
Connection
User Manual

Revision 1.2 - July 2011

II user manual

Connection User Manual

Revision 1.2 - 2011-07-12

Published by Eliwell Controls S.r.l.

Via dell’Industria, 15 Z.I. Paludi

32010 Pieve d’Alpago (BL)

© Eliwell Controls S.r.l. 2010.

All Rights Reserved.

 user manual III

Contents

1. Basic concepts 1

1.1 Entry point and container 1

1.2 Composite applications and Field I/O 1

1.3 Distributed applications and Binding I/O 1

2. Using the environment 3

2.1 The workspace 3

2.1.1 The main window 3

2.1.2 The output window 4

2.1.3 The project window 5

2.1.4 The catalog window 6

2.2 Layout customization 8

2.3 Toolbars and docking windows 8

2.3.1 Showing/hiding 8

2.3.2 Moving toolbars 8

2.3.3 Moving docking windows 9

3. Managing projects 11

3.1 Creating a new project and main page 11

3.2 Saving the project 12

3.3 Managing existing projects 12

3.3.1 Opening an existing project 12

3.3.2 Closing the project 12

3.4 Building projects 13

3.5 Distributing projects 13

3.5.1 Distributing to other developers 13

3.5.2 Distributing to users or installers 13

4. Managing project elements 15

4.1 FREE Evolution 15

4.1.1 PLC 16

4.1.2 HMI 16

4.1.3 CANopen 17

4.1.4 RS485 20

4.1.5 Ethernet 21

4.2 FREE Evolution EVC 22

4.3 Generic Modbus 23

4.3.1 Modbus messages 23

4.4 Modbus Custom 25

IV user manual

4.4.1 Creating a new Modbus custom device 25

4.4.2 Editing an existing Modbus custom device 25

4.4.3 Deleting a Modbus custom device 26

4.4.4 Using a Modbus custom device 26

4.5 CAN custom 28

4.5.1 Importing a new CAN custom device 28

4.5.2 Deleting a CAN Custom device 29

4.5.3 Using a CAN custom device 29

4.6 FREE Evolution EVK 31

4.6.1 CANopen 31

4.7 FREE Evolution EVP 34

4.7.1 PLC 34

4.7.2 HMI 34

4.7.3 Providing HMI pages 35

4.7.4 CANopen 35

4.7.5 RS485 37

4.7.6 Ethernet 37

4.8 FREE Evolution EXP 37

4.8.1	 Using	FREE	Evolution	EXP	as	CANopen	field	slave	 38

4.8.2	 Using	FREE	Evolution	EXP	as	RS485	field	slave	 38

4.9 Virtual channels assignment criteria 39

4.9.1 CANopen network - virtual SDO servers 39

4.9.2 Ethernet - TCP Slave Channels 39

4.9.3	 CANopen	field	-	virtual	master	channels	 39

5. Technical reference 41

5.1 CANopen protocol 41

5.1.1 Overview 41

5.1.2 Physical structure of a CANopen network 41

5.1.3 COB and COB-ID 41

5.1.4 The object Dictionary 41

5.1.5 The Service Data Objects (SDO) 42

5.1.6 The Process Data Objects (PDO) 42

5.1.7 PDO transmission modes 42

5.1.8 The Emergency Object 43

5.1.9 SYNC Object and Time Stamp Object 43

5.1.10 Error Control: Node guarding 43

5.1.11 Error control: Heartbeat 43

5.1.12 The Network Behavior 43

5.1.13 The Boot-up Message 44

5.1.14	 The	CANopen	Device	Profiles	 44

5.2 Modbus protocol 44

 user manual V

5.2.1 Overview 44

5.2.2 Data types 44

5.2.3 Function codes 45

5.2.4 Error detection and CRC 45

5.2.5 Protocol versions 45

VI user manual

 user manual 1

1. BASIC CONCEPTS

1.1 ENTRY POINT AND CONTAINER

FREE Studio Connection is an important piece in the FREE Studio software suite.

It is designed to be the “entry point” to create and manage complex projects, made of
different devices and sub-projects; its main purpose is to keep all the pieces together
and to simplify the task of linking the various elements (software components or physical
devices).

For example, with Connection you can create a project (that can be seen as a big “work-
space”) that consists in two or more devices physically linked together on the same
network, that have both a PLC and HMI project, that act as a master and exchange data
with remote slaves, and moreover exchange data between each other, in a peer-to-peer
relationship.

At	the	end	of	the	developing	process,	Connection	will	create	a	single	file	containing	ALL	
the PLC programs, HMI pages, parameters and settings of ALL the devices; then, using
FREE Studio Device, you can distribute and deploy your complex application in the prod-
uct environment with a single click.

Connection can also be seen as the starting point from which all the other tools of the
Suite can be launched, opening their respective documents and projects: Application,
UserInterface, and Device.

1.2 COMPOSITE APPLICATIONS AND FIELD I/O

Rich and advanced devices (such as FREE Evolution) can both run a PLC program and
show HMI pages on the same hardware.

With Connection you can create the two separate sub-projects by launching the corre-
sponding program (FREE Studio Application for PLC and FREE Studio UserInterface for
HMI) and keep them together in a single folder on disk.

If the device can act as a master (that is the case of FREE Evolution), it can exchange data
on a local bus talking with one or more slaves, with a protocol like Modbus or CANopen;
with Connection you can describe those master/slave networks, by inserting the slaves
into the project and connecting their remote objects to local PLC variables, making the
PLC program aware of them.

We call this architecture “Field I/O”.

1.3 DISTRIBUTED APPLICATIONS AND BINDING I/O

Sometimes a single application on a single device is not enough to solve complex prob-
lems; sometimes it is necessary to create two or more applications that will act together,
communicating and exchanging data on a network to take decisions and cooperate.

This scenario is different from “Field I/O” because there is no master or slave, but a group
of devices of the same kind (like a group of FREE Evolution) that talk to each other in a
peer-to-peer way on a common network, exchanging objects (parameters and values.)

We call this architecture “Binding I/O”, because the various elements are bound to each
other to operate together.

2 user manual

 user manual 3

2. USING THE ENVIRONMENT

2.1 THE WORKSPACE

The	figure	below	shows	a	view	of	Connection	workspace,	including	many	of	its	more	com-
monly used components.

The following paragraphs give an overview of these elements.

2.1.1 THE MAIN WINDOW

The Main window is the central part of the program window, that is surrounded by tool-
bars and docking windows.

It	shows	information	and	configuration	pages	in	a	graphical	and	user-friendly	form;	the	
current page is always determined by the selected item in Project window.

For example, in the previous image you can see that the RS485 node is selected (and
highlighted) in the Project tree and so the Main window shows the RS485 Configura-
tion page.

To change the current selected item and so the current page, just do a single click in the
Project tree.

4 user manual

2.1.2 THE OUTPUT WINDOW

The Output window is the place where Connection prints its output messages: errors,
informations, debug informations, and compilation results.

In some situations (for example compilation errors) you can double-click on the error in
the output window and you will be brought just at the source of the error, that will be
highlighted with a red box.

 user manual 5

2.1.3 THE PROJECT WINDOW

6 user manual

The Project window shows the elements of the current project in the form a tree, making
easy to see the master/slave and parent/child relationship between them.

Click on the + and - icons next to each item (or press to corresponding keys) to expand
or collapse each item; or press the * key to expand all children of the current item in
depth.

Left-clicking	an	item	opens	its	configuration	page	in	the	Main window (if there is one),
and shows in the Catalog window all objects that can be inserted under the current item
(if there are).

Right-clicking an item selects it and opens its context menu (if there is one), showing
some operations you can do on the current tree item, like Add/Remove/Copy/Paste and
so on.

Pressing the Delete key also triggers the Remove command.

A single left-click of the item name (or the F2 key) triggers the in-place rename of the
object (if it supports it).

