

If you want to put a restriction on the refreshment mechanism, you can specify a condi-
tion by clicking on the apposite button.

When you do so, a text window pops up, where you can write the IL code that sets the
condition.

Once	you	have	finished	writing	the	condition	code,	click	the	OK button to install it, or press
the Esc button to cancel. If you choose to install it, the values in the debug window are
refreshed	every	time	the	window	manager	is	triggered	and	the	user-defined	condition	is	
true.

A	simplified	expression	of	the	condition	now	appears	in	the	control.

128 user manual

To modify it, press again the above mentioned button.

The text window appears, containing the text you originally wrote, which you can now
edit.

To	completely	remove	a	user-defined	condition,	delete	the	whole	IL	code	in	the	text	win-
dow, then click OK.

After the execution of the condition code, the accumulator must be of type Boolean (TRUE
or FALSE), otherwise a compiler error occurs.

Only global variables and dragged-in variables can be used in the condition code. Namely,
all variables local to the module where the trigger was originally inserted are out of scope,
if they have not been dragged into the debug window. No new variables can be declared
in the condition window.

8.5.2.12 CLOSING A TRIGGER WINDOW AND REMOVING A TRIGGER

This	web	page	deals	with	what	you	can	do	when	you	finish	a	debug	session	with	a	trigger	
window. You can choose between the following options.

 - Closing the trigger window.

 - Removing the trigger.

 - Removing all the triggers.

Notice that the actions listed above produce very different results.

Closing the trigger window

If	you	have	finished	watching	a	set	of	variables	by	means	of	a	trigger	window,	you	may	
want to close the Debug window, without removing the trigger. If you click the button in
the top right-hand corner, you just hide the interface window, while the window manager
and the relative trigger keep working.

As a matter of fact, if later you want to resume debugging with a trigger window that you
previously hid, you just need to open the Trigger list window, to select the record
referred to that trigger window, and to click the Open button.

 user manual 129

The interface window appears with value of variables and trigger counter updated, as if it
had not been closed.

Removing a trigger

If you choose this option, you completely remove the code both of the window manager
and of its trigger. To this purpose, just open the Trigger list window, select the record
referred to the trigger window you want to eliminate, and click the Remove button.

Alternatively, you can move the cursor to the line (if the module is in IL or ST), or click
the block (if the module is in FBD or LD) where you placed the trigger. Now press the Set/
Remove trigger button in the Debug toolbar.

Removing all the triggers

Alternatively, you can remove all the existing triggers at once, regardless for which re-
cords are selected, by clicking on the Remove all button.

8.6 GRAPHIC TRIGGERS

8.6.1 GRAPHIC TRIGGER WINDOW

The graphic trigger window tool allows you to select a set of variables and to have them
sampled synchronously and to have their curve displayed in a special pop-up window.

Sampling of the dragged-in variables occurs every time the processor reaches the position
(i.e. the instruction - if IL, ST - or the block - if FBD, LD) where you placed the trigger.

8.6.1.1 PRE-CONDITIONS TO OPEN A GRAPHIC TRIGGER WINDOW

No need for special compilation

All the Application debugging tools operate at run-time. Thus, unlike other programming
languages such as C++, the compiler does not need to be told whether or not to support
trigger windows: given a PLC code, the compiler’s output is unique, and there is no dis-
tinction between debug and release version.

Memory availability

A graphic trigger window takes all the free memory space in the application code sector.
Obviously,	in	order	to	start	up	a	trigger	window,	it	is	necessary	that	a	sufficient	amount	
of memory is available, otherwise an error message appears.

130 user manual

8.6.1.2 GRAPHIC TRIGGER WINDOW INTERFACE

Setting a graphic trigger causes a pop-up window to appear, which is called Interface
window. This is the main interface for accessing the debugging functions that the graphic
trigger window makes available. It consists of several elements, as shown below.

The caption bar

The Caption bar at the top of the pop-up window shows information on the location of
the trigger which causes the variables listed in the Variables window to be sampled.

The text in the caption has the following format:

ModuleName#Location

Where

ModuleName Name of program, function, or function block where the trigger was
placed.

Location

Exact location of the trigger, within module ModuleName.

If ModuleName is in IL, ST, Location has the format:

N1

Otherwise, if ModuleName is in FBD, LD, it becomes:

N2$BT:BID

N1 = instruction line number

N2 = network number

BT = block type (operand, function, function block, etc.)

BID	=	block	identifier

The Controls bar

This dialog box allows you to better control the working of the graphic trigger window. A
detailed description of the function of each control is given in the Graphic trigger window
controls section (see 9.6.1.5).

The Chart area

The Chart area includes six items:

1) Plot: area containing the actual plot of the curve of the dragged-in variables.

 user manual 131

2) Samples to acquire: number of samples to be collected by the graphic trigger window
manager.

3) Horizontal cursor: cursor identifying a horizontal line. The value of each variable at
the intersection with this line is reported in the column horz cursor.

4) Blue cursor: cursor identifying a vertical line. The value of each variable at the inter-
section with this line is reported in the column left cursor.

5) Red cursor: same as blue cursor.

6) Scroll bar: if the scale of the x-axis is too large to display all the samples in the Plot
area, the scroll bar allows you to slide back and forth along the horizontal axis.

The Variables window

This lower section of the Debug window is a table consisting of a row for each variable
that	you	have	dragged	in.	Every	row	has	several	fields,	which	are	described	in	detail	in	
the Drag and drop information section.

8.6.1.3 GRAPHIC TRIGGER WINDOW:DRAG AND DROP INFORMATION

To watch a variable, you need to copy it to the lower section of the Debug window.

This lower section of the Debug window is a table consisting of a row for each variable that
you	dragged	in.	Each	row	has	several	fields,	as	shown	in	the	picture	below.

Field Description

Track Name of the variable.

Um Unit of measurement.

Min value Minimum value in the record set.

Max value Maximum value in the record set.

132 user manual

Field Description

Cur value Current value of the variable.

v/div
How many engineering units are represented by a unit
of the y-axis (i.e. the space between two ticks on the
vertical axis).

Blue cursor Value of the variable at the intersection with the line
identified	by	the	blue	cursor.

Red cursor Value of the variable at the intersection with the line
identified	by	the	red	cursor.

Horz cursor Value of the variable at the intersection with the line
identified	by	the	horizontal	cursor.

Note that you can drag into the graphic trigger window only variables local to the module
where you placed the relative trigger, or global variables, or parameters. You cannot drag
variables declared in another program, or function, or function block.

8.6.1.4 SAMPLING OF VARIABLES

Let us consider the following example.

The value of the variables is sampled every time the window manager is triggered, that is
every time the processor executes the instruction marked by the green arrowhead. How-
ever, you can set controls in order to have variables sampled when triggers also satisfy
further	limiting	conditions	that	you	define.	

The value of the variables in the column Track is read from memory just before the
marked instruction and immediately after the previous instruction.

8.6.1.5 GRAPHIC TRIGGER WINDOW CONTROLS

This paragraph deals with controls of the Graphic trigger window. Controls allow you
to specify in detail when Application is supposed to sample the variables added to the
Variables window.

Graphic	trigger	window	controls	act	in	a	well-defined	way	on	the	behavior	of	the	window,	
regardless for the type of the module (IL, ST, FBD or LD) where the related trigger has
been inserted.

Window controls are made accessible to users through the Controls bar of the debug
window.

Button Command Description

Start graphic
trace

When you push this button down, you let
acquisition start. Now, if acquisition is running
and you release this button, you stop the sample
collection process, and you reset all the data you
have acquired so far.

Enable/Disable
cursors

The two cursors (red cursor, blue cursor) may be
seen and moved along their axis as long as this
button is pressed. Release this button if you want
to hide simultaneously all the cursors.

Show samples
This control is used to put in evidence the exact
point in which the variables are triggered at each
sample.

 user manual 133

Button Command Description

Split variables

When pressed, this control splits the y-axis into
as many segments as the dragged-in variables,
so that the diagram of each variable is drawn in a
separate band.

Show all values
It	is	used	to	fill	in	the	graph	window	all	the	values	
sampled for the selected variables in the current
recordset.

Horizontal Zoom In
and Zoom Out

Zooming in is an operation that makes the curves
in the Chart area appear larger on the screen,
so that greater detail may be viewed. Zooming
out is an operation that makes the curves appear
smaller on the screen, so that it may be viewed
in its entirety. Horizontal zoom acts only on the
horizontal axis.

Horizontal show
all

This control is used to horizontally center record
set	samples.	So	first	sample	will	be	placed	on	the	
left margin, and last will be placed on the right
margin of the graphic window.

Vertical Zoom In
and Zoom Out Vertical Zoom acts only on the vertical axis.

Vertical show all

This control is used to vertically center record set
samples. So max value sample will be placed near
top margin and low value sample will be placed on
the bottom margin of the graphic window.

Graphic trigger
window properties

Pushing this button causes a tabs dialog box
to appear, which allows you to set general user
options affecting the action of the graphic trigger
window. Since the options you can set are quite
numerous, they are dealt with in a section apart.
Click here to access this section.

Print chart Push this button to print both the Chart area and
the Variables window.

Save chart Press this button to save the chart.

Trigger counter

This read-only control displays two numbers with the following format: X/Y.

X indicates how many times the debug window manager has been triggered, since the
graphic trigger was installed.

Y represents the number of samples the graphic window has to collect before stopping
data acquisition and drawing the curves.

Trigger state

This read-only control shows you the state of the Debug window. It can assume the fol-
lowing values.

134 user manual

No sample(s) taken, as the trigger has not occurred during the
current task execution.

Sample(s) collected, as the trigger has occurred during the
current task execution.

The trigger counter indicates that a number of samples
has been collected satisfying the user request or memory
constraints, thus the acquisition process is stopped.

Communication with target interrupted, the state of the trigger
window cannot be determined.

8.6.1.6 GRAPHIC TRIGGER WINDOW OPTIONS

In order to open the options tab, you must click the Properties button in the Controls
bar. When you do this, the following dialog box appears.

General

Control

Control Description

Show grid Tick this control to display a grid in the Chart area
background.

Show time
bar

The scroll bar at the bottom of the Chart area is
available as long as this box is checked.

Show tracks
list

The Variables window is shown as long as this box
is checked, otherwise the Chart area extends to the
bottom of the graphic trigger window.

Values

Control Description

Horizontal
scale Number of samples per unit of the x-axis. By unit of the

x-axis the space is meant between two vertical lines of
the background grid.

 user manual 135

Control Description

Buffer size

Number of samples to acquire. When you open the
option tab, after having dragged-in all the variables you
want to watch, you can read a default number in this
field,	representing	the	maximum	number	of	samples	you	
can collect for each variable. You can therefore type a
number which is less or equal to the default one.

Tracks

This	tab	allows	you	to	define	some	graphic	properties	of	the	plot	of	each	variable.	To	select	
a variable, click its name in the Track list column.

Control Description

Unit Unit of measurement, printed in the table of the
Variables window.

Value/div
Δ	value	per	unit	of	the	y-axis.	By	unit	of	the	y-axis	is	
meant the space between two horizontal lines of the
background grid.

Hide Check	this	flag	to	hide	selected	track	on	the	graph.

Push Apply to make your changes effective, or push OK to apply your changes and to
close the options tab.

User-defined condition

If	you	define	a	condition	by	using	this	control,	the	sampling	process	does	not	start	until	
that	condition	is	satisfied.	Note	that,	unlike	trigger	windows,	once	data	acquisition	begins,	
samples are taken every time the window manager is triggered, regardless of the user
condition being still true or not.

After	you	enter	a	condition,	the	control	displays	its	simplified	expression.

8.6.2 DEBUGGING WITH THE GRAPHIC TRIGGER WINDOW

The graphic trigger window tool allows you to select a set of variables and to have them
sampled synchronously and their curve displayed in a special pop-up window.

8.6.2.1 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN IL MODULE

Let us assume that you have an IL module, also containing the following instructions.

136 user manual

Let us also assume that you want to know the value of b, d, and k, just before the ST k
instruction is executed. To do so, move the cursor to line 12.

Then click the Graphic trace button in the Debug toolbar.

A green arrowhead appears next to the line number, and the graphic trigger window pops
up.

Not all the IL instructions support triggers. For example, it is not possible to place a trig-
ger at the beginning of a line containing a JMP statement.

8.6.2.2 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN IL MODULE

In order to get the diagram of a variable plotted, you need to add it to the graphic trigger
window. To this purpose, select a variable, by double clicking it, and then drag it into the
Variables window. The variable now appears in the Track column.

The same procedure applies to all the variables you wish to inspect.

Once	the	first	variable	is	dropped	into	a	graphic	trace,	the	Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

 user manual 137

8.6.2.3 OPENING THE GRAPHIC TRIGGER WINDOW FORM AN FBD MODULE

Let us assume that you have an FBD module, also containing the following instructions.

Let us also assume that you want to know the values of c, d, and k, just before the ST
k instruction is executed.

Provided that you can never place a trigger in a block representing a variable such as

you	must	select	the	first	available	block	preceding	the	selected	variable.	In	the	example	
of	the	above	figure,	you	must	move	the	cursor	to	network	3,	and	click	the	ADD block.

Now click the Graphic trace button in the Debug toolbar.

This causes the colour of the selected block to turn to green, a white circle with the trig-
ger ID number inside to appear in the middle of the block, and the related trigger window
to pop up.

138 user manual

When preprocessing the FBD source code, compiler translates it into IL instructions. The
ADD instruction in network 3 is expanded to:

LD k

ADD 1

ST k

When	you	add	a	trigger	to	an	FBD	block,	you	actually	place	the	trigger	before	the	first	
statement of its IL equivalent code.