2.1.4 THE CATALOG WINDOW

This window shows a list of objects that can be inserted in the project under the currently
selected item in the Project window; selecting a different item in Project window re-
freshes this list.

By default, only the “major” version number of each device is shown, and the highest
minor version number is implicitly selected; for example, if three different versions of the
same device are present in the catalog (10.0, 10.1, 10.2), the Catalog will show only the
10 (without the minor version) but will select the 10.2 (the highest).

This behavior can be changed by selecting the Show all versions in catalog option in

 user manual 7

the Options menu in the menu bar; if you activate this option ALL the available versions
(even the older ones) will be shown in the Catalog and you will have the chance to manu-
ally select and add in the project older versions of each device.

To add an object, drag and drop it from the Catalog window to the Project window, over
the currently selected item (a + icon will appear); it will be added as its last child.

Another way to add an object is to right-click an item in the Project window and choose
Add; a pop-up window will appear, showing the same list of the Catalog window. In this
way you can add an object without having the Catalog visible, useful for example if you
are working with a very small screen.

This window also has a Show all versions	option,	that	behaves	like	the	flag	in	the	Op-
tions menu described before.

8 user manual

2.2 LAYOUT CUSTOMIZATION

The layout of Connection workspace can be freely customized in order to suit your
needs.

Connection	takes	care	of	saving	the	layout	configuration	on	application	exit,	in	order	to	
persist your preferences between different working sessions.

2.3 TOOLBARS AND DOCKING WINDOWS

2.3.1 SHOWING/HIDING

To show (or hide) a toolbar, open the View menu and select the desired toolbar or docking
window (for example, the Catalog dock window).

The element is then shown or hidden.

2.3.2 MOVING TOOLBARS

You can move a toolbar by clicking on its left border and then dragging and dropping it to
the destination.

The toolbar shows up in the new position.

You can change the shape of the toolbar, from horizontal to vertical, either by pressing the

 user manual 9

Shift key or by moving the toolbar next to the vertical border of any window.

You	can	also	make	the	toolbar	float,	either	by	pressing	the	CTRL key or by moving the
toolbar away from any window border.

2.3.3 MOVING DOCKING WINDOWS

In order to move a docking window, click on its name (at the top of the window) and then
drag and drop it to the destination.

10 user manual

You	can	make	the	tool	window	float,	by	double-clicking	on	its	name,	or	by	pressing	the	
CTRL key, or by moving the tool window away from the main window borders.

A tool window can be resized by clicking-and-dragging on its border until the desired size
is reached.

 user manual 11

3. MANAGING PROJECTS

3.1 CREATING A NEW PROJECT AND MAIN PAGE

When you open FREE Studio Connection, you are presented with the Main page.

In the General tab you can open the last recently opened projects (shown in upper sec-
tion) or insert a new device in the project, selecting it in the lower panel.

Here you can see all the “top level” devices that you can add, and this window shows
the same content of the Catalog window when the root item is selected in the Project
window; therefore it follows the same behavior with respect to the Show all versions
in catalog	flag.

With a just a click in the list, a new device is inserted in the project tree, ready to be con-
figured	and	programmed.

In the second tab of the Main page, named Networks list, you can manage a list of all
the “virtual networks” to be used in your project with the devices that will be connected
with Binding I/O.

For each network you have to choose a name, the protocol to use (CANopen or Ethernet/
ModbusTCP) and symbolic color to show as a small circle in the project tree; each device
connected to the same network will be shown with the same color.

While	by	default	you	already	have	two	predefined	networks	(one	CANopen	and	one	Ether-
net) you can add any number of other networks, to build complex scenarios.

12 user manual

3.2 SAVING THE PROJECT

To save the project, you can select the corresponding item of the menu File or the Main
toolbar.

The	Connection	project	is	a	single	file	that	has	.CON extension; it links other sub-com-
ponents (like PLC application or HMI pages) that typically reside in the same containing
folder.

If you are saving a new project (that is still Untitled), you are presented with a dialog
that asks you the new name for the project and the directory where to save it; the pro-
gram will create a folder of the chosen Name under the chosen Directory, and will save
a	file	named	like	Name.CON under it.

In the above example, the folder C:\Projects\Example1\ will be created and the project
will be saved as C:\Projects\Example1\Example1.CON.

If you want to save the project with another name, you can choose the command File /
Save as... and specify a new name and location for the .CON file.

IMPORTANT: only the .CON project	file	is	saved,	no	folder	is	created	nor	the	linked	com-
ponents (PLC or HMI) are copied or moved.

3.3 MANAGING EXISTING PROJECTS

3.3.1 OPENING AN EXISTING PROJECT

To open an existing project, click Open in the File menu of Connection’s main window,
or in the Main toolbar. This will open a dialog box, which lets you browse to the directory
containing	the	project	and	select	the	relative	project	file.

Otherwise, you can select one of recently opened projects from the File menu or in the
Main page.

3.3.2 CLOSING THE PROJECT

You can terminate the working session either by:

 - starting a new project, with the File / New command, or the button in the toolbar;

 - explicitly closing the current project with File / Close command;

 - by exiting Connection.

In	all	cases,	when	there	are	changes	not	yet	saved	to	file,	the	program	asks	you	to	choose	
between saving and discarding them.

 user manual 13

3.4 BUILDING PROJECTS

When you press the Build project button in the toolbar (or the F7 key), Connection will
examine the current project and will:

 - Print in the output window any error it found in the checking process; you can then
double-click the error to see the source position.

 - Generate	specific	configuration	files	for	each	device	(for	example	CONNEC.PAR for FREE
Evolution,	with	Field	and	Binding	configuration	settings).

 - Generate a single .CFN file	to	be	used	in	FREE	Studio	Device;	this	file	will	contain	all	
the	sub-components	of	the	current	project	(devices	configurations,	PLC	applications	and	
HMI pages) all contained inside the CFN,	in	a	redistributable	form;	this	file	will	have	the	
same name of the .CON project and will reside in the same folder.

Choosing the Tools / Open with FREE Studio Device command, Device will be
launched with the generated CFN file	opened.

IMPORTANT: before executing compilation, please make sure that all the PLC and HMI
sub-project have been built with the respective tools (FREE Studio Application and User-
Interface). In fact Connection will include in the CFN the last compilation output of each
sub-component, so you have to build them BEFORE compiling the Connection project.

3.5 DISTRIBUTING PROJECTS

This topic should be discussed in two different parts:

3.5.1 DISTRIBUTING TO OTHER DEVELOPERS

To distribute the full Connection project to other developers (for example for further de-
velopment or debugging) you can give the entire folder containing the .CON file,	that	has	
been	created	by	Connection	with	the	first	Save command.

In	this	way	all	the	sub-components	created	by	Connection	(PLC,	HMI,	CFN	file)	are	all	
contained	inside,	and	since	the	file	paths	are	maintained	as	relatives	the	project	can	be	
moved around; so other developers can open the Connection project anywhere and work
normally.

One important exception is for .CON projects that link external components, for example
external PLC projects (on an external directory, or taken from catalog); in this scenario
you will have to distribute all the external components manually, because they are not
self-contained in the main project folder.

3.5.2 DISTRIBUTING TO USERS OR INSTALLERS

In this scenario, it is enough to distribute the CFN	file	(FREE	Studio	Device	document)	
created	by	Connection;	you	will	be	able	to	download	everything	(PLC,	HMI,	config	files,	
parameters values) only using Device with a single click.

One important exception is for .CON projects that link external components from the
catalog (PLC and HMI), in this case the produced CFN file	will	not	include	them;	they	must	
be distributed manually.

14 user manual

 user manual 15

4. MANAGING PROJECT ELEMENTS

4.1 FREE EVOLUTION

FREE Evolution is one of the top-level devices that you can insert in the project.

On its main page you can change its name and see a picture of it.

It can run both a PLC application and HMI pages on the same CPU and has a lot of con-
nectivity capabilities, in terms of on-board connectors and may optional plug-ins.

Follows detailed description of each element.

16 user manual

4.1.1 PLC

This tree item lets you create or associate a PLC project to the FREE Evolution; the associ-
ated page shows the relative path of the associated PPJS	file	(Application	project).

If you do a right-click on the PLC, a pop-up menu will appear with the command Open
with FREE Studio Application; if the device has no associated project, you will be
prompted for the name to give to the new application (by default, the name of the device
with the _PLC	suffix).

Otherwise if a PLC project has already been associated, Application will be launched and
the existing PLC project opened.

If you want to manually associate an existing PLC project to the device, you can choose
between a project on the disk in a particular folder or choosing from the local catalog of
applications.

If a PLC project has been associated, the Export to catalog command in the pop-up
menu will be enabled, allowing you to export the application in the catalog for further
reuse.

4.1.2 HMI

This tree item lets you create or associate a HMI project to the FREE Evolution; the as-
sociated page shows the relative path of the associated PAJX file	(UserInterface	project).

 user manual 17

If you do a right-click on the HMI, a pop-up menu will appear with the command Open
with FREE Studio UserInterface; if the device has no associated project, you will be
prompted for the name to give to the new application (by default, the name of the device
with the _HMI	suffix).

Otherwise if a HMI project has already been associated, UserInterface will be launched
and the existing HMI project opened.

If you want to manually associate an existing HMI project to the device, you can choose
between a project on the disk in a particular folder or choosing from the local catalog of
applications.

If a HMI project has been associated, the Export to catalog command in the pop-up
menu will be enabled, allowing you to export the application in the catalog for further
reuse.

4.1.2.1 RETRIEVING REMOTE DATA FROM LOCAL HMI PAGES

If in your HMI pages project you have imported one or more parameter map, you can
configure	the	real	address	of	the	remote	device	here.

In fact by default any parameter map is considered as “local”, and if you want to view
in your page any parameter of a remote device you have to insert here (and so outside
and independently from UserInterface) the used protocol (Modbus RTU, Modbus TCP or
CANopen) and address.

In this way you can design the HMI pages in UserInterface as they were “local” and then
later change the real address of the remote device without even recompiling the PAJX
project (the change is made only in Connection).

To load or update the list of remote devices (parameter maps) inserted in the UserInter-
face project, press the Reload device list button; please remember to build the PAJX
project with UserInterface to have an updated list before doing this.

4.1.3 CANOPEN

FREE Evolution has one on-board CANopen port, plus another one available as an exter-
nal	plug-in.	Each	port	can	be	configured	as	Not used (disabled), Master	(field),	Slave
(binding).

4.1.3.1 FIELD

When	you	configure	the	CANopen	port	as	Master the FREE Evolution will act as a CANo-
pen master on this port, so you can attach any number of CANopen slave devices here
and exchange data with Field I/O.

18 user manual

For	a	CANopen	master	port,	you	have	to	configure	(see	5.1	for	further	informations):

 - Baud rate used in this CANopen network (in Kb/s).

 - Node ID for the master (1..127), by default is 127.

 - Heartbeat time in ms, by default 0 (heartbeat producer disabled): it is the master pro-
ducer heartbeat time.

 - The SYNC COBID to use, by default 128.

 - The period for the SYNC cycle in ms, by default 0 (sync disabled).

Example of possible slaves are the FREE Evolution Expansion module (see 4.5) or generic
custom	devices	imported	from	their	EDS	files	(CAN	custom,	see	4.4).

After	you	added	and	configured	the	various	CANopen	slaves,	you	can	establish	the	“link”	
between the remote objects of the slave and the internal PLC variables to read or write.

The set of PLC objects you can read or write is made of:

 - Status variables, created with FREE Studio Application (not BIOS).

 - Field variables, created with FREE Studio Application.

4.1.3.2 BINDING

When	you	configure	the	CANopen	port	as	Slave the FREE Evolution will act as a CANopen
slave on this port, so you can exchange data with Binding I/O with other FREE Evolution
devices on the CANopen network.

Configuring the port

 user manual 19

For	a	CANopen	slave	port,	you	have	to	configure:

 - Baud rate used in this CANopen network (in Kb/s).

 - Node ID for the slave (1..127), by default is 127.

 - The “virtual network” where this FREE Evolution is attached; in the tree will appear a
small colored circle of same color of the chosen network (same color means same net-
work).

The Binding object

When	you	configure	a	CANopen	port	as	Slave, you can add under it a Binding object:
add it if a device wants to READ objects from other ones, while it not needed if the device
only SEND objects on the network.

The set of PLC objects you can send or receive is made of:

 - EEPROM parameters, created with FREE Studio Application (not BIOS).

 - Status variables, created with FREE Studio Application (not BIOS).

Clicking the Binding	object	shows	its	configuration	page:	here	is	a	grid	where	you	have	
to insert all the remote objects to read, and link them to the local destinations.

To do this click the Add button, a window showing all the “public” objects from all other
devices	on	this	same	network	will	appear;	here	you	can	apply	search	filters	and	choose	
which objects to read from (multi-selection is also supported).

20 user manual

Once you inserted the remote objects to read, you have to assign the local destination
locations to write to, choosing with the list in the Dest parameter column or manually
inserting the Address.

IMPORTANT: please remember to rebuild the PLC project with Application to see an up-
dated list of public objects here.

In the above example:

 - Evo1 will read from Evo2 the evo2_par1 object and will put it in its local evo1_par1
object.

 - Evo1 will read from Evo2 the evo2_par2 object and will put it in its local evo1_par2
object.

In the Period	you	can	configure	in	detail	the	single	period	for	each	parameter;	the	object	
will be updated every “period” ms.

4.1.4 RS485

FREE Evolution has one on-board RS485 port, plus another one available as an external
plug-in.	Each	port	can	be	configured	as	Not used (disabled) or Master	(field).

4.1.4.1 FIELD

When	you	configure	the	RS485	port	as	Master the FREE Evolution will act as a ModbusRTU
master on this port, so you can attach any number of Modbus slave devices here and ex-
change data with Field I/O.

For	a	Modbus	master	port,	you	have	to	configure:

 - Baud rate used in this Modbus network (in b/s).

 - Serial mode (parity, data bits, stop bits).

 user manual 21

Example of possible slaves are the FREE Evolution Expansion module (see 4.5), Generic
Modbus devices (see 4.2), or custom devices created with the ModbusCustomEditor tool
(see 4.3).

After	you	added	and	configured	the	various	Modbus	slaves,	you	can	establish	the	“link”	
between the remote objects of the slave and the internal PLC variables to read or write.

The set of PLC objects you can read or write is made of:

 - Status variables, created with FREE Studio Application (not BIOS).

 - Field variables, created with FREE Studio Application.

4.1.5 ETHERNET

FREE Evolution can have one Ethernet port, available as an external plug-in. The port
always	acts	a	Modbus	TCP	slave,	and	additionally	can	be	configured	also	as	Master (bind-
ing).

4.1.5.1 BINDING

Configuring the port

For	an	Ethernet	port,	you	have	to	configure:

 - if it acts also a Master (otherwise only Slave is implied);

 - its IP address;

 - the “virtual network” where this FREE Evolution is attached; in the tree will appear a
small colored circle of same color of the chosen network (same color means same net-
work).

22 user manual

The Binding object

When	you	configure	a	Ethernet	port	as	Master, you can add under it a Binding object:
add it if a device wants to READ objects from other ones, while it not needed if the de-
vice only SEND objects on the network (in this case you do not even need to activate the
Master feature).

The set of PLC objects you can send or receive is made of:

 - EEPROM parameters, created with FREE Studio Application (not BIOS).

 - Status variables, created with FREE Studio Application (not BIOS).