8.6.2.4 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN FBD
MODULE

In order to watch the diagram of a variable, you need to add it to the trigger window. Let
us assume that you want to see the plot of the variable k of	the	FBD	code	in	the	figure	
below.

To this purpose, press the Watch button in the FBD bar.

The cursor will become as follows.

Now you can click the block representing the variable you wish to be shown in the graphic
trigger window.

In the example we are considering, click the button block.

A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

In order to plot the curve of variable k, select Graphic Trace in the Debug windows col-
umn, then press OK. The name of the variable is now printed in the Track column.

 user manual 139

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press the Normal cursor button, in order to restore the original cursor.

Once	the	first	variable	is	dropped	into	a	graphic	trace,	the	Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

8.6.2.5 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN LD MODULE

Let us assume that you have an LD module, also containing the following instructions.

You can place a trigger on a block such as follows.

In this case, the same rules apply as to insert the graphic trigger in an FBD module on a
contact

140 user manual

or coil

In this case, follow the instructions. Let us also assume that you want to know the value
of some variables every time the processor reaches network number 1.

Click one of the items making up network nr. 1, then press the Graphic trace button in
the Debug toolbar.

This causes the grey raised button containing the network number to turn to green, a
white circle with a number inside to appear in the middle of the button, and the graphic
trigger window to pop up.

Note that unlike the other languages supported by Application, LD does not allow you to
insert a trigger before a single contact or coil, as it lets you select only an entire network.
Thus the variables in the Graphic trigger window will be sampled every time the pro-
cessor reaches the beginning of the selected network.

8.6.2.6 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN LD
MODULE

In order to watch the diagram of a variable, you need to add it to the Graphic trigger
window. Let us assume that you want to see the plot of the variable b in the LD code
represented	in	the	figure	below.

To this purpose, press the Watch button in the FBD bar.

The cursor will become as follows.

Now you can click the item representing the variable you wish to be shown in the Graphic
trigger window.

A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

In order to plot the curve of variable b, select Graphic trace in the Debug windows col-
umn, then press OK. The name of the variable is now printed in the Track column.

 user manual 141

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press again the Normal cursor button, so as to restore the original shape
of the cursor.

Once	the	first	variable	is	dropped	into	a	graphic	trace,	the	Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

8.6.2.7 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN ST MODULE

Let us assume that you have an ST module, also containing the following instructions.

Let us also assume that you want to know the value of e, d, and f, just before the in-
struction

f := f+ SHR(d, 16#04)

is executed. To do so, move the cursor to line 6.

Then click the Graphic trace button in the Debug toolbar.

A green arrowhead appears next to the line number, and the Graphic trigger window
pops up.

142 user manual

Not all the ST instructions support triggers. For example, it is not possible to place a trig-
ger on a line containing a terminator such as END_IF, END_FOR, END_WHILE, etc.

8.6.2.8 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN ST
MODULE

In order to get the diagram of a variable plotted, you need to add it to the Graphic trig-
ger window. To this purpose, select a variable, by double clicking it, and then drag it into
the Variables window, that is the lower white box in the pop-up window. The variable
now appears in the Track column.

The same procedure applies to all the variables you wish to inspect.

Once	the	first	variable	is	dropped	into	a	graphic	trace,	the	Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

8.6.2.9 REMOVING A VARIABLE FROM THE GRAPHIC TRIGGER WINDOW

If you want to remove a variable from the Graphic trigger window, select it by clicking its
name once, then press the Del key.

8.6.2.10 USING CONTROLS

This paragraph deals with graphic trigger window controls, which allow you to better
supervise the working of this debugging tool, so as to get more information on the code
under scope.

Enabling controls

When you set a trigger, all the elements in the Control bar are enabled. You can start
data acquisition by clicking the Start graphic trace acquisition button.

 user manual 143

If	you	defined	a	user	condition,	which	is	currently	false,	data	acquisition	does	not	start,	
even though you press the apposite button.

On the contrary, once the condition becomes true, data acquisition starts and continues
until the Start graphic trace acquisition button is released, regardless for the con-
dition being or not still true.

if you release the Start graphic trace acquisition button before all the required
samples have been acquired, the acquisition process stops and all the collected data get
lost.

Defining a condition

This control enables users to set a condition on when to start acquisition. By default, this
condition is set to true, and acquisition begins as soon as you press the Enable/Disable
acquisition button. From that moment on, the value of the variables in the Debug win-
dow is sampled every time the trigger occurs.

In order to specify a condition, open the Condition tab of the Options dialog box, then
press the relevant button.

A text window pops up, where you can write the IL code that sets the condition.

Once	you	have	finished	writing	the	condition	code,	click	the	OK button to install it, or press
the Esc button to cancel. The collection of samples will not start until the Start graphic
trace acquisition button	is	pressed	and	the	user-defined	condition	is	true.	A	simplified	
expression of the condition now appears in the control.

To modify it, press again the relevant button.

The text window appears, containing the text you originally wrote, which you can now
edit.

To	completely	remove	a	user-defined	condition,	press	again	on	the	above	mentioned	but-
ton, delete the whole IL code in the text window, then click OK.

After the execution of the condition code, the accumulator must be of type Boolean (TRUE
or FALSE), otherwise a compiler error occurs.

144 user manual

Only global variables and dragged-in variables can be used in the condition code. Namely,
all variables local to the module where the trigger was originally inserted are out of scope,
if they have not been dragged into the Debug window. Also, no new variables can be de-
clared in the condition window.

Setting the scale of axes

 - x-axis

When acquisition is completed, Application plots the curve of the dragged-in variables ad-
justing	the	x-axis	so	that	all	the	data	fit	in	the	the	Chart window. If you want to apply a
different scale, open the General tab of the Graph properties dialog box, type a number
in	the	horizontal	scale	edit	box,	then	confirm	by	clicking	Apply.

 - y-axis

You can change the scale of the plot of each variable through the Tracks list tab of the
Graph properties dialog box. Otherwise, if you do not need to specify exactly a scale,
you can use the Zoom In and Zoom Out controls.

8.6.2.11 CLOSING THE GRAPHIC TRIGGER WINDOW AND REMOVING THE TRIGGER

At the end of a debug session with the graphic trigger window you can choose between
the following options:

 - Closing the Graphic trigger window.

 - Removing the trigger.

 - Removing all the triggers.

Closing the graphic trigger window

If	you	have	finished	plotting	the	diagram	of	a	set	of	variables	by	means	of	the	Graphic
trigger window, you may want to close the Debug window without removing the trigger.
If you click the button in the top right-hand corner, you just hide the Interface window,
while the window manager and the relative trigger keep working.

As a matter of fact, if later you want to restore the Graphic trigger window that you
previously hid:

 - open the Trigger list window;

 - select the record (having type G);

 - click the Open button.

The Interface window appears with the trigger counter properly updated, as if it had
never been closed.

Removing the trigger

If you choose this option, you completely remove the code both of the window manager
and of its trigger. To this purpose:

 - open the Trigger list window;

 - select the record (having type G);

 - click the Remove button.

Alternatively, you can move the cursor to the line (if the module is in IL), or click the block
(if the module is in FBD) where you placed the trigger. Now press the Graphic trace
button in the Debug toolbar.

Removing all the triggers

Alternatively, you can remove all the existing triggers at once, regardless for which re-
cords are selected, by clicking on the Remove all triggers button.

 user manual 145

9. APPLICATION REFERENCE

9.1 MENUS REFERENCE

In the following tables you can see the list of all Application’s commands. However, since
Application	has	a	multi-document	interface	(MDI),	you	may	find	some	disabled	commands	
or even some unavailable menus, depending on what kind of document is currently active.

9.1.1 FILE MENU

Command Description

New project Lets you create a new Application project.

Open project Lets you open an existing Application project.

View project Opens an existing Application project in read-only mode.

Save project

Same as Save all, but it saves also the ppj file.	Note	that,	
since	all	modifications	to	a	Application	project	are	first	applied	
in memory only, you need to release the Save project
command to make them permanent.

Save project As Asks you to specify a new project name and a new location,
and	saves	there	a	copy	of	all	the	files	of	the	project.

Close project Asks you whether you want to keep unsaved changes, then
closes the active project.

New text file Opens	a	blank	new	generic	text	file.

Open file
Opens	an	existing	file,	whatever	its	extension.	The	file	is	
displayed	in	the	text	editor.	Anyway,	if	you	open	a	project	file,	
you actually open the Application project it refers to.

Save Lets you save the document in the currently active window.

Close Closes the document in the currently active window.

Options Opens the Programming environment options dialog box.

Print Displays a dialog box, which lets you set printing options and
print the document in the currently active window.

Print preview
Shows a picture on your video, that reproduces faithfully
what you get if you print the document in the currently active
window.

Print project Prints all the documents making up the project.

Printer setup Opens the Printer setup dialog box.

..recent.. Lists a set of ppj file	of	recently	opened	Application	projects.	
Click one of them, if you want to open the relevant project.

Exit Closes Application.

146 user manual

9.1.2 EDIT MENU

Command Description

Undo Cancels last change made in the document.

Redo Restores the last change canceled by Undo.

Cut Removes the selected items from the active document and
stores them in a system buffer.

Copy Copies the selected items to a system buffer.

Paste Pastes in the active document the contents of the system
buffer.

Delete Deletes the selected item.

Delete line Deletes the whole source code line.

Find in project Opens the Find in project dialog box.

Bookmarks Lets you set, remove, and move between bookmarks.

Go to line Allows	you	to	quickly	move	to	a	specific	line	in	the	source	
code editor.

Find
Asks	you	to	type	a	string	and	searches	for	its	first	instance	
within the active document from the current location of the
cursor.

Find next Iterates the search previously performed by the Find
command.

Replace Allows you to automatically replace one or all the instances of
a string with another string.

Insert/Move mode Editing mode which allows you to insert and move blocks.

Connection mode Editing mode which allows you to draw logical wires to
connect pins.

Watch mode Editing mode which allows you to add variables to any
debugging tool.

9.1.3 VIEW MENU

Command Description

Main Toolbar If checked, displays the Main toolbar, otherwise hides it.

Status bar If checked, displays the Status bar, otherwise hides it.

Debug bar If checked, displays the Debug bar, otherwise hides it.

FBD bar If checked, displays the FBD toolbar, otherwise hides it.

LD bar If checked, displays the LD toolbar, otherwise hides it.

SFC bar If checked, displays the SFC bar, otherwise hides it.

Project bar If checked, displays the Project bar, otherwise hides it.

Network If checked, displays the Network toolbar, otherwise hides it.

Document bar If checked, displays the Document bar, otherwise hides it.

Force I/O bar If checked, displays the Force I/O bar, otherwise hides it.

Workspace If checked, displays the Workspace (also called Project
window), otherwise hides it.

Library If checked, displays the Libraries window, otherwise hides
it.

 user manual 147

Command Description

Output If checked, displays the Output window, otherwise hides it.

Async Graphic
window

If checked, displays the Oscilloscope window, otherwise
hides it.

Watch window If checked, displays the Watch window, otherwise hides it.

Full screen
Expands the currently active document window to full screen.
Press Esc to restore the normal appearance of the Application
interface.

Grid If checked, displays a dotted grid in a graphical source code
editor background.

9.1.4 PROJECT MENU

Command Description

New object Opens another menu which lets you create a new POU or
declare a new global variable.

Copy object Copies the object currently selected in the Workspace.

Paste object Pastes the previously copied object.

Duplicate object Duplicates the object currently selected in the Workspace, and
asks you to type the name of the copy.

Delete object
Deletes the currently selected object. As explained above, you
need to release the Save project command	to	definitively	
erase a document from your project.

PLC object
properties

Shows properties and description of the object currently
selected in the Workspace.

Object browser Opens the Oject browser, which lets you navigate between
objects.

Compile Asks you whether to save unsaved changes, then launches
the Application compiler.

Recompile all Recompiles the project.

Generate
redistributable
source module

Generates	an	RSM	file.

Import object
from library Lets you import a Application object from a library.

Export object to
library Lets you export a Application object to a library.

Library manager Opens the Library manager.

Macros Opens another menu which lets you create/delete macros.

Select target Lets you change the target.

Options... Lets you specify the project options.

148 user manual

9.1.5 DEBUG MENU

Command Description

Add symbol to
watch Adds a symbol to the Watch window.

Insert new item
into watch Inserts a new item into the Watch window.

Add symbol to a
debug window Adds a symbol to a debug window.

Insert new item
into a debug

window
Inserts a new item into a debug window.

Quick watch Opens a dialog with the actual value of the variable.

Run Restarts program after a breakpoint is hit.

Add/Remove
breakpoint Adds/removes a breakpoint.

Remove all
breakpoints Removes all the active breakpoints.

Breakpoint list Lists all the active breakpoints.

Add/remove text
trigger Adds/removes a text trigger.

Add/remove
graphic trigger Adds/removes a graphic trigger.

Remove all
triggers Removes all the active triggers.

Trigger list Lists all the active triggers.

Debug mode Switches the debug mode on.

Live debug mode Switches the live debug mode on.

9.1.6 COMMUNICATION MENU

Command Description

Download code
Application checks if any changes have been applied since last
compilation, and compiles the project if this is the case. Then,
it sends the target the compiled code.

Connect Application tries to establish a connection to the target.

Settings Lets you set the properties of the connection to the target.

Upload IMG file If the target device is connected, lets you upload the img file.

Start/Stop
watch value Freezes/resumes refreshment of the Watch window.

 user manual 149

9.1.7 SCHEME MENU

Command Description

Network> New> Top Adds a blank network at the top of the active LD/FBD
document.

Network> New>
Bottom

Adds a blank network at the bottom of the active LD/FBD
document.

Network> New>
Before

Adds a blank network before the selected network in the
active LD/FBD document.

Network >New >
After

Adds a blank network after the selected network in the active
LD/FBD document.

Network >Label Assigns a label to the selected network, so that it can be
indicated as the target of a jump instruction.

Object >New Lets you insert a new object into the selected network.

Object >
Instance name

Lets you assign a name to an instance of a function block,
that you have previously selected by clicking it once.

Object >
Open source

Opens the editor by which the selected object was created,
and displays the relevant source code:

 - if the object is a program, or a function, or a function block,
this	command	opens	its	source	code;

 - if the object is a variable or a parameter, this command
opens	the	corresponding	variable	editor;

 - if the object is a standard function or an operator, this
command opens nothing.

Auto connect
If checked, enables autoconnection, that is automatic creation
of a logical wire linking the pins of two blocks, when they are
brought close.

Delete invalid
connection

Removes all invalid connections, represented by a red line in
the active scheme.

Increment pins

By default some operators like ADD, MUL, etc. have two input
pins, however you may occasionally need to perform such
operations on more than two operands. This command allows
you to add as many input pins as to reach the required
number of operands.

Decrement pins Undoes the Increment pins command.

Enable EN/ENO
pins

Adds the enable in/enable out pins to the selected block.
The code implementing the selected block will be executed
only when the enable in signal is true. The enable out
signal simply repeats the value of enable in, allowing you
either to enable or to disable a set of blocks in cascade.

Object properties

Shows some properties of the selected block:

 - if the object is a function or a function block, displays a
table	with	the	input	and	output	variables;

 - if the object is a variable or a parameter, opens a dialog box
which lets you change the name and the logical direction
(input/output).

150 user manual

9.1.8 VARIABLES MENU

Command Description

Insert
Adds a new row to the table in the currently active editor (if
PLC	editor,	to	the	table	of	local	variables;	if	parameters	editor,	
to the table of parameters, etc.).

Delete Deletes the variable in the selected row of the currently active
table.

Group Opens a dialog box which lets you create and delete groups of
variables.

9.1.9 DEFINITIONS MENU

Command Description

Insert> Enum Creates a new enumerated data type.

Insert> Structure Creates a new structured data type.

Insert> Subrange Creates a new subrange data type.

Insert> Typedef Creates a new typedef data type.

9.1.10 WINDOW MENU

Command Description

Cascade Displaces all open documents in cascade, so that they
completely overlap except for the caption.

Tile

The PLC editors area is split into frames having the same
dimensions, depending on the number of currently open
documents. Each frame is automatically assigned to one of
such documents.

Arrange Icons Displaces the icons of the minimized documents in the bottom
left-hand corner of the PLC editors area.

Close all Closes all open documents.

9.1.11 HELP MENU

Command Description

Index Lists all the Help keywords and opens the related topic.

Context Context-sensitive help. Opens the topic related to the
currently active window.

About... Information on producers and version.

 user manual 151

9.2 TOOLBARS REFERENCE

In the following tables you can see the list of all Application’s toolbars. The buttons making
up each toolbar are always the same, whatever the currently active document. However,
some of them may produce no effect, if there is no logical relation to the active document.

9.2.1 MAIN TOOLBAR

Button Command Description

New project Creates a new project.

Open project Opens an existing project.

Save project

Saves all documents in the currently open
windows,	including	the	project	file.	Note	that,	
since	all	modifications	to	a	Application	project	are	
first	applied	in	memory	only,	you	need	to	release	
the Save project command to make them
permanent.

Undo Cancels last change made in the document.

Redo Restores the last change canceled by Undo.

Cut Removes the selected items from the active
document and stores them in a system buffer.

Copy Copies the selected items to a system buffer.

Paste Pastes in the active document the contents of the
system buffer.

Find
Asks	you	to	type	a	string	and	searches	for	its	first	
instance within the active document from the
current location of the cursor.

Find next Iterates the search previously performed by the
Find command.

Find in project Opens the Find in project dialog box.

Print
Displays a dialog box, which lets you set printing
options and print the document in the currently
active window.

Print preview
Shows a picture on your video, that reproduces
faithfully what you get if you print the document
in the currently active window.

Workspace If pressed, displays the Workspace (also called
Project window), otherwise hides it.

Output If pressed, displays the Output window, otherwise
hides it.

Library If pressed, displays the Libraries window,
otherwise hides it.

152 user manual

Button Command Description

Watch If checked, displays the Watch window, otherwise
hides it.

Async If checked, displays the Oscilloscope window,
otherwise hides it.

Force I/O If pressed, displays the Force I/O window,
otherwise hides it.

PLC run-time
monitor

If checked, displays the PLC run-time window,
otherwise hides it.

Full screen

Expands the currently active document window to
full screen. Press Esc or release the Full screen
button to restore the normal appearance of the
Application interface.

9.2.2 FBD TOOLBAR

Button Command Description

Move/Insert Editing mode which allows you to insert and move
blocks.

Connection Editing mode which allows you to draw logical
wires to connect pins.

Watch Editing mode which allows you to add variables to
any debugging tool.

New block Lets you insert a new block into the selected
network.

Constant Adds a constant to the selected network.

Return Adds a conditional return block to the selected
network.

Jump Adds a conditional jump block to the selected
network.

Comment Adds a comment to the selected network.

Inc pins

By default some operators like ADD, MUL, etc. have
two input pins, however you may occasionally
need to perform such operations on more than
two operands. This command allows you to add as
many input pins as to reach the required number
of operands.

Dec pins Undoes the Inc pins command.

 user manual 153

Button Command Description

EN/ENO

Adds the enable in/enable out pins to the
selected block. The code implementing the
selected block will be executed only when the
enable in signal is true. The enable out signal
simply repeats the value of enable in, allowing
you either to enable or to disable a cascade of
blocks.

FBD properties

Shows some properties of the selected block:

 - if the object is a function or a function block,
displays a table with the input and output
variables;	

 - if the object is a variable or a parameter, opens
a dialog box which lets you change the name
and the logical direction (input/output).

View source

Opens the editor by which the selected object was
created, and displays the relevant source code:

 - if the object is a program, or a function, or a
function block, this command opens the relevant
source	code	editor;	

 - if the object is a variable or a parameter, then
this command opens the corresponding variable
editor;

 - if the object is a standard function or an
operator, this command opens nothing.

9.2.3 LD TOOLBAR

Button Command Description

Insert parallel
Activates the parallel insertion mode. All contacts
inserted in this mode will be inserted in parallel
with the actually selected contacts.

Insert series

Activates the series insertion mode. All contacts
inserted in this mode will be inserted on the
right of the currently selected contact/block. If
a connection is selected, the new contact will be
placed in the middle of the connection segment.

Insert contact Insertion of a new contact according to the
selected mode (series or parallel).

Insert negated
contact

Insertion of a new negative contact according to
the selected mode (series or parallel).

Insert rising
edge contact

Insertion of a new rising edge contact according to
the selected mode (serial or parallel).

Insert falling
edge contact

Insertion of a new falling edge contact according
to the selected mode (serial or parallel).

Insert coil Insertion of a new coil attached to the right power
rail.

154 user manual

Button Command Description

Insert negated
coil

Insertion of a new negative coil attached to the
right power rail.

Insert set
contact

Insertion of a new set coil attached to the right
power rail.

Insert reset coil Insertion of a new reset coil attached to the right
power rail.

Insert rising
edge contact

Insert positive transition-sensing coil to the right
power rail.

Insert falling
edge contact

Insert negative transition-sensing coil to the right
power rail.

9.2.4 SFC TOOLBAR

Button Command Description

New step Inserts a new step into the currently open SFC
document.

Add transition Adds a new transition to the currently open SFC
document.

Add jump Adds a new jump block to the currently open SFC
document.

Add divergent pin Adds a new pin to the selected divergent
transition.

Remove divergent
pin

Removes the rightmost pin from the selected
divergent transition.

Add convergent
pin

Adds a new pin to the selected convergent
transition.

Remove convergent
pin

Removes the rightmost pin from the selected
convergent transition.

Add simultaneous
divergent pin

Adds a new pin to the selected simultaneous
divergent transition.

Remove
simultaneous
divergent pin

Removes the rightmost pin from the selected
simultaneous divergent transition.

Add simultaneous
convergent pin

Adds a new pin to the selected simultaneous
convergent transition.

Remove
simultaneous
convergent pin

Removes the rightmost pin from the selected
simultaneous divergent transition.

Shift pin right

Increases the distance between the two rightmost
pins of the currently selected transition, in order
to let the SFC subnet linked to the pin on the left
contain divergent branches.

 user manual 155

Button Command Description

Shift pin left Decreases the distance between the two rightmost
pins of the currently selected transition.

New action code

Allows the user to create a new action to be
associated with one of the steps. When you press
this button, Application asks you which language
you want to use to implement the new action,
then opens the corresponding editor.

New transition
code

Allows the user to write the code to be associated
with one of the transitions. When you press this
button, Application asks you which language you
want to use to implement the new transition, then
opens the corresponding editor.

9.2.5 PROJECT TOOLBAR

Button Command Description

Library manager Opens the library manager.

Compile Asks you whether to save unsaved changes, then
launches the Application compiler.

Recompile all
Asks you whether to save unsaved changes, then
launches the Application compiler to recompile the
whole project.

Connect to the
target

Application tries to establish a connection to the
target.

Code download

Application checks if any changes have been
applied since last compilation, and compiles the
project if this is the case. Then, it sends the target
the compiled code.

New macro Defines	a	new	macro.

Object browser Opens the object browser, which lets you navigate
between objects.

PLC Obj
properties

Shows properties and description of the object
currently selected in the Workspace.

Insert record

Adds a new row to the table in the currently active
editor	(if	PLC	editor,	to	the	table	of	local	variables;	
if parameters editor, to the table of parameters,
etc.).

Delete record Deletes the variable in the selected row of the
currently active table.

Generate
redistributable
source module

Creates	an	RSM	file	of	the	project.

156 user manual

9.2.6 NETWORK TOOLBAR

Button Command Description

Insert Top Adds a blank network at the top of the active LD/
FBD document.

Insert Bottom Adds a blank network at the bottom of the active
LD/FBD document.

Insert After Adds a blank network after the selected network
in the active LD/FBD document.

Insert Before Adds a blank network before the selected network
in the active LD/FBD document.

View grid If checked, displays a dotted grid in the LD/FBD
editor background.

Auto connect
If checked, enables auto connection, that is
automatic creation of a logical wire linking the pins
of two blocks, when they are brought close.

9.2.7 DEBUG TOOLBAR

Button Command Description

Debug mode Switch on/off the Debug mode.

Live debug mode Switch on/off the Live debug mode.

Set/Remove
trigger

Sets/removes a trigger at the current source code
line.

Graphic trigger Sets/removes a graphic trigger at the current
source code line.

Remove all
triggers Removes all triggers.

Trigger list Lists all triggers.

Set breakpoints Sets a breakpoint at the current source code line.

Remove all
breakpoints Removes all breakpoints.

Run Restarts program execution after a breakpoint is
hit.

Breakpoint list Lists all breakpoints.

Change current
instance

Changes the current function block instance (live
debug mode).

 user manual 157

10. LANGUAGE REFERENCE

All Application languages are IEC 61131-3 standard-compliant.

 - Common elements

 - Instruction list (IL)

 - Function block diagram (FBD)

 - Ladder diagram (LD)

 - Structured text (ST)

 - Sequential Function Chart (SFC).

Moreover, Application implements some extensions:

 - Pointers

 - Macros.

10.1 COMMON ELEMENTS

By common elements textual and graphic elements are means which are common to all
the	programmable	controller	programming	languages	specified	by	IEC	61131-3	standard.
Note: the	definition	and	editing	of	the	most	part	of	the	common	elements	(variables,	structured	

elements,	function	blocks	definitions	etc.)	are	managed	by	Application	through	specific	
editors, forms and tables.
Application does not allow to edit directly the source code related to the above mentioned
common elements.
The	following	paragraphs	are	meant	as	a	language	specification.	To	correctly	manage	
common elements refer to the Application user guide.

10.1.1 BASIC ELEMENTS

10.1.1.1 CHARACTER SET

Textual documents and textual elements of graphic languages are written by using the
standard ASCII character set.

10.1.1.2 COMMENTS

User comments are delimited at the beginning and end by the special character combina-
tions “(*” and “*)”, respectively. Comments are permitted anywhere in the program,
and	they	have	no	syntactic	or	semantic	significance	in	any	of	the	languages	defined	in	
this standard.

The use of nested comments, e.g., (* (* NESTED *) *), is treated as an error.

10.1.2 ELEMENTARY DATA TYPES

A	number	of	elementary	(i.e.	pre-defined)	data	types	are	made	available	by	Application,	
all compliant with IEC 61131-3 standard.

The elementary data types, keyword for each data type, number of bits per data element,
and range of values for each elementary data type are described in the following table.