The	configuration	page	for	the	Binding object in Modbus TCP is the same of CANopen, so
see 4.1.3.2 for a description and usage of this page.

Because the interface is the same between the two protocols, you can focus on designing
your	distributed	application	without	knowing	the	specific	communication	protocol	details.

The only difference from CANopen Binding is that here you have one more column named
Timeout,	where	you	can	configure	the	specific	time-out	in	ms	for	each	object	exchanged.

4.2 FREE EVOLUTION EVC

FREE Evolution EVC is a top-level device that has the same characteristics and network
behaviour of a FREE Evolution device but does not support local HMI. In fact it has no
on-board display to show its own pages. FREE Evolution EVC supports HMI Remote so
its pages can be downloaded and shown by FREE Evolution EVK or FREE Evolution EVP
keyboards.

Please refer to 4.1 - FREE Evolution chapter for a full description of all FREE Evolution EVC
features.

Usage example

In this scenario FreeEvolution EVC_1 device has a PLC project and has an HMI Remote
project that makes available EVC pages for linked keyboards.

EVC HMI Remote pages can be remoted and shown by FreeEvolution EVK_1 via CANopen

 user manual 23

field	and	by	FreeEvolution	EVP_1	via	Ethernet	network.

4.3 GENERIC MODBUS

The Generic Modbus object is a generic Modbus slave that can be inserted under the
RS485	port	of	the	FREE	Evolution,	when	configured	as	Modbus master.

You can use the Generic Modbus	when	you	want	to	manually	configure	and	have	full	con-
trol over the single Modbus messages to send to the slave.

Another typical usage is for third-party devices that you plan to use just once in your
projects, and you do not want to put in the catalog for future reuse.

In the main page of the Generic Modbus	you	can	configure:

 - A name for the object in the project.

 - Its Modbus address (in the range 1..247).

 - Its Node number (in the range 0..127); this value is incremented automatically, and can
be used in the PLC program to index the SysMbMRtuNodeStatus[] array, that cointains
diagnostic information about each slave node.

4.3.1 MODBUS MESSAGES

The Generic Modbus object alone will do nothing; you have to add under it one or more
Modbus messages,	 that	are	specific	Modbus	 function	requests	 that	will	be	sent	on	 the	
bus.

The following messages are supported:

 - Function 2 (Read discrete inputs, 0x2): reads one or more read-only digital input (1-bit
objects).

 - Function 3 (Read holding registers, 0x3): reads one or more read-write register (16-bit
objects).

 - Function 4 (Read input registers, 0x4): reads one or more read-only register (16-bit
objects).

 - Function 15 (Write multiple coils, 0xF): writes one or more digital output (1-bit ob-
jects).

 - Function 16 (Write multiple registers, 0x10): writes one or more register (16-bit ob-
jects).

The messages will be processed in the order they are inserted in the tree.

24 user manual

4.3.1.1 GENERAL TAB

For each message, in its General	tab	you	can	configure.

 - Start	address:	address	of	the	first	modbus	object	to	read	or	write	(1..65536).

 - Polling time: the message will be processed with this period (ms); for writing opera-
tions, 0 means to write it only on variation of the value, for reading operations 0 means
maximum speed.

 - Timeout: the operation will fail when this time-out expires (ms).

 - Wait before send: this is an additional timeout, to be used with slow slaves that do not
answer if the messages are sent too fast.

4.3.1.2 REGISTERS TAB

Beside the General	tab,	each	different	message	has	a	second	tab	where	you	can	config-
ure the list of objects to read or write.

Using the Add button, insert one row for each Modbus object to read or write, up to 16 ele-
ments;	the	first	row	has	the	address	configured	in	the	Start address box in the General
tab, and the other rows increment and follow.

For each row, press the Assign button to choose the PLC object to link and to be read or
written with this Modbus message; you can not leave unassigned rows in the message.

IMPORTANT: please remember to rebuild the PLC project with Application to see an up-
dated list of PLC variables here.

 user manual 25

4.4 MODBUS CUSTOM

Modbus custom devices can be created and edit directly by the user.

In this way you can use in your project and add in the catalog for future reuse any third-
party	Modbus	slave,	 characterizing	 its	Modbus	map	only	 the	first	 time	and	simplifying	
its further use, because you do not have to care about Modbus messages and functions
anymore.

4.4.1 CREATING A NEW MODBUS CUSTOM DEVICE

To create a new Modbus custom device, choose Tools / Run ModbusCustomEditor; the
external ModbusCustomEditor tool will be launched, with a new empty document.

Here	you	can	configure:

 - Name of the device.

 - Long description for the device.

 - A version number.

 - Overlapping of bit and register maps: check this if the device has both a 0 register and
a 0 bit (in other words it has different addressing of 16-bit and 1-bit objects), uncheck
this	if	the	address	is	unique	and	so	duplicated	are	not	allowed,	even	if	the	type	is	dif-
ferent.

 - Max message size: insert here the maximum number of registers per message sup-
ported by the device.

Then, using the Add button, add one row for each Modbus object of the device; you have
to insert its address, name, type (note that Type and Read only columns are linked with
the Modbus type column) and optionally a long description.

When	you	finish,	save	the	current	device	definition;	you	will	be	prompted	for	a	file	name	
with .PCT extension, by default it will be proposed the current name+version.

The	file	will	be	saved	in	the	special	ModbusCustom folder in the catalog; now you can close
the ModbusCustomEditor and go back in Connection to use the new device.

4.4.2 EDITING AN EXISTING MODBUS CUSTOM DEVICE

To edit an existing Modbus custom device, you can:

 - Run the ModbusCustomEditor with the Tools / Run ModbusCustomEditor command,
and	then	manually	open	the	PCT	file	with	the	standard	File / Open command.

26 user manual

 - When the device you want to edit is visible in the Catalog window (for example when
a RS485 node is selected and is in Master mode), you can right-click on it and choose
the Edit device command; the ModbusCustomEditor will be launched and the selected
device opened.

IMPORTANT: when the ModbusCustomEditor is running, Connection is blocked waiting for
it to be closed.

4.4.3 DELETING A MODBUS CUSTOM DEVICE

To delete an existing Modbus custom device, when the device is visible in the Catalog
window do a right-click and choose Delete from catalog (see previous paragraph).

4.4.4 USING A MODBUS CUSTOM DEVICE

When you insert the Modbus custom device as a Modbus slave (for example under a
RS485 port) and click on it on the tree, you will see a page with three tabs.

4.4.4.1 GENERAL TAB

In the General	tab	you	can	configure:

 - Its Modbus address (in the range 1..247).

 - Its Node number (in the range 0..127); this value is incremented automatically, and can
be used in the PLC program to index the SysMbMRtuNodeStatus[] array, that cointains
diagnostic information about each slave node.

 - Polling time: the Modbus messages will be processed with this period (ms); for writ-
ing operations, 0 means to write it only on variation of the value, for reading operations
0 means maximum speed.

 - Timeout: the operation will fail when this time-out expires (ms).

 user manual 27

 - Wait before send: this is an additional timeout, to be used with slow slaves that do
not answer if the messages are sent too fast.

Here you can notice that for Modbus custom the Polling time, Timeout and Wait before
send are generic for the whole device, while for the Generic Modbus	you	can	put	specific	
different values for each single message. This is because with the Modbus custom the
low-level Modbus messages are automatically calculated and you do not have to worry
about	them,	but	as	a	side-effect	you	can	not	“fine-tune”	them,	because	these	settings	
are global.

4.4.4.2 INPUT/OUTPUT TAB

Then, in the Input and Output tabs you can insert one row for each Modbus object to
read or write; press the Add button and choose the parameters to exchange (multi selec-
tion is supported), and use the Assign button to link them to the PLC object to be read
or written to.

Insert in the Input tab the Modbus objects to READ from the Modbus slave (and to put
into PLC variables), and insert in the Output tab the Modbus objects to WRITE to the
Modbus slave (and to get from the PLC variables).