Keyword Data type Bits Range

BOOL Boolean See note 0 to 1

SINT Short integer 8 -128 to 127

USINT Unsigned short integer 8 0 to 255

INT Integer 16 -32768 to 32767

158 user manual

Keyword Data type Bits Range

UINT Unsigned integer 16 0 to 65536

DINT Double integer 32 -231 to 231-1

UDINT Unsigned long integer 32 0 to 232

BYTE Bit string of length 8 8 —

WORD Bit string of length 16 16 —

DWORD Bit string of length 32 32 —

REAL Real number 32 -3.40E+38 to +3.40E+38

STRING String of characters - -

Note: the actual implementation of the BOOL data type depends on the processor of the target
device, e.g. it is 1 bit long for devices that have a bit-addressable area.

10.1.3 DERIVED DATA TYPES

Derived data types can be declared using the TYPE...END_TYPE construct. These derived
data types can then be used in variable declarations, in addition to the elementary data
types.

Both single-element variables and elements of a multi-element variable, which are de-
clared to be of derived data types, can be used anywhere that a variable of its parent type
can be used.

10.1.3.1 TYPEDEFS

The purpose of typedefs is to assign alternative names to existing types. No difference
between a typedef and its parent type exists, apart from the name.

Typedefs can be declared using the following syntax:

 TYPE

 <enumerated data type name> : <parent type name>;

 END_TYPE

For example, consider the following declaration, mapping the name LONGWORD to the IEC
61131-3 standard type DWORD:

 TYPE

 longword : DWORD;

 END_TYPE

10.1.3.2 ENUMERATED DATA TYPES

An	enumerated	data	type	declaration	specifies	that	the	value	of	any	data	element	of	that	
type	can	only	be	one	of	the	values	given	in	the	associated	list	of	identifiers.	The	enumera-
tion	list	defines	an	ordered	set	of	enumerated	values,	starting	with	the	first	identifier	of	
the list, and ending with the last.

Enumerated data types can be declared using the following syntax:

 TYPE

 <enumerated data type name> : (<enumeration list>);

 END_TYPE

For example, consider the following declaration of two enumerated data types. Note that,
when	no	explicit	value	is	given	to	an	identifier	in	the	enumeration	list,	its	value	equals	the	
value	assigned	to	the	previous	identifier	augmented	by	one.

 user manual 159

 TYPE

 enum1: (

 val1, (* the value of val1 is 0 *)

 val2, (* the value of val1 is 1 *)

 val3 (* the value of val1 is 2 *)

);

 enum2: (

 k := -11,

 i := 0,

 j, (* the value of j is (i + 1) = 1 *)

 l := 5

);

 END_TYPE

Different	enumerated	data	types	may	use	the	same	identifiers	for	enumerated	values.	In	
order	to	be	uniquely	identified	when	used	in	a	particular	context,	enumerated	literals	may	
be	qualified	by	a	prefix	consisting	of	their	associated	data	type	name	and	the	# sign.

10.1.3.3 SUBRANGES

A	subrange	declaration	specifies	that	the	value	of	any	data	element	of	that	type	is	re-
stricted	between	and	including	the	specified	upper	and	lower	limits.

Subranges can be declared using the following syntax:

 TYPE

 <subrange name> : <parent type name> (<lower limit>..<upper limit>
);

 END_TYPE

For a concrete example consider the following declaration:

 TYPE

 int_0_to_100 : INT (0..100);

 END_TYPE

10.1.3.4 STRUCTURES

A STRUCT declaration	specifies	that	data	elements	of	that	type	shall	contain	sub-elements	
of	specified	types	which	can	be	accessed	by	the	specified	names.

Structures can be declared using the following syntax:

 TYPE

 <structured type name> : STRUCT

 <declaration of stucture elements>

 END_STRUCT;

 END_TYPE

For example, consider the following declaration:

 TYPE

 structure1 : STRUCT

 elem1 : USINT;

 elem2 : USINT;

 elem3 : INT;

160 user manual

 elem3 : REAL;

 END_STRUCT;

 END_TYPE

10.1.4 LITERALS

10.1.4.1 NUMERIC LITERALS

External representation of data in the various programmable controller programming lan-
guages consists of numeric literals.

There are two classes of numeric literals: integer literals and real literals. A numeric literal
is	defined	as	a	decimal	number	or	a	based	number.

Decimal literals are represented in conventional decimal notation. Real literals are dis-
tinguished by the presence of a decimal point. An exponent indicates the integer power
of ten by which the preceding number needs to be multiplied to obtain the represented
value. Decimal literals and their exponents can contain a preceding sign (+ or -).

Integer literals can also be represented in base 2, 8 or 16. The base is in decimal notation.
For base 16, an extended set of digits consisting of letters A through F is used, with the
conventional	significance	of	decimal	10	through	15,	respectively.	Based	numbers	do	not	
contain any leading sign (+ or -).

Boolean data are represented by the keywords FALSE or TRUE.

Numerical literal features and examples are shown in the table below.

Feature description Examples

Integer literals -12 0 123 +986

Real literals -12.0 0.0 0.4560

Real literals with exponents
-1.34E-12 or -1.34e-12

1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

Base 2 literals 2#11111111 (256 decimal)
2#11100000 (240 decimal)

Base 8 literals 8#377 (256 decimal)
8#340 (240 decimal)

Base 16 literals 16#FF or 16#ff (256 decimal)
16#E0 or 16#e0 (240 decimal)

Boolean FALSE and TRUE FALSE TRUE

10.1.4.2 CHARACTER STRING LITERALS

A	character	string	literal	is	a	sequence	of	zero	or	more	characters	prefixed	and	terminated	
by the single quote character (').

The three-character combination of the dollar sign ($) followed by two hexadecimal digits
shall be interpreted as the hexadecimal representation of the eight-bit character code.

Example Explanation
'' Empty string (length zero)
'A' String of length one containing the single character A
' ' String of length one containing the space character
'$'' String of length one containing the single quote character

 user manual 161

Example Explanation
'”' String of length one containing the double quote character

'RL' String of length two containing CR and LF characters
'$0A' String of length one containing the LF character

Two-character combinations beginning with the dollar sign shall be interpreted as shown
in the following table when they occur in character strings.

Combination Interpretation when printed
$$ Dollar sign
$' Single quote

$L or $1 Line feed

$N or $n Newline

$P or $p Form feed (page)

$R or $r Carriage return

$T or $t Tab

10.1.5 VARIABLES

10.1.5.1 FOREWORD

Variables provide a means of identifying data objects whose contents may change, e.g.,
data associated with the inputs, outputs, or memory of the programmable controller. A
variable must be declared to be one of the elementary types. Variables can be represent-
ed symbolically, or alternatively in a manner which directly represents the association of
the data element with physical or logical locations in the programmable controller’s input,
output, or memory structure.

Each program organization unit (POU) (i.e., each program, function, or function block)
contains at its beginning at least one declaration part, consisting of one or more structur-
ing elements, which specify the types (and, if necessary, the physical or logical location)
of the variables used in the organization unit. This declaration part has the textual form of
one of the keywords VAR, VAR_INPUT, or VAR_OUTPUT	as	defined	in	the	keywords	section,	
followed in the case of VAR	by	zero	or	one	occurrence	of	the	qualifiers	RETAIN, NON_RE-
TAIN	or	the	qualifier	CONSTANT, and in the case of VAR_INPUT or VAR_OUTPUT by zero or
one	occurrence	of	the	qualifier RETAIN or NON_RETAIN, followed by one or more decla-
rations separated by semicolons and terminated by the keyword END_VAR. A declaration
may also specify an initialization for the declared variable, when a programmable control-
ler supports the declaration by the user of initial values for variables.

10.1.5.2 STRUCTURING ELEMENT

The declaration of a variable must be performed within the following program structuring
element:

KEYWORD [RETAIN] [CONSTANT]

 Declaration 1

 Declaration 2

...

 Declaration N

END_VAR

162 user manual

10.1.5.3 KEYWORDS AND SCOPE

Keyword Variable usage
VAR Internal to organization unit.

VAR_INPUT Externally supplied.

VAR_OUTPUT Supplied by organization unit to external
entities.

VAR_IN_OUT Supplied by external entities, can be
modified	within	organization	unit.

VAR_EXTERNAL Supplied	by	configuration	via	VAR_GLOBAL,
can	be	modified	within	organization	unit.

VAR_GLOBAL Global variable declaration.

The scope (range of validity) of the declarations contained in structuring elements is local
to the program organization unit (POU) in which the declaration part is contained. That
is, the declared variables are accessible to other program organization units except by
explicit argument passing via variables which have been declared as inputs or outputs
of those units. The one exception to this rule is the case of variables which have been
declared to be global. Such variables are only accessible to a program organization unit
via a VAR_EXTERNAL declaration. The type of a variable declared in a VAR_EXTERNAL must
agree with the type declared in the VAR_GLOBAL block.

There is an error if:

 - any program organization unit attempts to modify the value of a variable that has been
declared with the CONSTANT	qualifier;

 - a variable declared as VAR_GLOBAL CONSTANT	in	a	configuration	element	or	program	or-
ganization unit (the “containing element”) is used in a VAR_EXTERNAL declaration (with-
out the CONSTANT	qualifier)	of	any	element	contained	within	the	containing	element.

10.1.5.4 QUALIFIERS

Qualifier Description

CONST

The attribute CONST indicates that the variables within
the structuring elements are constants, i.e. they have
a	constant	value,	which	cannot	be	modified	once	the	
PLC project has been compiled.

RETAIN

The attribute RETAIN indicates that the variables
within the structuring elements are retentive, i.e. they
keep their value even after the target device is reset
or switched off.

10.1.5.5 SINGLE-ELEMENT VARIABLES AND ARRAYS

A single-element variable represents a single data element of either one of the elemen-
tary types or one of the derived data types.

An	array	is	a	collection	of	data	elements	of	the	same	data	type;	in	order	to	access	a	single	
element of the array, a subscript (or index) enclosed in square brackets has to be used.
Subscripts can be either integer literals or single-element variables.

To	easily	represent	data	matrices,	arrays	can	be	multi-dimensional;	in	this	case,	a	com-
posite subscript is required, one index per dimension, separated by commas. The maxi-
mum	number	of	dimensions	allowed	in	the	definition	of	an	array	is	three.

 user manual 163

10.1.5.6 DECLARATION SYNTAX

Variables must be declared within structuring elements, using the following syntax:

VarName1 : Typename1 [:= InitialVal1];

VarName2 AT Location2 : Typename2 [:= InitialVal2];

VarName3 : ARRAY [0..N] OF Typename3;

where:

Keyword Description

VarNameX
Variable	identifier,	consisting	of	a	string	of	
alphanumeric characters, of length 1 or more. It is
used for symbolic representation of variables.

TypenameX Data type of the variable, selected from elementary
data types.

InitialValX The value the variable assumes after reset of the
target.

LocationX See the next paragraph.

N Index of the last element, the array having length
N + 1.

10.1.5.7 LOCATION

Variables	can	be	represented	symbolically,	i.e.	accessed	through	their	identifier,	or	alter-
natively in a manner which directly represents the association of the data element with
physical or logical locations in the programmable controller’s input, output, or memory
structure.

Direct representation of a single-element variable is provided by a special symbol formed
by the concatenation of the percent sign “%”	,	a	location	prefix	and	a	size	prefix,	and	one	
or two unsigned integers, separated by periods (.).

%location.size.index.index

1) location

The	location	prefix	may	be	one	of	the	following:

Location prefix Description
I Input location
Q Output location
M Memory location

2) size

The	size	prefix	may	be	one	of	the	following:

Size prefix Description
X Single bit size
B Byte (8 bits) size
W Word (16 bits) size
D Double word (32 bits) size

164 user manual

3) index.index

This	sequence	of	unsigned	integers,	separated	by	dots,	specifies	the	actual	position	
of	the	variable	in	the	area	specified	by	the	location	prefix.

Example:

Direct representation Description

%MW4.6 Word	starting	from	the	first	byte	of	the	7th
element of memory datablock 4.

%IX0.4 First	bit	of	the	first	byte	of	the	5th element
of input set 0.

Note that the absolute position depends on the size of the datablock elements, not on the
size	prefix.	As	a	matter	of	fact,	%MW4.6 and %MD4.6 begin from the same byte in memory,
but the former points to an area which is 16 bits shorter than the latter.

For advanced users only: if the index consists of one integer only (no dots), then it loses
any reference to datablocks, and it points directly to the byte in memory having the index
value as its absolute address.

Direct representation Description

%MW4.6 Word	starting	from	the	first	byte	of	the	7th
element of datablock 4 in memory.

%MW4 Word starting from byte 4 of memory.

Example

VAR [RETAIN] [CONSTANT]
 XQuote : DINT; Enabling : BOOL := FALSE;
 TorqueCurrent AT %MW4.32 : INT;
 Counters : ARRAY [0 .. 9] OF UINT;
Limits: ARRAY [0..3, 0..9]

END_VAR

 - Variable XQuote is 32 bits long, and it is automatically allocated by the Application com-
piler.

 - Variable Enabling is initialized to FALSE after target reset.

 - Variable TorqueCurrent is allocated in the memory area of the target device, and it
takes	16	bits	starting	from	the	first	byte	of	the	33rd element of datablock 4.

 - Variable Counters is an array of 10 independent variables of type unsigned integer.

10.1.5.8 DECLARING VARIABLES IN APPLICATION

Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies the Local variables editor, the Global variables editor, and the Param-
eters editor, which provide a friendly interface to declare all kinds of variables.

10.1.6 PROGRAM ORGANIZATION UNITS

Program organization units are functions, function blocks, and programs. These program
organization units can be delivered by the manufacturer, or programmed by the user
through	the	means	defined	in	this	part	of	the	standard

Program	organization	units	are	not	recursive;	that	is,	the	invocation	of	a	program	organi-
zation unit cannot cause the invocation of another program organization unit of the same
type.

 user manual 165

10.1.6.1 FUNCTIONS

Introduction

For the purposes of programmable controller programming languages, a function is de-
fined	as	a	program	organization	unit	(POU)	which,	when	executed,	yields	exactly	one	data	
element, which is considered to be the function result.