IMPORTANT: please remember to rebuild the PLC project with Application to see an up-
dated list of PLC variables here.

FREE	Studio	Connection	will	create	the	correct	Modbus	messages	analyzing	the	sequence	
of	addresses	and	types;	if	the	addresses	are	consequent	and	the	types	are	homogenous,	
different objects will be grouped in single messages to optimize the communication.

The	maximum	number	of	registers	configured	with	the	ModbusCustomEditor	is	also	con-
sidered, along with the maximum number of registers per message of the master (that is
16 for the FREE Evolution).

The grouping and generation of the Modbus messages is totally automatic and recalcu-
lated at each compilation, so you do not have to know technical details of the Modbus
protocol.

28 user manual

4.5 CAN CUSTOM

CAN custom device can be created and added to the Catalog by importing their EDS file.	In	
this way you can use any third-party CANopen device as a slave, if it provides a standard-
compliant EDS file	(Electronic	Data	Sheet),	that	follows	the	DS306	CiA	specification.

4.5.1 IMPORTING A NEW CAN CUSTOM DEVICE

To import a new CAN custom device, choose Tools / Import from EDS command.

The Import EDS window will appear.

Here	you	have	to	configure:

 - The source EDS file	to	import,	using	the	Choose... button.

 - The full name of the device (by default is Product name + Revision).

 - The short name, this must not include any special character or spaces.

 - If the device supports dynamic PDO mapping or not: if you activate this option, you will
be	able	to	manually	configure	and	change	the	default	PDO	mapping	read	from	the	EDS	
to match the actual mapping of the slave, otherwise the PDO mapping will be read-only
and determined only by the EDS default values

After you have chosen the EDS file,	the	window	will	show	a	resume	of	the	device	charac-
teristic and number of objects (detailed in mandatory, optional, manufacturer).

 user manual 29

4.5.2 DELETING A CAN CUSTOM DEVICE

When the device you want to delete is visible in the Catalog window (for example when
a CANopen port is selected and is in Master mode), you can right-click on it and choose
the Delete from catalog command.

4.5.3 USING A CAN CUSTOM DEVICE

When you insert a CAN custom device as a CANopen slave (for example under a CANopen
port) and click on it on the tree, you will see the following page.

4.5.3.1 GENERAL TAB

In the General	tab	you	can	configure	(see	5.1	for	further	informations):

 - Node number (1..127).

 - Node guard period in ms (default 200ms), 0 to disable node guard for this slave; if not
zero is the interval of node guarding packets sent by the master to the slave.

 - Life time factor (default 3x), 0 to disable node guard for this slave; if not zero, mul-
tiplied for the Node guarding period is the maximum amount of time the master will
wait for the slave answer of the node guard.

 - Boot time elapsed: this is the maximum amount of time in ms that the master will
wait for the slave to become pre-operational at boot (default 10s), before signaling an
error.

 - Node heartbeat producer time in ms, default is 0 (heartbeat disabled); if not zero
the master will enable the heartbeat error handling check for this node.

 - Node heartbeat consumer time in ms, default is 0 (heartbeat disabled); it is the
maximum amount of time the slave will wait for the heartbeat produced by the master,
before timing out. This should be greater than the Heartbeat time of the master.

30 user manual

 - Master heartbeat consumer time in ms, default is 0 (heartbeat disabled); it is the
maximum amount of time the master will wait for the heartbeat sent by the slave, be-
fore timing out. This should be greater than the Node heartbeat producer time.

 - Identity object check: when this option is enabled (the default) the master at boot
will check the slave for his identity, verifying that the Identity object	fields	(object	
0x1018) match with EDS default values (Vendor ID, Product code, Revision, Serial); if
the option is not enabled, no check will be done (this is useful for example with slaves
not	totally	CANopen-compliant	or	incorrect	EDS	files).

 - PDO Tx comm settings:	configure	here	the	transmission	mode	for	PDO	Tx;	depending	
on the device features (determined from EDS values), not all options may be avail-
able.

 - PDO Rx comm settings:	configure	here	the	transmission	mode	for	PDO	Rx;	depending	
on the device features (determined from EDS values), not all options may be avail-
able.

4.5.3.2 SDO SET TAB

In this page you can insert a list of objects and values to send to the slave at boot for
configuration	purpose,	using	SDO	packets.

Press the Add button, choose the objects to send and then insert their Value in the grid.

Some objects are handled automatically, for example the Transmission type and Event
timer	are	configured	automatically	depending	on	the	PDO Tx comm settings and PDO Rx
comm settings in the General tab.

4.5.3.3 PDO TX AND PDO RX TABS

 user manual 31

In the PDO Tx - Input	tab	you	configure	the	PDOs	(Process	Data	Object)	that	the	slave	
transmits, and so the master will receive in input; in the PDO Rx - Output	you	configure	
the PDOs that the slave receives, and so the master will send in output.

If the CAN custom device was imported with the Dynamic PDO mapping enabled, you will
be able to edit the PDO mapping by adding and removing objects and manually edit the
PDO and Bit columns; otherwise, the Add and Remove buttons will not be available and
you	have	to	use	the	PDO	configuration	as-is.

If you check the Split single bits option, the object you choose will be inserted as
splitted single bits to be linked to BOOL variables (that is the default for digital I/O objects
in the DS401 standard).

IMPORTANT:	please	note	that	the	PDO	mapping	configuration	you	enter	here	is	NOT	sent	
to	the	device,	its	only	purpose	is	to	match	an	already	configured	PDO	mapping	on	the	
device.

Then with the Assign button you can link each CAN object with the PLC variable to read
(PDO Tx) or write (PDO Rx).

IMPORTANT: please remember to rebuild the PLC project with Application to see an up-
dated list of PLC variables here.

4.6 FREE EVOLUTION EVK

FREE Evolution EVK is a keyboard with a display. It is used to show HMI Remote pages
that are made available by FREE Evolution or FREE Evolution EVC devices.

EVK keyboard has not PLC, HMI and HMI Remote features and it has one on-board CANo-
pen port.

EVK can maintain on-board no more than one HMI set of remote device pages.

4.6.1 CANOPEN

FREE	Evolution	EVK	can	be	connected	to	FREE	Evolution	or	to	FREE	Evolution	EVC	in	field	
mode or in network mode.

32 user manual

4.6.1.1 FIELD MODE

In this connection mode FREE Evolution EVK has to be considered a slave of FREE Evolu-
tion. EVK will be able to show only the remote pages of the master device which is linked
to.

To	configure	network	in	this	way	select	FREE	Evolution	or	FREE	Evolution	EVC	and	add	it	
as	first	level	node;	then	configure	its	PLC,	HMI,	and	HMI	Remote	projects	normally.

The project associated to FreeEvolution_1 - HMI Remote node will be shown by FREE
Evolution EVK device.

Click on CANopen and select Master	(for	field)	option	in	Mode	tab	and	configure	CANopen	
settings. Then FREE Evolution EVK device can be selected from Catalog, dragged and
dropped over CANopen node.

Select FreeEvolution EVK_1 device child node and adjust network settings.

 user manual 33

As resulting output of the compiling process we see the output line:

FreeEvolution_1: added field CAN keyboard ‘FreeEvolution EVK_1’ (with
virtual master nodeID 124)

FreeEvolution EVK_1 device communicates with FreeEvolution_1 using this CAN nodeID.
This node ID will be used for navigating remote pages.

4.6.1.2 NETWORK MODE

In this connection mode free Evolution EVK can be linked to one of the remote devices
that are available on the network to navigate HMI Remote pages provided by other de-
vices.

Using Connection it is possible to do so indicating one of the available HMI Remote device
of the network. Let’s see how with an example.

We have a CANOpen network with FreeEvolution_1 and FreeEvolution EVC_1, then add as
first	level	node	FreeEvolution	EVK_1	to	the	network	taking	it	from	Catalog panel.