Functions contain no internal state information, i.e., invocation of a function with the
same arguments (input variables VAR_INPUT and in-out variables VAR_IN_OUT) always
yields the same values (output variables VAR_OUTPUT, in-out variables VAR_IN_OUT and
function result).

Declaration syntax

The declaration of a function must be performed as follows:

FUNCTION FunctionName : RetDataType

VAR_INPUT

 declaration of input variables (see the relevant section)

END_VAR

VAR

 declaration of local variables (see the relevant section)

END_VAR

 Function body

END_FUNCTION

Keyword Description

FunctionName Name of the function being declared.

RetDataType Data type of the value to be returned by the function.

Function body

Specifies	the	operations	to	be	performed	upon	the	
input variables in order to assign values dependent on
the function’s semantics to a variable with the same
name as the function, which represents the function
result. It can be written in any of the languages
supported by Application.

Declaring functions in Application

Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies a friendly interface for using functions.

10.1.6.2 FUNCTION BLOCKS

Introduction

For the purposes of programmable controller programming languages, a function block is
a program organization unit which, when executed, yields one or more values. Multiple,
named instances (copies) of a function block can be created. Each instance has an associ-
ated	identifier	(the	instance	name),	and	a	data	structure	containing	its	input,	output	and	
internal variables. All the values of the output variables and the necessary internal vari-
ables	of	this	data	structure	persist	from	one	execution	of	the	function	block	to	the	next;	
therefore, invocation of a function block with the same arguments (input variables) does
not always yield the same output values.

Only the input and output variables are accessible outside of an instance of a function
block, i.e., the function block’s internal variables are hidden from the user of the function
block.

In order to execute its operations, a function block needs to be invoked by another POU.

166 user manual

Invocation	depends	on	the	specific	language	of	the	module	calling	the	function	block.	

The scope of an instance of a function block is local to the program organization unit in
which it is instantiated.

Declaration syntax

The declaration of a function must be performed as follows:

FUNCTION_BLOCK FunctionBlockName

 VAR_INPUT

 declaration of input variables (see the relevant section)

 END_VAR

 VAR_OUTPUT

 declaration of output variables

 END_VAR

 VAR_EXTERNAL

 declaration of external variables

 END_VAR

 VAR

 declaration of local variables

 END_VAR

 Function block body

END_FUNCTION_BLOCK

Keyword Description

FunctionBlockName Name of the function block being declared (note:
name of the template, not of its instances).

VAR_EXTERNAL .. END_VAR

A function block can access global variables only
if they are listed in a VAR_EXTERNAL structuring
element. Variables passed to the FB via a VAR_
EXTERNAL	construct	can	be	modified	from	within	the	
FB.

Function block body

Specifies	the	operations	to	be	performed	upon	the	
input variables in order to assign values to the
output variables - dependent on the function block’s
semantics and on the value of the internal variables.
It can be written in any of the languages supported
by Application.

Declaring functions in Application

Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies a friendly interface for using function blocks.

10.1.6.3 PROGRAMS

Introduction

A	program	is	defined	in	IEC	61131-1	as	a	“logical	assembly	of	all	the	programming	lan-
guage elements and constructs necessary for the intended signal processing required for
the control of a machine or process by a programmable controller system.

Declaration syntax

 user manual 167

The declaration of a program must be performed as follows:

PROGRAM < program name>

 Declaration of variables (see the relevant section)

 Program body

END_PROGRAM

Keyword Description
Program Name Name of the program being declared.

Program body
Specifies	the	operations	to	be	performed	to	get	the	
intended signal processing. It can be written in any of
the languages supported by Application.

Writing programs in Application

Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies a friendly interface for writing programs.

Standard functions

Definitions	of	functions	common	to	all	programmable	controller	programming	languages	
are given in this paragraph.

A	standard	function	specified	in	this	paragraph	to	be	extensible	(Ext.)	is	allowed	to	have	a	
variable number of inputs, and applies the indicated operation to each input in turn, e.g.,
extensible addition gives as its output the sum of all its inputs.

 - Type conversion functions

 - Numerical functions

 - Bit string functions

 - Selection functions

 - Comparison functions

Type conversion functions

Type conversion functions have the form *_TO_** or TO_**, where “**” is the type of the
input variable, and “**” the type of the output variable, e.g., DINT_TO_INT or TO_REAL.

Name Nr.
operands Ext.

Input
data
types

Output
data
types

Function

DINT_TO_INT 1 No DINT INT
Converts a double integer (32
bits, signed) into a long integer
(16 bits, signed).

INT_TO_DINT 1 No INT DINT
Converts an integer (16 bits,
signed) into a long integer (32
bits, signed).

TO_BOOL 1 No Any BOOL Converts any data type into a
boolean.

TO_SINT 1 No Any SINT Converts any data type into a
short integer (8 bits, signed).

TO_USINT 1 No Any USINT
Converts any data type into an
unsigned short integer (8 bits,
unsigned).

168 user manual

Name Nr.
operands Ext.

Input
data
types

Output
data
types

Function

TO_INT 1 No Any INT Converts any data type into an
integer (16 bits, signed).

TO_UINT 1 No Any UINT
Converts any data type into
an unsigned integer (16 bits,
unsigned).

TO_DINT 1 No Any DINT Converts any data type into a
long integer (32 bits, signed).

TO_UDINT 1 No Any UDINT
Converts any data type into an
unsigned long integer (32 bits,
unsigned).

TO_REAL 1 No Any REAL Converts any data type into a
floating	point	(32	bits,	signed).

Numerical functions

Type conversion functions have the form *_TO_** or TO_**, where “*” is the type of the
input variable, and “**” the type of the output variable, e.g., DINT_TO_INT or TO_REAL.

Name Nr.
operands Ext.

Input
data
types

Output data
types Function

ABS 1 No Any Same as Input Absolute value
SQRT 1 No REAL REAL Square root
LN 1 No REAL REAL Natural logarithm
LOG 1 No REAL REAL Base-10 logarithm
EXP 1 No REAL REAL Natural exponential
SIN 1 No REAL REAL Sine of input in radians
COS 1 No REAL REAL Cosine of input in radians
TAN 1 No REAL REAL Tangent of input in radians
ASIN 1 No REAL REAL Principal arc sine
ACOS 1 No REAL REAL Principal arc cosine
ATAN 1 No REAL REAL Principal arc tangent
ADD 2 Yes Any Same as Input Addition
MUL 2 Yes Any Same as Input Multiplication
SUB 2 No Any Same as Input Subtraction
DIV 2 No Any Same as Input Division
MOD 2 No Any Same as Input Input1 modulo Input2

Bit string functions

Type conversion functions have the form *_TO_** or TO_**, where “*” is the type of the
input variable, and “**” is the type of the output variable, e.g., DINT_TO_INT or TO_REAL.

 user manual 169

Name Nr.
operands Ext.

Input
data
types

Output data
types Function

SHL 2 No
Any
but
BOOL

Same as Input1 Input1 left-shifted of Input2
bits,	zero	filled	on	right.

SHR 2 No
Any
but
BOOL

Same as Input1 Input1 right-shifted of Input2
bits,	zero	filled	on	left.

ROL 2 No
Any
but
BOOL

Same as Input1 Input1 left-shifted of Input2
bits, circular.

ROR 2 No
Any
but
BOOL

REAL Input1 right-shifted of Input2
bits, circular.

AND 2 Yes Any Same as Input1,2
Logical AND if both Input1
and Input2 are BOOL,
otherwise bitwise AND.

OR 2 Yes Any Same as Input1,2
Logical OR if both Input1 and
Input2 are BOOL, otherwise
bitwise OR.

XOR 2 Yes Any Same as Input1,2
Logical XOR if both Input1
and Input2 are BOOL,
otherwise bitwise XOR.

NOT 1 No Any Same as Input Logical NOT if Input is BOOL,
otherwise bitwise NOT.

Selection functions

Type conversion functions have the form *_TO_** or TO_**, where “*” is the type of the
input variable, and “**” the type of the output variable, e.g., DINT_TO_INT or TO_REAL

Name Nr.
operands Ext. Input data

types
Output

data types Function

SEL 3 No
(BOOL, Any but
BOOL, Any but

BOOL)

Same as
selected

Input

Select Input2 if Input1 is
FALSE, Input3 if Input1 is
TRUE.

MAX 3 Yes
(Any but BOOL,

..., Any but
BOOL)

Same as
max Input

Returns the maximum value
among Input1, ..., InputN.

MIN 3 Yes
(Any but BOOL,

..., Any but
BOOL)

Same as
min Input

Returns the minimum value
among Input1, ..., InputN.

LIMIT 3 No
(Any but BOOL,
Any but BOOL,
Any but BOOL)

Same as
Input1,2

Limits Input1 to be equal or
more than Input2, and equal
or less than Input3.

MUX 3 Yes (Any but BOOL,
Any, ..., Any)

Same as
selected

Input

Selects one of Input2, ...,
InputN depending on the
value of Input1, which acts
as a zero-based index.

170 user manual

Comparison functions

Type conversion functions have the form *_TO_** or TO_**, where “*” is the type of the
input variable, and “**” the type of the output variable, e.g., DINT_TO_INT or TO_REAL.

Name Nr.
operands Ext. Input data

types
Output

data types Function

GT 2 Yes
(Any but

BOOL, ..., Any
but BOOL)

BOOL
Returns TRUE if Input1
Input2 ... InputN,
otherwise FALSE.

GE 2 Yes
(Any but

BOOL, ..., Any
but BOOL)

BOOL
Returns TRUE if Input1
= Input2 = ... = InputN,
otherwise FALSE.

EQ 2 Yes
(Any but

BOOL, ..., Any
but BOOL)

BOOL
Returns TRUE if Input1
= Input2 = ... = InputN,
otherwise FALSE.

LE 2 Yes
(Any but

BOOL, ..., Any
but BOOL)

BOOL
Returns TRUE if Input1
Input2 ... InputN, otherwise
FALSE.

LT 2 Yes
(Any but

BOOL, ..., Any
but BOOL)

BOOL
Returns TRUE if Input1
Input2 ... InputN, otherwise
FALSE.

NE 2 No
(Any but

BOOL, Any but
BOOL)

BOOL Returns TRUE if Input1
Input2, otherwise FALSE.

10.2 INSTRUCTION LIST (IL)

This	section	defines	the	semantics	of	the	IL	(Instruction	List)	language.

10.2.1 SYNTAX AND SEMANTICS

10.2.1.1 SYNTAX OF IL INSTRUCTIONS

IL code is composed of a sequence of instructions. Each instruction begins on a new line
and	contains	an	operator	with	optional	modifiers,	and,	if	necessary	for	the	particular	op-
eration, one or more operands separated by commas. Operands can be any of the data
representations for literals and for variables.

The instruction can be preceded by an identifying label followed by a colon (:). Empty
lines can be inserted between instructions.

Example

Let us parse a small piece of code:

START:

 LD %IX1 (* Push button *)

 ANDN %MX5.4 (* Not inhibited *)

 ST %QX2 (* Fan out *)

The	elements	making	up	each	instruction	are	classified	as	follows:

Label Operator
[+ modifier] Operand Comment

START: LD %IX1 (* Push button *)

ANDN %MX5.4 (* Not inhibited *)

 user manual 171

Label Operator
[+ modifier] Operand Comment

ST %QX2 (* Fan out *)

Semantics of IL instructions

 - Accumulator

By accumulator a register is meant containing the value of the currently evaluated re-
sult.

 - Operators

Unless	otherwise	specified,	the	semantics	of	the	operators	is

accumulator := accumulator OP operand

That is, the value of the accumulator is replaced by the result yielded by operation OP
applied to the current value of the accumulator itself, with respect to the operand. For
instance, the instruction “AND %IX1” is interpreted as

accumulator := accumulator AND %IX1

and the instruction “GT %IW10” will have the Boolean result TRUE if the current value
of the accumulator is greater than the value of input word 10, and the Boolean result
FALSE otherwise:

accumulator := accumulator GT %IW10

 - Modifiers

The	modifier	“N” indicates bitwise negation of the operand.

The	left	parenthesis	modifier	“(”	indicates	that	evaluation	of	the	operator	must	be	de-
ferred until a right parenthesis operator “)” is encountered. The form of a parenthesized
sequence of instructions is shown below, referred to the instruction

accumulator := accumulator AND (%MX1.3 OR %MX1.4)

The	modifier	“C” indicates that the associated instruction can be performed only if the
value of the currently evaluated result is Boolean 1 (or Boolean 0 if the operator is com-
bined with the “N”	modifier).

10.2.2 STANDARD OPERATORS

Standard	operators	with	their	allowed	modifiers	and	operands	are	as	listed	below.

Operator Modifiers
Supported operand

types: Acc_type,
Op_type

Semantics

LD N Any, Any Sets the accumulator equal to
operand.

ST N Any, Any Stores the accumulator into
operand location.

S BOOL, BOOL Sets operand to TRUE if
accumulator is TRUE.

R BOOL, BOOL Sets operand to FALSE if
accumulator is TRUE.