Click on CANOpen node of FreeEvolution EVK_1 and select Master (for HMI remoting)
node,	assign	univoque	Node	ID	and	select	network CANOpen1.

Once linked to the CANopen1 network it is possible to select the HMI remote pages to
navigate with FreeEvolution EVK_1.

Click on the device node then click on Add. Window Add HMI Remote pages will be shown.
It is possible to select to navigate pages of FreeEvolution_1 or FreeEvolution EVC_1 be-
cause they are on the same network of the keyboard and provide HMI Remote pages.

34 user manual

Click on FreeEvolution_1, then click on OK. Selected device will be added to HMI Remote
Pages. It is not possible to navigate more than one remote device at a time.

4.7 FREE EVOLUTION EVP

FREE Evolution EVP is an advanced keyboard with display that can be used to navigate
HMI Remote pages and offers more connectivity (CANopen, RS485, Ethernet) than FREE
Evolution EVK. It can also run PLC and local HMI pages and it is also provided with probes.

4.7.1 PLC

FREE	Evolution	EVP	can	run	PLC.	This	configuration	step	can	be	done	in	the	same	way	of	
FREE Evolution and is fully described in section 4.1.1 - PLC.

4.7.2 HMI

FREE	Evolution	EVP	can	run	local	HMI	project	with	its	own	pages.	This	configuration	step	
can be done in the same way of FREE Evolution and is fully described in section 4.1.2 -
HMI.

 user manual 35

4.7.3 PROVIDING HMI PAGES

This feature is not supported by FREE Evolution EVP. No linked device can upload HMI
pages from FREE Evolution EVP device.

4.7.4 CANOPEN

FREE	Evolution	EVP	can	be	connected	using	CANopen	in	field	mode	or	in	network	mode.

4.7.4.1 FIELD MODE

To connect FREE Evolution EVP in this mode select FREE Evolution or FREE Evolution
EVC CANopen node and select the option Master	(for	field)	then	take	FREE	Evolution	EVP	
device from Catalog tab and drop it over CANopen node.

Select FreeEvolution EVP_1	child	node	and	configure	Network settings.

Probes

FreeEvolution_1 can access on board FreeEvolution EVP_1 on-board probes. To do so
select Probes-Input tab then it is possible to map a FreeEvolution_1 parameter to let it
obtain the value of an on-board free Evolution probe.

Choose one of the probe and click on Assign button. Take one of the FreeEvolution_1 INT
parameter and click OK button.

36 user manual

HMI

It	is	possible	to	associate	to	a	FREE	Evolution	EVP	(configured	as	CANopen	field	slave)	an	
HMI project with local pages. FREE Evolution EVP would be able to show its own target
variables and parameters of the master CANopen which belongs to.

4.7.4.2 NETWORK MODE

In this connection mode FREE Evolution EVP can be linked to one of the remote devices
that are available on the network to navigate HMI Remote pages provided by other de-
vices.

Using Connection it is possible to do so by indicating one of the available HMI Remote
device of the network. Let’s see how with an example.

We have a CANopen network with FreeEvolution_1 and FreeEvolution EVC_1 then add as
first	level	node	FreeEvolution EVP_1 to the network taking it from Catalog panel.

Click on CANOpen node of FreeEvolution EVP_1 and select Master (for HMI remoting and
binding)	node,	assign	univoque	Node ID and select network CANOpen1.

Binding of variables between FreeEvolution EVP_1 and FreeEvolution EVC_1 and FreeEvo-
lution_1 is allowed in a network of this type (see 4.1.3.2 for more details).

 user manual 37

HMI Remote pages

In	CANopen	network	mode	it	is	possible	to	configure	FREE	Evolution	EVP	in	order	to	be	
linked to 0 to 10 remote devices that can provide HMI Remote pages to the keyboard.

To add HMI Remote pages select FreeEvolution EVP_1 node, then press Add on the HMI
Remote pages box thus all available devices will be shown and the user can select the
pages to navigate.

4.7.5 RS485

The usage of this communication feature is the same of FREE Evolution (see 4.1.4 -
RS485 paragraph).

4.7.6 ETHERNET

FREE	Evolution	EVP	is	provided	with	on-board	Ethernet.	Ethernet	configuration	and	fea-
tures	for	this	kind	of	device	is	similar	to	the	configuration	of	the	Ethernet	plugin	of	FREE	
Evolution (see 4.1.5 – Ethernet).

4.8 FREE EVOLUTION EXP

FREE	Evolution	EXP	is	a	device	that	can	be	linked	in	a	CANopen	field	or	Modbus	RTU	field	
network whose master can be a FREE Evolution, a FREE Evolution EVC or a FREE Evolu-
tion EVP device.

FREE	Evolution	EXP	main	feature	is	to	provide	a	lot	of	I/O	signal	to	its	field	master	device.	
I/O	signals	mapping	can	be	configured	by	using	Connection.

38 user manual

4.8.1 USING FREE EVOLUTION EXP AS CANOPEN FIELD SLAVE

In	this	configuration	sample	we	want	to	use	FREE	Evolution	EXP	as	expansion	of	a	FREE	
Evolution device. The same can be done for FREE Evolution EVC and FREE Evolution EVP.

Configure	FREE	Evolution	CANopen	in	Master	(for	field)	mode.	From	the	Catalog panel it
is possible to select FreeEvolutionExp node and drop it on the CANopen node.

FreeEvolution	EXP	configuration	is	quite	similar	to	CAN	Custom	configuration	(see	4.5.3	-		
Using a CAN custom device) with dynamic PDO mapping feature disabled. Available Input/
Output objects that can be mapped on FREE Evolution PLC variables via PDO are listed in
PDO TX-Input and PDO RX-Output.

Connection knows the FREE Evolution EXP dictionary. Each object can be here linked to
FreeEvolution_1	PLC	variable	as	it	has	been	done	in	the	above	figure	for	Analogue Input
1 signal.

4.8.2 USING FREE EVOLUTION EXP AS RS485 FIELD SLAVE

In	this	configuration	sample	we	want	to	use	FREE	Evolution	EXP	as	expansion	of	a	FREE	
Evolution device. The same can be done for FREE Evolution EVC and FREE Evolution EVP.

Configure	FREE	Evolution	RS485	in	Modbus Master	(for	field)	mode.	From	the	Catalog
panel it is possible to select FreeEvolutionExp node and drop it on the RS485 node.

 user manual 39

FreeEvolution	EXP_1	configuration	is	quite	similar	to	a	Modbus	Custom	device	configura-
tion (see 4.4.4 - Using a Modbus custom device) in which it is possible to assign available
FREE Evolution EXP dictionary I/O objects to FreeEvolution_1 PLC variables.

Connection knows the FREE Evolution EXP dictionary. Input and Output objects can be
added, removed, assigned, unassigned or changed in position. Only assigned objects will
be	requested	by	FreeEvolution_1	device.

4.9 VIRTUAL CHANNELS ASSIGNMENT CRITERIA

This paragraph concerns the criteria used by Connection to assign virtual node IDs due to
the	network	configuration.

4.9.1 CANOPEN NETWORK - VIRTUAL SDO SERVERS

When CANopen is in use on a FREE Evolution or FREE Evolution EVC device in slave mode
(network for binding) three SDO servers are activated on it.

First	SDO	server	is	used	to	process	requests	that	arrives	to	its	physical	node	ID	(the	ID	
assigned	by	user	in	the	configuration	box).	Supervisor	PC	should	be	connected	using	this	
node ID. CANopen physical node ID addr must be chosen in a range between 1 to 42.

Two other virtual SDO servers are opened on this device and are dedicated to the com-
munication with keyboards (max 2 for each CANopen network). So the device is able to
process	requests	addressed	to	these	node	IDs.

Virtual SDO servers node IDs are calculated with this criteria:

ch_1 = 124 – 2 * (addr – 1)

ch_2 = 123 – 2 * (addr – 1)

The	first	keyboard	on	the	network	communicates	to	the	destination	FREE	Evolution	device	
using ch_1, channel ch_2 is dedicated to the second.

Example:

addr = 1 -> ch_1 = 124, ch_2 = 123

addr = 2 -> ch_1 = 122, ch_2 = 121

4.9.2 ETHERNET - TCP SLAVE CHANNELS

If Ethernet network communication is enabled on a FREE Evolution or FREE Evolution EVC
device two TCP slave channels are always opened to support the communication with
keyboards.

4.9.3 CANOPEN FIELD - VIRTUAL MASTER CHANNELS

When CANopen is in use on a FREE Evolution or FREE Evolution EVC device in master
mode	(field)	three	master	channels	are	opened.

First	master	channel	is	used	to	process	requests	that	arrive	to	its	physical	node	ID	(the	
ID	assigned	by	user	in	the	configuration	box).	Supervisor	PC	should	be	connected	using	
this node ID. CANopen physical node ID addr must be chosen in a range between 1 to
122 or 125.

Two other virtual master channels are opened on this device and are dedicated to the
communication with keyboards (max 2 for each CANopen network).

Virtual	master	node	IDs	have	fixed	values	:

ch_1 = 123

ch_2 = 124

40 user manual

 user manual 41

5. TECHNICAL REFERENCE

5.1 CANOPEN PROTOCOL

5.1.1 OVERVIEW

CANopen realizes a communication model using the serial bus network Controller Area
Network (CAN).

Developed originally for passenger cars, the CAN two-wire bus system is already in use in
over one million industrial control devices, sensors and actuators.

CiA	(CANopen	in	Automation)	maintains	the	CANopen	specifications,	including	device	pro-
files	for	I/O	modules	(CiA	DS-401),	for	electric	drive	systems	(CiA	DSP-402)	and	many	
more.	The	process	of	defining	new	profiles	is	continually	performed.	An	independent	test	
and	certification	process	is	available	at	CiA.

A number of CANopen implementations (OEM code) and many CANopen products are al-
ready available. CiA regularly publishes an up-to-date catalog of CANopen products and
of	certified	ones.

5.1.2 PHYSICAL STRUCTURE OF A CANOPEN NETWORK

The	underlying	CAN	architecture	defines	the	basic	physical	structure	of	the	CANopen	net-
work.	Therefore,	a	line	(bus)	topology	is	used;	to	avoid	reflections	of	the	signals,	both	
ends of the network must be terminated. In addition, the maximum permissible branch
line lengths for connection of the individual network nodes must be observed.

Additionally,	for	CANopen,	two	additional	conditions	must	be	fulfilled:

 - all	nodes	must	be	configured	to	the	same	bit	rate	and

 - no node-ID may exist twice.

Unfortunately there are no mechanisms automatically ensuring these conditions. The sys-
tem integrator has to check the bit rate and node-ID of every single network node when
wiring a network and adjust if necessary.

5.1.3 COB AND COB-ID

CANbus, the physical layer of CANopen, can transmit short packages of data (called COB,
Communication Object), that have a 11-bit ID or 29-bit ID (in version CAN 2.0 B); this
ID	of	a	CAN-frame	is	known	as	Communication	Object	Identifier,	or	COB-ID.	In	case	of	a	
transmission collision, the bus arbitration used in the CANbus allows the frame with the
smallest	ID	to	be	transmitted	first	and	without	a	delay.	Thus	giving	a	low	code	number	for	
time critical functions ensures the lowest possible delay.

5.1.4 THE OBJECT DICTIONARY

All device parameters are stored in an object dictionary. This object dictionary contains the
description, data type and structure of the parameters as well as the address from others
point of view. The address is being composed of a 16 bit index and a 8 bit sub-index; the
sub-index refers to the elements of complex data types, like arrays and records.

There are a range of mandatory entries in the dictionary which ensures that all CANopen
devices of a particular type show the same behavior. The object dictionary concept ca-
ters for optional device features which means a manufacturer does not have to provide
certain extended functionality on his device, but if he wishes to do so he has to do it in a
pre-defined	fashion.	Additionally,	there	is	sufficient	address	space	for	truly	manufacturer	
specific	functionality.

42 user manual

5.1.5 THE SERVICE DATA OBJECTS (SDO)

Service Data Messages, in CANopen called Service Data Objects (SDO), are used for read
and write access to all entries of the object dictionary of a device. Main usage of this type
of	messages	is	the	device	configuration;	SDOs	are	typically	transmitted	asynchronously.	
The	requirements	towards	transmission	speed	are	not	as	high	as	for	PDOs;	the	SDO	mes-
sage contains information to address data in the device object dictionary and the data
itself.

5.1.6 THE PROCESS DATA OBJECTS (PDO)

Process Data Messages, in CANopen called Process Data Objects (PDO), are used to per-
form the real-time data transfer between different automation units. PDOs have to be
transmitted	quickly,	without	any	protocol	overhead	and	within	a	predefined	structure.

The contents of the PDO is encoded in the PDO mapping entries. A PDO can contain up
to 8 bytes or 64 single data elements from the object dictionary (in the case of 64, that
are bit data); the data are described via its index, sub-index and length. The mapping
parameter of a PDO resides also in the object dictionary.

The mapping for the PDO can be static or changeable. If the mapping can be changed,
it is called dynamic PDO mapping; changing of mapping can be done in the state pre-
operational (default) or operational.

5.1.7 PDO TRANSMISSION MODES

For the PDOs different transmission modes are distinguished:

 - SYNC: PDO are transmitted according to the SYNC clock transmitted by the master.

 - EVENT: PDO are transmitted when the value changes (asynchronous).

 - CYCLIC: PDO transmission is periodic and timer-based.

 - RTR:	PDO	are	transmitted	only	on	master	request.

The communication parameters of a PDO reside in the object dictionary. The indices for
PDOs are built like follow:

 - PDO Tx: 0x1800 + PDO number.

 - PDO Rx: 0x1400 + PDO number.

The range of the PDO numbers is 1..512. that means up to 512 receive PDOs (RPDO) and
up to 512 transmit PDOs (TPDO) are possible for a device.

The communication parameter of PDOs are described with a structure: only sub-index 1
and 2 are mandatory.

Subindex 1 describes the used COB-ID of the PDO: a PDO communication channel be-
tween	two	devices	is	created	by	setting	the	TPDO	COB-ID	of	the	first	device	to	the	RPDO	
COB-ID of the second device. For PDOs a 1:1 and a 1:n communication is possible: that
means there is always only one transmitter, but an unlimited number of receivers.

The transmission type (sub-index 2) describes the kind of transmission; transmission type
1 means PDO will be triggered with each SYNC Object. If this entry has the value 240, the
PDO will be sent/received with each 240th SYNC. If the entry is 255, the transmission is
EVENT or CYCLIC, depending on the event timer (see below).

The	optional	entry	inhibit	time	(sub-index	3)	defines	a	minimum	time	period	between	two	
PDO transmissions. This feature ensures that messages with lower priorities than the ac-
tual PDO can be transmitted in the case of continuous transmission of the actual PDO.

The optional entry event timer (sub-index 5) is only relevant for asynchronous Transmit
PDOs: if this value is greater then zero, indicates the time to elapse for the CYCLIC; oth-
erwise means EVENT (on variation).

 user manual 43

5.1.8 THE EMERGENCY OBJECT

The Emergency Message (EMCY) is a service which signs internal fatal device errors.

The	EMCY	is	transmitted	with	highest	priority;	CANopen	defines	EMCY-Server	and	EMCY-
Clients, the server transmits EMCYs and the clients receive them.

The EMCY telegram consists of 8 bytes: it contains an emergency error code, the contents
of	object	and	5	byte	of	manufacturer	specific	error	code.