AND N, (Any but REAL, Any but
REAL Logical or bitwise AND

OR N, (Any but REAL, Any but
REAL Logical or bitwise OR

172 user manual

Operator Modifiers
Supported operand

types: Acc_type,
Op_type

Semantics

XOR N, (Any but REAL, Any but
REAL Logical or bitwise XOR

NOT Any but REAL Logical or bitwise NOT
ADD (Any but BOOL Addition
SUB (Any but BOOL Subtraction
MUL (Any but BOOL Multiplication
DIV (Any but BOOL Division
MOD (Any but BOOL Modulo-division
GT (Any but BOOL Comparison:
GE (Any but BOOL Comparison: =
EQ (Any but BOOL Comparison: =
NE (Any but BOOL Comparison:
LE (Any but BOOL Comparison:
LT (Any but BOOL Comparison:
JMP C, N Label Jumps to label
CAL C, N FB instance name Calls function block

RET C, N Returns from called program,
function, or function block.

) Evaluates deferred operation.

10.2.3 CALLING FUNCTIONS AND FUNCTION BLOCKS

10.2.3.1 CALLING FUNCTIONS

Functions	(as	defined	in	the	relevant	section)	are	invoked	by	placing	the	function	name	in	
the	operator	field.	This	invocation	takes	the	following	form:

LD 1

MUX 5, var0, -6.5, 3.14

ST vRES

Note	that	the	first	argument	is	not	contained	in	the	input	list,	but	the	accumulator	is	used	
as	the	first	argument	of	the	function.	Additional	arguments	(starting	with	the	2nd), if re-
quired,	are	given	in	the	operand	field,	separated	by	commas,	in	the	order	of	their	decla-
ration. For example, operator MUX	in	the	table	above	takes	5	operands,	the	first	of	which	
is loaded into the accumulator, whereas the remaining 4 arguments are orderly reported
after the function name.

The following rules apply to function invocation.

1) Assignments to VAR_INPUT arguments may be empty, constants, or variables.

2) Execution of a function ends upon reaching a RET instruction or the physical end of
the function. When this happens, the output variable of the function is copied into the
accumulator.

Calling Function Blocks

Function	blocks	(as	defined	in	the	relevant	section)	can	be	invoked	conditionally	and	un-
conditionally via the CAL operator. This invocation takes the following form:

LD A

 user manual 173

ADD 5

ST INST5.IN1

LD 3.141592

ST INST5.IN2

CAL INST5

LD INST5.OUT1

ST vRES

LD INST5.OUT2

ST vVALID

This method of invocation is equivalent to a CAL with an argument list, which contains only
one variable with the name of the FB instance.

Input arguments are passed to / output arguments are read from the FB instance through
ST / LD operations performed on operands taking the following form:

FBInstanceName.IO_var

where

Keyword Description
FBInstanceName Name of the instance to be invoked.

IO_var Input or output variable to be written / read.

10.3 FUNCTION BLOCK DIAGRAM (FBD)

This	section	defines	the	semantics	of	the	FBD	(Function	Block	Diagram)	language.

10.3.1 REPRESENTATION OF LINES AND BLOCKS

The graphic language elements are drawn using graphic or semi graphic elements, as
shown in the table below.

No storage of data or association with data elements can be associated with the use of
connectors;	hence,	to	avoid	ambiguity,	connectors	cannot	be	given	any	identifier.

Feature Example

Lines

Line crossing with connection

Blocks with connecting lines
and unconnected pins

174 user manual

10.3.2 DIRECTION OF FLOW IN NETWORKS

A	network	 is	defined	as	a	maximal	set	of	 interconnected	graphic	elements.	A	network	
label delimited on the right by a colon (:) can be associated with each network or group
of networks. The scope of a network and its label is local to the program organization unit
(POU) where the network is located.

Graphic	languages	are	used	to	represent	the	flow	of	a	conceptual	quantity	through	one	
or more networks representing a control plan. Namely, in the case of function block dia-
grams	(FBD),	the	“Signal	flow”	is	typically	used,	analogous	to	the	flow	of	signals	between	
elements	of	a	signal	processing	system.	Signal	flow	in	the	FBD	language	is	from	the	out-
put (right-hand) side of a function or function block to the input (left-hand) side of the
function or function block(s) so connected.

10.3.3 EVALUATION OF NETWORKS

10.3.3.1 ORDER OF EVALUATION OF NETWORKS

The order in which networks and their elements are evaluated is not necessarily the same
as the order in which they are labeled or displayed. When the body of a program organiza-
tion unit (POU) consists of one or more networks, the results of network evaluation within
said body are functionally equivalent to the observance of the following rules:

1) No element of a network is evaluated until the states of all of its inputs have been
evaluated.

2) The evaluation of a network element is not complete until the states of all of its out-
puts have been evaluated.

3) As stated when describing the FBD editor, a network number is automatically as-
signed to every network. Within a program organization unit (POU), networks are
evaluated according to the sequence of their number: network N is evaluated before
network N+1,	unless	otherwise	specified	by	means	of	the	execution	control	elements.

10.3.3.2 COMBINATION OF ELEMENTS

Elements	of	the	FBD	language	must	be	interconnected	by	signal	flow	lines.

Outputs of blocks shall not be connected together. In particular, the “wired-OR” construct
of the LD language is not allowed, as an explicit Boolean “OR” block is required.

Feedback

A feedback path is said to exist in a network when the output of a function or function
block	is	used	as	the	input	to	a	function	or	function	block	which	precedes	it	in	the	network;	
the associated variable is called a feedback variable.

Feedback paths can be utilized subject to the following rules:

1) Feedback	variables	must	be	initialized,	and	the	initial	value	is	used	during	the	first	
evaluation of the network. Look the Global variables editor, the Local variables editor,
or the Parameters editor to know how to initialize the respective item.

2) Once the element with a feedback variable as output has been evaluated, the new
value of the feedback variable is used until the next evaluation of the element.

For instance, the Boolean variable RUN is the feedback variable in the example shown
below.

 user manual 175

Explicit loop

Implicit loop

10.3.4 EXECUTION CONTROL ELEMENTS

10.3.4.1 EN/ENO SIGNALS

Additional Boolean EN (Enable) input and ENO (Enable Out) characterize Application blocks,
according to the declarations

EN ENO
VAR_INPUT

 EN: BOOL := 1;

END_VAR

VAR_OUTPUT

 ENO: BOOL;

END_VAR

See the Modifying properties of blocks section to know how to add these pins to a block.

When	these	variables	are	used,	the	execution	of	the	operations	defined	by	the	block	are	
controlled according to the following rules:

1) If the value of EN is FALSE	when	the	block	is	invoked,	the	operations	defined	by	the	
function body are not executed and the value of ENO is reset to FALSE by the program-
mable controller system.

176 user manual

2) Otherwise, the value of ENO is set to TRUE by the programmable controller system,
and	the	operations	defined	by	the	block	body	are	executed.

10.3.4.2 JUMPS

Jumps are represented by a Boolean signal line terminated in a double arrowhead. The
signal line for a jump condition originates at a Boolean variable, or at a Boolean output of
a function or function block. A transfer of program control to the designated network label
occurs when the Boolean value of the signal line is TRUE;	thus,	the	unconditional	jump	is	
a special case of the conditional jump.

The target of a jump is a network label within the program organization unit within which
the jump occurs.

Symbol / Example Explanation

Unconditional Jump

Conditional Jump

Example: Jump Condition
Network

10.3.4.3 CONDITIONAL RETURNS

 - Conditional returns from functions and function blocks are implemented using a RETURN
construction as shown in the table below. Program execution is transferred back to the
invoking entity when the Boolean input is TRUE, and continues in the normal fashion
when the Boolean input is FALSE.

 - Unconditional returns are provided by the physical end of the function or function block.

Symbol / Example Explanation

Conditional Return

Example: Return Condition
Network

 user manual 177

10.4 LADDER DIAGRAM (LD)

This	section	defines	the	semantics	of	the	LD	(Ladder	Diagram)	language.

10.4.1 POWER RAILS

The LD network is delimited on the left side by a vertical line known as the left power rail,
and on the right side by a vertical line known as the right power rail. The right power rail
may be explicit in the Application implementation and it is always shown.

The two power rails are always connected with an horizontal line named signal link. All LD
elements should be placed and connected to the signal link.

Description Symbol

Left power rail (with attached
horizontal link)

Right power rail (with attached
horizontal link)

Power rails connected by the
signal link

10.4.2 LINK ELEMENTS AND STATES

Link elements may be horizontal or vertical. The state of the link elements shall be de-
noted “ON” or “OFF”, corresponding to the literal Boolean values 1 or 0, respectively. The
term	link	state	shall	be	synonymous	with	the	term	power	flow.

The following properties apply to the link elements:

 - The state of the left rail shall be considered ON	at	all	times.	No	state	is	defined	for	the	
right rail.

 - A horizontal link element is indicated by a horizontal line. A horizontal link element
transmits the state of the element on its immediate left to the element on its immedi-
ate right.

 - The vertical link element consists of a vertical line intersecting with one or more hori-
zontal link elements on each side. The state of the vertical link represents the inclusive
OR of the ON states of the horizontal links on its left side, that is, the state of the verti-
cal link is:

OFF if the states of all the attached horizontal links to its left are OFF;

 ON if the state of one or more of the attached horizontal links to its left is ON.

 - The state of the vertical link is copied to all of the attached horizontal links on its right.

 - The state of the vertical link is not copied to any of the attached horizontal links on its
left.

178 user manual

Description Symbol

Vertical link with attached
horizontal links

10.4.3 CONTACTS

A contact is an element which imparts a state to the horizontal link on its right side which
is equal to the Boolean AND of the state of the horizontal link at its left side with an ap-
propriate function of an associated Boolean input, output, or memory variable.

A contact does not modify the value of the associated Boolean variable. Standard contact
symbols are given in the following table.

Name Description Symbol

Normally open
contact

The state of the left link is copied
to the right link if the state of the
associated Boolean variable is ON.
Otherwise, the state of the right
link is OFF.

Normally closed
contact

The state of the left link is copied
to the right link if the state of the
associated Boolean variable is OFF.
Otherwise, the state of the right
link is OFF.

Positive transition-
sensing contact

The state of the right link is
ON from one evaluation of
this element to the next when
a transition of the associated
variable from OFF to ON is sensed
at the same time that the state of
the left link is ON. The state of the
right link shall be OFF at all other
times.

Negative transition-
sensing contact

The state of the right link is
ON from one evaluation of
this element to the next when
a transition of the associated
variable from ON to OFF is sensed
at the same time that the state of
the left link is ON. The state of the
right link shall be OFF at all other
times.

 user manual 179

10.4.4 COILS

A coil copies the state of the link on its left side to the link on its right side without modi-
fication,	and	stores	an	appropriate	function	of	the	state	or	transition	of	the	left	link	into	
the associated Boolean variable.

Standard coil symbols are shown in the following table.

Name Description Symbol

Coil
The state of the left link is
copied to the associated
Boolean variable.

Negated coil

The inverse of the state of
the left link is copied to the
associated Boolean variable,
that is, if the state of the left
link is OFF, then the state of the
associated variable is ON, and
vice versa.

SET (latch) coil

The associated Boolean variable
is set to the ON state when the
left link is in the ON state, and
remains set until reset by a
RESET coil.

RESET (unlatch) coil

The associated Boolean variable
is reset to the OFF state when
the left link is in the ON state,
and remains reset until set by a
SET coil.

Positive transition-
sensing coil

The state of the associated
Boolean variable is ON from
one evaluation of this element
to the next when a transition of
the left link from OFF to ON is
sensed.

Negative transition-
sensing coil

The state of the associated
Boolean variable is ON from
one evaluation of this element
to the next when a transition of
the left link from ON to OFF is
sensed.

10.4.5 OPERATORS, FUNCTIONS AND FUNCTION BLOCKS

The representation of functions and function blocks in the LD language is similar to the
one used for FBD. At least one Boolean input and one Boolean output shall be shown on
each	block	to	allow	for	power	flow	through	the	block	as	shown	in	the	following	figure.

180 user manual

10.5 STRUCTURED TEXT (ST)

This	section	defines	the	semantics	of	the	ST	(Structured	Text)	language.

10.5.1 EXPRESSIONS

An expression is a construct which, when evaluated, yields a value corresponding to one
of the data types listed in the elementary data types table. Application does not set any
constraint on the maximum length of expressions.

Expressions are composed of operators and operands.

10.5.1.1 OPERANDS

An operand can be a literal, a variable, a function invocation, or another expression.

10.5.1.2 OPERATORS

Open the table of operators to see the list of all the operators supported by ST. The evalu-
ation of an expression consists of applying the operators to the operands in a sequence
defined	by	the	operator	precedence	rules.	

10.5.1.3 OPERATOR PRECEDENCE RULES

Operators	have	different	levels	of	precedence,	as	specified	in	the	table	of	operators.	The	
operator	with	highest	precedence	in	an	expression	is	applied	first,	followed	by	the	opera-
tor of next lower precedence, etc., until evaluation is complete. Operators of equal prec-
edence are applied as written in the expression from left to right.

For example if A, B, C, and D are of type INT with values 1, 2, 3, and 4, respectively, then:

A+B-C*ABS(D)

yields -9, and:

(A+B-C)*ABS(D)

yields 0.

When	an	operator	has	two	operands,	the	leftmost	operand	is	evaluated	first.	For	example,	
in the expression

SIN(A)*COS(B)

the expression SIN(A)	is	evaluated	first,	followed	by	COS(B), followed by evaluation of
the product.

Functions are invoked as elements of expressions consisting of the function name fol-
lowed	by	a	parenthesized	list	of	arguments,	as	defined	in	the	relevant	section.

 user manual 181

10.5.1.4 OPERATORS OF THE ST LANGUAGE

Operation Symbol Precedence

Parenthesization (<expression>) HIGHEST

.

.

.

.

.

.

.

.

.

.

.

.

.

Function evaluation <fname>(<arglist>)

Negation Complement
-

NOT

Exponentiation **

Multiply Divide Modulo

*

/

MOD

Add Subtract
+

-

Comparison <, >, <=, >=

Equality Inequality
=

<>

Boolean AND AND

Boolean Exclusive OR XOR

Boolean OR OR LOWEST

10.5.2 STATEMENTS IN ST

All statements comply with the following rules:

 - they	are	terminated	by	semicolons;

 - unlike IL, a carriage return or new line character is treated the same as a space char-
acter;	

 - Application does not set any constraint on the maximum length of statements.

ST statements can be divided into classes, according to their semantics.

10.5.2.1 ASSIGNMENTS

Semantics

The assignment statement replaces the current value of a single or multi-element variable
by the result of evaluating an expression.

The assignment statement is also used to assign the value to be returned by a function,
by placing the function name to the left of an assignment operator in the body of the
function declaration. The value returned by the function is the result of the most recent
evaluation of such an assignment.

Syntax

An assignment statement consists of a variable reference on the left-hand side, followed
by the assignment operator “:=”, followed by the expression to be evaluated. For in-
stance, the statement

A := B ;

would be used to replace the single data value of variable A by the current value of vari-
able B if both were of type INT.

182 user manual

Examples

a := b ;

assignment

pCV := pCV + 1 ;

assignment

c := SIN(x);

assignment with function invocation

FUNCTION SIMPLE_FUN : REAL

variables declaration

...

function body

...

SIMPLE_FUN := a * b - c ;

END_FUNCTION

assigning the output value to a function

10.5.2.2 FUNCTION AND FUNCTION BLOCK STATEMENTS

Semantics

 - Functions are invoked as elements of expressions consisting of the function name fol-
lowed by a parenthesized list of arguments. Each argument can be a literal, a variable,
or an arbitrarily complex expression.

 - Function blocks are invoked by a statement consisting of the name of the function block
instance followed by a parenthesized list of arguments. Both invocation with formal ar-
gument list and with assignment of arguments are supported.

 - RETURN: function and function block control statements consist of the mechanisms for
invoking function blocks and for returning control to the invoking entity before the phys-
ical end of a function or function block. The RETURN statement provides early exit from
a function or a function block (e.g., as the result of the evaluation of an IF statement).

Syntax

1) Function:

 dst_var := function_name(arg1, arg2 , ... , argN);

2) Function block with formal argument list:

 instance_name(var_in1 := arg1 ,
 var_in2 := arg2 ,
 ... ,
 var_inN := argN);

3) Function block with assignment of arguments:

 instance_name.var_in1 := arg1;
 ...
 instance_name.var_inN := argN;
 instance_name();

4) Function and function block control statement:

 RETURN;

Examples

CMD_TMR(IN := %IX5,

 PT:= 300) ;

 user manual 183

FB invocation with formal argument list:

IN := %IX5 ;

PT:= 300 ;

CMD_TMR() ;

FB invocation with assignment of arguments:

a := CMD_TMR.Q;

FB output usage:

RETURN ;

early exit from function or function block.

10.5.2.3 SELECTION STATEMENTS

Semantics

Selection statements include the IF and CASE statements. A selection statement selects
one	(or	a	group)	of	its	component	statements	for	execution	based	on	a	specified	condi-
tion.

 - IF: the IF	statement	specifies	that	a	group	of	statements	is	to	be	executed	only	if	the	
associated Boolean expression evaluates to the value TRUE. If the condition is false,
then either no statement is to be executed, or the statement group following the ELSE
keyword (or the ELSIF keyword if its associated Boolean condition is true) is executed.

 - CASE: the CASE statement consists of an expression which evaluates to a variable of
type DINT (the “selector”), and a list of statement groups, each group being labeled by
one	or	more	integer	or	ranges	of	integer	values,	as	applicable.	It	specifies	that	the	first	
group of statements, one of whose ranges contains the computed value of the selector,
is to be executed. If the value of the selector does not occur in a range of any case, the
statement sequence following the keyword ELSE (if it occurs in the CASE statement) is
executed. Otherwise, none of the statement sequences is executed.

Application does not set any constraint on the maximum allowed number of selections in
CASE statements.

Syntax

Note that square brackets include optional code, while braces include repeatable portions
of code.

1) IF:

 IF expression1 THEN

 stat_list

 [{ ELSIF expression2 THEN

 stat_list }]

 ELSE

 stat_list

 END_IF ;

2) CASE:

 CASE expression1 OF

 intv [{, intv }] :

 stat_list

 { intv [{, intv }] :

 stat_list }

 [ELSE

 stat_list]

184 user manual

 END_CASE ;

 intv being either a constant or an interval: a or a..b

Examples

IF statement:

IF d 0.0 THEN

nRoots := 0 ;

ELSIF d = 0.0 THEN

nRoots := 1 ;

x1 := -b / (2.0 * a) ;

ELSE

nRoots := 2 ;

x1 := (-b + SQRT(d)) / (2.0 * a) ;

x2 := (-b - SQRT(d)) / (2.0 * a) ;

END_IF ;

CASE statement:

CASE tw OF

1, 5:

display := oven_temp ;

2:

display := motor_speed ;

3:

display := gross_tare;

4, 6..10:

display := status(tw - 4) ;

ELSE

 display := 0;

 tw_error := 1;

END_CASE ;

10.5.2.4 ITERATION STATEMENTS

Semantics

Iteration statements specify that the group of associated statements are executed repeat-
edly. The FOR	statement	is	used	if	the	number	of	iterations	can	be	determined	in	advance;	
otherwise, the WHILE or REPEAT constructs are used.

 - FOR: the FOR statement indicates that a statement sequence is repeatedly executed,
up to the END_FOR keyword, while a progression of values is assigned to the FOR loop
control	variable.	The	control	variable,	initial	value,	and	final	value	are	expressions	of	
the same integer type (e.g., SINT, INT, or DINT) and cannot be altered by any of the
repeated statements. The FOR statement increments the control variable up or down
from	an	initial	value	to	a	final	value	in	increments	determined	by	the	value	of	an	ex-
pression;	this	value	defaults	to	1.The	test	for	the	termination	condition	is	made	at	the	
beginning of each iteration, so that the statement sequence is not executed if the initial
value	exceeds	the	final	value.

 - WHILE: the WHILE statement causes the sequence of statements up to the END_WHILE
keyword to be executed repeatedly until the associated Boolean expression is false. If
the expression is initially false, then the group of statements is not executed at all.

 - REPEAT: the REPEAT statement causes the sequence of statements up to the UNTIL

 user manual 185

keyword to be executed repeatedly (and at least once) until the associated Boolean
condition is true.

 - EXIT:	the	EXIT statement is used to terminate iterations before the termination condi-
tion	is	satisfied.	When	the	EXIT statement is located within nested iterative constructs,
exit is from the innermost loop in which the EXIT is located, that is, control passes to
the	next	statement	after	the	first	loop	terminator	(END_FOR, END_WHILE, or END_RE-
PEAT) following the EXIT statement.

Note: the WHILE and REPEAT statements cannot be used to achieve interprocess synchronization,
for example as a “wait loop” with an externally determined termination condition. The SFC
elements	defined	must	be	used	for	this	purpose.

Syntax

Note that square brackets include optional code, while braces include repeatable portions
of code.

1) FOR:

 FOR control_var := init_val TO end_val [BY increm_val] DO

 stat_list

 END_FOR ;

2) WHILE:

 WHILE expression DO

 stat_list

 END_WHILE ;

3) REPEAT:

 REPEAT

 stat_list

 UNTIL expression

 END_REPEAT ;

Examples

FOR statement:

j := 101 ;

FOR i := 1 TO 100 BY 2 DO

 IF arrvals[i] = 57 THEN

j := i ;

 EXIT ;

 END_IF ;

END_FOR ;

WHILE statement:

j := 1 ;

WHILE j <=100 AND arrvals[i] <> 57 DO

j := j + 2 ;

END_WHILE ;

REPEAT statement:

j := -1 ;

REPEAT

 j := j + 2 ;

UNTIL j = 101 AND arrvals[i] = 57

186 user manual

END_REPEAT ;

10.6 SEQUENTIAL FUNCTION CHART (SFC)

This	section	defines	Sequential	Function	Chart	(SFC)	elements	to	structure	the	internal	
organization of a PLC program organization unit (POU), written in one of the languages
defined	in	this	standard,	for	the	purpose	of	performing	sequential	control	functions.	The	
definitions	in	this	section	are	derived	from	IEC	848,	with	the	changes	necessary	to	convert	
the representations from a documentation standard to a set of execution control elements
for a PLC program organization unit.

Since SFC elements require storage of state information, the only program organization
units which can be structured using these elements are function blocks and programs.

If any part of a program organization unit is partitioned into SFC elements, the entire
program organization unit is so partitioned. If no SFC partitioning is given for a program
organization unit, the entire program organization unit is considered to be a single action
which executes under the control of the invoking entity.

SFC elements

The SFC elements provide a means of partitioning a PLC program organization unit into a
set of steps and transitions interconnected by directed links. Associated with each step is
a set of actions, and with each transition is associated a transition condition.

10.6.1 STEPS

10.6.1.1 DEFINITION

A step represents a situation where the behavior of a program organization unit (POU)
with	respect	to	its	inputs	and	outputs	follows	a	set	of	rules	defined	by	the	associated	ac-
tions of the step. A step is either active or inactive. At any given moment, the state of
the	program	organization	unit	is	defined	by	the	set	of	active	steps	and	the	values	of	its	
internal and output variables.

A step is represented graphically by a block containing a step name in the form of an iden-
tifier.	The	directed	link(s)	into	the	step	can	be	represented	graphically	by	a	vertical	line	
attached to the top of the step. The directed link(s) out of the step can be represented by
a vertical line attached to the bottom of the step.

Representation Description

Step
(graphical representation with

direct links)

Application does not set any constraint on the maximum number of steps per SFC.

Step flag

The	step	flag	(active	or	inactive	state	of	a	step)	can	be	represented	by	the	logic	value	of	a	
Boolean variable ***_x, where *** is the step name. This Boolean variable has the value
TRUE when the corresponding step is active, and FALSE when it is inactive. The scope of
step	names	and	step	flags	is	local	to	the	program	organization	unit	where	the	steps	ap-
pear.

 user manual 187

Representation Description

Step Name_x
Step	flag

= TRUE when Step Name_x is active
= FALSE otherwise

Users cannot assign a value directly to a step state.

10.6.1.2 INITIAL STEP

The initial state of the program organization unit is represented by the initial values of
its internal and output variables, and by its set of initial steps, i.e., the steps which are
initially active. Each SFC network, or its textual equivalent, has exactly one initial step.
An initial step can be drawn graphically with double lines for the borders, as shown below.
For system initialization, the default initial state is FALSE for ordinary steps and TRUE for
initial steps.

Application cannot compile an SFC network not containing exactly one initial step.

Representation Description

Initial step
(graphical representation with

direct links)

10.6.1.3 ACTIONS

An action can be:

 - a	collection	of	instructions	in	the	IL	language;

 - a	collection	of	networks	in	the	FBD	language;

 - a	collection	of	rungs	in	the	LD	language;

 - a	collection	of	statements	in	the	ST	language;

 - a	sequential	function	chart	(SFC)	organized	as	defined	in	this	section.	

Zero or more actions can be associated with each step. Actions are declared via one of the
textual structuring elements listed in the following table.

Structuring element Description

STEP StepName :
(* Step body *)

END_STEP
Step (textual form)

INITIAL_STEP StepName :
(* Step body *)

END_STEP
Initial step (textual form)

Such	a	structuring	element	exists	in	the	lsc	file	for	every	step	having	at	least	one	associ-
ate action.

188 user manual

10.6.1.4 ACTION QUALIFIERS

The	time	when	an	action	associated	to	a	step	is	executed	depends	on	its	action	qualifier.

Application	implements	the	following	action	qualifiers.

Qualifier Description Meaning

N Non-stored	(null	qualifier). The action is executed as long as
the step remains active.

P Pulse.

The action is executed only once per
step activation, regardless of the
number of cycles the step remains
active.

If a step has zero associated actions, then it is considered as having a WAIT function, that
is, waiting for a successor transition condition to become true.

10.6.1.5 JUMPS

Direct	links	flow	only	downwards.	Therefore,	if	you	want	to	return	to	a	upper	step	from	a	
lower one, you cannot draw a logical wire from the latter to the former. A special type of
block exists, called Jump, which lets you implement such a transition.

A Jump block is logically equivalent to a step, as they have to always be separated by a
transition.	The	only	effect	of	a	Jump	is	to	activate	the	step	flag	of	the	preceding	step	and	
to	activate	the	flag	of	the	step	it	points	to.

Representation Description

Jump
(logical link to the destination step)

10.6.2 TRANSITIONS

10.6.2.1 DEFINITION

A transition represents the condition whereby control passes from one or more steps
preceding the transition to one or more successor steps along the corresponding directed
link. The transition is represented by a small grey square across the vertical directed link.

The direction of evolution following the directed links is from the bottom of the predeces-
sor step(s) to the top of the successor step(s).

10.6.2.2 TRANSITION CONDITION

Each transition has an associated transition condition which is the result of the evaluation
of a single Boolean expression. A transition condition which is always true is represented
by the keyword TRUE, whereas a transition condition always false is symbolized by the
keyword FALSE.

A transition condition can be associated with a transition by one of the following means:

Representation Description

By placing the appropriate Boolean constant {TRUE,
FALSE} adjacent to the vertical directed link.

 user manual 189

Representation Description

By declaring a Boolean variable, whose value
determines whether or not the transition is cleared.

By writing a piece of code, in any of the languages
supported by Application, except for SFC. The result
of the evaluation of such a code determines the
transition condition.

The scope of a transition name is local to the program organization unit (POU) in which
the transition is located.

10.6.3 RULES OF EVOLUTION

Introduction

The initial situation of a SFC network is characterized by the initial step which is in the
active state upon initialization of the program or function block containing the network.

Evolutions of the active states of steps take place along the directed links when caused by
the clearing of one or more transitions.

A transition is enabled when all the preceding steps, connected to the corresponding tran-
sition symbol by directed links, are active. The clearing of a transition occurs when the
transition is enabled and when the associated transition condition is true.

The clearing of a transition causes the deactivation (or “resetting”) of all the immediately
preceding steps connected to the corresponding transition symbol by directed links, fol-
lowed by the activation of all the immediately following steps.

The alternation Step/Transition and Transition/Step is always maintained in SFC element
connections, that is:

 - two	steps	are	never	directly	linked;	they	are	always	separated	by	a	transition;

 - two	transitions	are	never	directly	linked;	they	are	always	separated	by	a	step.	

When the clearing of a transition leads to the activation of several steps at the same time,
the sequences to which these steps belong are called simultaneous sequences. After their
simultaneous activation, the evolution of each of these sequences becomes independent.
In order to emphasize the special nature of such constructs, the divergence and conver-
gence of simultaneous sequences is indicated by a double horizontal line.

The clearing time of a transition may theoretically be considered as short as one may
wish, but it can never be zero. In practice, the clearing time will be imposed by the PLC
implementation: several transitions which can be cleared simultaneously will be cleared
simultaneously, within the timing constraints of the particular PLC implementation and
the	priority	constraints	defined	in	the	sequence	evolution	table.	For	the	same	reason,	the	
duration of a step activity can never be considered to be zero. Testing of the successor
transition condition(s) of an active step shall not be performed until the effects of the step
activation have propagated throughout the program organization unit in which the step
is declared.

190 user manual

Sequence evolution table

This	 table	defines	 the	syntax	and	semantics	of	 the	allowed	combinations	of	steps	and	
transitions.

Example Rule

Normal transition

An evolution from step S3 to step S4
takes place if and only if step S3 is
in the active state and the transition
condition c is TRUE.

Divergent transition

An evolution takes place from S5 to
S6 if and only if S5 is active and the
transition condition e is TRUE, or from
S5 to S8 only if S5 is active and f is
TRUE and e is FALSE.

Convergent transition

An evolution takes place from S7
to S10 only if S7 is active and the
transition condition h is TRUE, or from
S9 to S10 only if S9 is active and j is
TRUE.

Simultaneous divergent transition

An evolution takes place from S11 to
S12, S14,... only if S11 is active and
the transition condition b associated
to the common transition is TRUE.
After the simultaneous activation of
S12, S14, etc., the evolution of each
sequence proceeds independently.

Simultaneous convergent transition

An evolution takes place from S13,
S15,... to S16 only if all steps above
and connected to the double horizontal
line are active and the transition
condition d associated to the common
transition is TRUE.

 user manual 191

Examples

Invalid scheme Equivalent allowed scheme Note

Expected behavior: an
evolution takes place
from S30 to S33 if a is
FALSE and d is TRUE.

The scheme in the
leftmost column
is invalid because
conditions d and TRUE
are directly linked.

Expected behavior: an
evolution takes place
from S32 to S31 if c is
FALSE and d is TRUE.

The scheme in the
leftmost column
is invalid because
direct	links	flow	only	
downwards. Upward
transitions can be
performed via jump
blocks.

10.7 APPLICATION LANGUAGE EXTENSIONS

Application features a few extensions to the IEC 61131-3 standard, in order to further
enrich the language and to adapt to different coding styles.

10.7.1 MACROS

Application implements macros in the same way a C programming language pre-proces-
sor does.

Macros	can	be	defined	using	the	following	syntax:

 MACRO <macro name>

 PAR_MACRO

 <parameter list>

 END_PAR

 <macro body>

 END_MACRO

Note that the parameter list may eventually be empty, thus distinguishing between ob-
ject-like macros, which do not take parameters, and function-like macros, which do take
parameters.

192 user manual

A	concrete	example	of	macro	definition	is	the	following,	which	takes	two	bytes	and	com-
poses a 16-bit word:

MACRO MAKEWORD

 PAR_MACRO

 lobyte;

 hibyte;

 END_PAR

 { CODE:ST }

 lobyte + SHL(TO_UINT(hibyte), 8)

END_MACRO

Whenever the macro name appears in the source code, it is replaced (along with the ac-
tual parameter list, in case of function-like macros) with the macro body. For example,
given	the	definition	of	the	macro	MAKEWORD and the following Structured Text code frag-
ment:

 w := MAKEWORD(b1, b2);

the macro pre-processor expands it to

 w := b1 + SHL(TO_UINT(b2), 8);

10.7.2 POINTERS

Pointers are a special kind of variables which act as a reference to another variable (the
1pointed	variable).	The	value	of	a	pointer	is,	in	fact,	the	address	of	the	pointed	variable;	
in order to access the data stored at the address pointed to, pointers can be dereferenced.

Pointer declaration requires the same syntax used in variable declaration, where the type
name is the type name of the pointed variable preceded by a @ sign:

 VAR

 <pointer name> : @<pointed variable type name>;

 END_VAR

For example, the declaration of a pointer to a REAL variable shall be as follows:

 VAR

 px : @REAL;

 END_VAR

A pointer can be assigned with another pointer or with an address. A special operator, ADR,
is available to retrieve the address of a variable.

 px := py; (* px and py are pointers to REAL (that is, vari-
ables of type @REAL) *)

 px := ADR(x) (* x is a variable of type REAL *)

 px := ?x (* ? is an alternative notation for ADR *)

The @ operator is used to dereference a pointer, hence to access the pointed variable.

 px := ADR(x);

 @px := 3.141592; (* the approximate value of pi is assigned to x *)

 pn := ADR(n);

 n := @pn + 1; (* n is incremented by 1 *)

Beware that careless use of pointers is potentially dangerous: indeed, pointers can point
to any arbitrary location, which can cause undesirable effects.

	1.	Overview
	1.1	The workspace
	1.1.1	The output window
	1.1.2	The status bar
	1.1.3	The document bar
	1.1.4	The watch window
	1.1.5	The library window
	1.1.6	The workspace window
	1.1.7	The source code editors

	2.	Using the environment
	2.1	Layout customization
	2.2	Toolbars
	2.2.1	Showing/hiding toolbars
	2.2.2	Moving toolbars

	2.3	Docking windows
	2.3.1	Showing/hiding tool windows
	2.3.2	Moving tool windows

	2.4	Working with windows
	2.4.1	The document bar
	2.4.2	The window menu

	2.5	Full screen mode
	2.6	Environment options

	3.	Managing projects
	3.1	Creating a new project
	3.2	Uploading the project from the target device
	3.3	Saving the project
	3.3.1	Persisting changes to the project
	3.3.2	Saving to an alternative location

	3.4	Managing existing projects
	3.4.1	Opening an existing Application project
	3.4.2	Editing the project
	3.4.3	Closing the project

	3.5	Distributing projects
	3.6	Project options
	3.7	Selecting the target device
	3.8	Working with libraries
	3.8.1	The library manager
	3.8.2	Exporting to a library
	3.8.3	Importing from a library or another source

	4.	Managing project elements
	4.1	Program Organization Units
	4.1.1	Creating a new Program Organization Unit
	4.1.2	Editing POUs
	4.1.3	Deleting POUs
	4.1.4	Source code encryption

	4.2	Variables
	4.2.1	Global variables
	4.2.2	Local variables

	4.3	Tasks
	4.3.1	Assigning a program to a task
	4.3.2	Task configuration

	4.4	Derived data types
	4.4.1	Typedefs
	4.4.2	Structures
	4.4.3	Enumerations
	4.4.4	Subranges

	4.5	Browsing the project
	4.5.1	object browser
	4.5.2	Searching with the Find in project command

	4.6	Working with Application extensions

	5.	Editing the source code
	5.1	Instruction List (IL) editor
	5.1.1	Editing functions
	5.1.2	Reference to PLC objects
	5.1.3	Automatic error location
	5.1.4	Bookmarks

	5.2	Structured Text (ST) Editor
	5.2.1	Creating and editing ST objects
	5.2.2	Editing functions
	5.2.3	Reference to PLC objects
	5.2.4	Automatic error location
	5.2.5	Bookmarks

	5.3	Ladder Diagram (LD) editor
	5.3.1	Creating a new LD document
	5.3.2	Adding/Removing networks
	5.3.3	Labeling networks
	5.3.4	Inserting contacts
	5.3.5	Inserting coils
	5.3.6	Inserting blocks
	5.3.7	Editing coils and contacts properties
	5.3.8	Editing networks
	5.3.9	Modifying properties of blocks
	5.3.10	Getting information on a block
	5.3.11	Automatic error retrieval

	5.4	Function Block Diagram (FBD) editor
	5.4.1	Creating a new FBD document
	5.4.2	Adding/Removing networks
	5.4.3	Labeling networks
	5.4.4	Inserting and connecting blocks
	5.4.5	Editing networks
	5.4.6	Modifying properties of blocks
	5.4.7	Getting information on a block
	5.4.8	Automatic error retrieval

	5.5	Sequential Function Chart (SFC) Editor
	5.5.1	Creating a new SFC document
	5.5.2	Inserting a new SFC element
	5.5.3	Connecting SFC elements
	5.5.4	Assigning an action to a step
	5.5.5	Specifying a constant/a variable as the condition of a transition
	5.5.6	Assigning conditional code to a transition
	5.5.7	Specifying the destination of a jump
	5.5.8	Editing SFC networks

	5.6	Variables editor
	5.6.1	Opening a variables editor
	5.6.2	Creating a new variable
	5.6.3	Editing variables
	5.6.4	Deleting variables
	5.6.5	Sorting variables
	5.6.6	Copying variables

	6.	Compiling
	6.1	Compiling the project
	6.1.1	Image file loading

	6.2	Compiler output
	6.2.1	Compiler errors

	6.3	Command-line compiler

	7.	Launching the application
	7.1	Setting up the communication
	7.1.1	Saving the last used communication port

	7.2	On-line status
	7.2.1	Connection status
	7.2.2	Application status

	7.3	Downloading the application
	7.3.1	Controlling source code download

	7.4	Simulation

	8.	Debugging
	8.1	Watch window
	8.1.1	Opening and closing the watch window
	8.1.2	Adding items to the watch window
	8.1.3	Removing a variable
	8.1.4	Refreshment of values
	8.1.5	Changing the format of data
	8.1.6	Working with watch lists

	8.2	Oscilloscope
	8.2.1	Opening and closing the oscilloscope
	8.2.2	Adding items to the oscilloscope
	8.2.3	Removing a variable
	8.2.4	Variables sampling
	8.2.5	Controlling data acquisition and display
	8.2.6	Changing the polling rate
	8.2.7	Saving and printing the graph

	8.3	Edit and debug mode
	8.4	Live debug
	8.4.1	SFC animation
	8.4.2	LD animation
	8.4.3	FBD animation
	8.4.4	IL and ST animation

	8.5	Triggers
	8.5.1	Trigger window
	8.5.2	Debugging with trigger windows

	8.6	Graphic triggers
	8.6.1	Graphic trigger window
	8.6.2	Debugging with the graphic trigger window

	9.	Application reference
	9.1	Menus reference
	9.1.1	File menu
	9.1.2	Edit menu
	9.1.3	View menu
	9.1.4	Project menu
	9.1.5	Debug menu
	9.1.6	Communication menu
	9.1.7	Scheme menu
	9.1.8	Variables menu
	9.1.9	Definitions menu
	9.1.10	Window menu
	9.1.11	Help menu

	9.2	Toolbars reference
	9.2.1	Main toolbar
	9.2.2	FBD toolbar
	9.2.3	LD toolbar
	9.2.4	SFC toolbar
	9.2.5	Project toolbar
	9.2.6	Network toolbar
	9.2.7	Debug toolbar

	10.	Language reference
	10.1	Common elements
	10.1.1	Basic elements
	10.1.2	Elementary data types
	10.1.3	Derived data types
	10.1.4	Literals
	10.1.5	Variables
	10.1.6	Program Organization Units

	10.2	Instruction List (IL)
	10.2.1	Syntax and semantics
	10.2.2	Standard operators
	10.2.3	Calling Functions and Function blocks

	10.3	Function Block Diagram (FBD)
	10.3.1	Representation of lines and blocks
	10.3.2	Direction of flow in networks
	10.3.3	Evaluation of networks
	10.3.4	Execution control elements

	10.4	Ladder Diagram (LD)
	10.4.1	Power rails
	10.4.2	Link elements and states
	10.4.3	Contacts
	10.4.4	Coils
	10.4.5	Operators, functions and function blocks

	10.5	Structured Text (ST)
	10.5.1	Expressions
	10.5.2	Statements in ST

	10.6	Sequential Function Chart (SFC)
	10.6.1	Steps
	10.6.2	Transitions
	10.6.3	Rules of evolution

	10.7	Application Language Extensions
	10.7.1	Macros
	10.7.2	Pointers