5.1.9 SYNC OBJECT AND TIME STAMP OBJECT

The SYNC Object is a network wide system clock. It is the trigger for synchronous mes-
sage transmission; the SYNC has a very high priority and contains no data in order to
guarantee	a	minimum	of	jitter.	The	SYNC	COB-ID	is	by	default	128,	but	can	be	config-
ured.

The Time Stamp Object provides a common time reference; it is transmitted with high
priority.

5.1.10 ERROR CONTROL: NODE GUARDING

The Node Guarding is the periodical monitoring of certain network nodes; each node can
be checked by the master with a certain period called “Node guard period”. If the node
does not answer after a time calculated as the guard period x “Life time factor”, the con-
nection should be considered lost.

This feature is enabled for a slave when both parameters are not zero; please note that
when it is enabled it has a big impact on network load.

5.1.11 ERROR CONTROL: HEARTBEAT

The Heartbeat is an error control service without need for remote frames: the Heartbeat
producer transmits periodically a heartbeat message; one or more heartbeat consumer
receive this message and monitor this indication.

Each heartbeat producer can use a certain period (heartbeat producer time); the heart-
beat starts immediately if the heartbeat producer time is zero.

The heartbeat consumer has to monitor the heartbeat producer; it has an entry for each
heartbeat producer in its own object dictionary. The heartbeat consumer time can be dif-
ferent for each heartbeat producer but should be greater than the heartbeat producer
time.

Heartbeat has a big impact on network load, but in practice the half of the load of the
node guarding.

5.1.12 THE NETWORK BEHAVIOR

Devices have four operative states: the initialization, the pre-operational, the
stopped and the operational one; the difference between master and slave devices is
the initiation of the state transitions.

The master controls the state transitions of each device in the network: after power-on
a device goes in the initialization, and then in the pre-operational automatically;
in this state reading and writing to its object dictionary via the service data object (SDO)
is	possible.	Therefore	the	device	can	now	be	configured:	this	means	setting	of	objects	or	
changing of default values in the object dictionary like preparing PDO transmission.

Afterwards the device can be switched into the operational” state via the command
Start Remote Node in order to start PDO communication. PDO communication can be
stopped by the network master by simply switching the remote node back to pre-opera-
tional by using the Enter Pre-Operational State command.

44 user manual

Via the Stop Remote Node command the master can force the slave(s) to the stopped
state. In this state no services besides network and error control mechanism are avail-
able.

The command Reset Communication resets the communication on the node: all commu-
nication parameters will be set to their defaults.

The application will be reset by Reset Node command, that resets all application param-
eter and then calls Reset Communication command.

5.1.13 THE BOOT-UP MESSAGE

After	a	CANopen	node	has	finished	 its	own	initialization	and	entered	 in	the	node	state	
pre-operational it has to send the Boot-up Protocol Message; this message indicated
that	the	slave	is	ready	for	work	(e.g.	configuration).

The master can wait for this message up to Boot time elapsed ms.

5.1.14 THE CANOPEN DEVICE PROFILES

A	device	profile	defines	a	 standard	kind	of	device:	 for	 these	standard	devices	a	basic	
functionality	has	been	specified,	that	every	device	has	to	implement.	The	CANopen	Device	
Profiles	ensure	a	minimum	of	identical	behavior	for	a	kind	of	devices,	and	this	guarantees	
an high degree of interoperability and vendor independence.

Each	device	has	to	fulfill	the	requirements	on	the	behavior;	furthermore	it	has	to	support	
all mandatory objects: these objects are parameter and data for the device.

Additionally the manufacturer can decide about supported optional objects; all param-
eters	and	data,	which	are	not	covered	by	the	standardized	device	profiles	can	be	realized	
as	manufacturer	specific	objects.

For	example,	 two	of	 the	most	commonly	used	Device	Profiles	are	DS401	(Generic	 I/O	
Modules) and DS402 (Drives and Motion Control).

5.2 MODBUS PROTOCOL

5.2.1 OVERVIEW

Modbus is a serial communication protocol. In simple terms, it is a method used for trans-
mitting	 information	over	serial	 lines	between	electronic	devices.	The	device	requesting	
the information is called the Modbus Master and the devices supplying information are
Modbus Slaves. In a standard Modbus network, there is one Master and up to 247 Slaves,
each	with	a	unique	Slave	Address	from	1	to	247;	the	Master	can	also	write	information	
to the Slaves.

Address 0 is used as broadcast address.

5.2.2 DATA TYPES

Information is stored in the Slave device in four different types: two types are on/off
discrete values (coils) and two are numerical values (registers).

 - Discrete Input Contacts (read only), 1-bit.

 - Discrete Output Coils (read/write), 1-bit.

 - Analog Input Registers (read only), 16-bit.

 - Analog Output Holding Registers (read/write), 16-bit.

To	handle	more	complex	data	types	(like	32-bit	integers	or	floating	point)	you	have	to	use	
two or more following registers and read or write them together.

 user manual 45

5.2.3 FUNCTION CODES

The	Modbus	protocol	specifies	different	“function	codes”	for	each	Modbus	message:

 - 01 (0x01): Read Discrete Output Coils.

 - 05 (0x05): Write single Discrete Output Coil.

 - 15 (0x0F): Write multiple Discrete Output Coils.

 - 02 (0x02): Read Discrete Input Contacts.

 - 04 (0x04): Read Analog Input Registers.

 - 03 (0x03): Read Analog Output Holding Registers.

 - 06 (0x06): Write single Analog Output Holding Register.

 - 16 (0x10): Write multiple Analog Output Holding Registers.

5.2.4 ERROR DETECTION AND CRC

CRC stands for Cyclic Redundancy check: it is two bytes added to the end of every Mod-
bus message for error detection. Every byte in the message is used to calculate the CRC.
The receiving device also calculates the CRC and compares it to the CRC from the sending
device: if even one bit in the message is received incorrectly, the CRCs will be different
and an error will result.

5.2.5 PROTOCOL VERSIONS

Versions of the Modbus protocol exist for serial port and for Ethernet and other networks
that support the Internet protocol suite. There are many variants of Modbus protocols:

 - Modbus RTU: This is used in serial communication (RS232 or RS485) and makes use
of a compact, binary representation of the data for protocol communication. The RTU
format follows the commands/data with a cyclic redundancy check checksum as an er-
ror check mechanism to ensure the reliability of data. Modbus RTU is the most common
implementation available for Modbus. A Modbus RTU message must be transmitted con-
tinuously without inter-character hesitations. Modbus messages are framed (separated)
by idle (silent) periods.

 - Modbus ASCII: This is used in serial communication and makes use of ASCII characters
for protocol communication. The ASCII format uses a longitudinal redundancy check
checksum. Modbus ASCII messages are framed by leading colon (‘:’) and trailing new-
line (CR/LF).

 - Modbus TCP: This is a Modbus variant used for communications over TCP/IP networks.
It	does	not	require	a	checksum	calculation	as	lower	layer	takes	care	of	the	same.

	1.	Basic concepts
	1.1	Entry point and container
	1.2	Composite applications and Field I/O
	1.3	Distributed applications and Binding I/O

	2.	Using the environment
	2.1	The workspace
	2.1.1	The main window
	2.1.2	The output window
	2.1.3	The project window
	2.1.4	The catalog window

	2.2	Layout customization
	2.3	Toolbars and docking windows
	2.3.1	Showing/hiding
	2.3.2	Moving toolbars
	2.3.3	Moving docking windows

	3.	Managing projects
	3.1	Creating a new project and main page
	3.2	Saving the project
	3.3	Managing existing projects
	3.3.1	Opening an existing project
	3.3.2	Closing the project

	3.4	Building projects
	3.5	Distributing projects
	3.5.1	Distributing to other developers
	3.5.2	Distributing to users or installers

	4.	Managing project elements
	4.1	FREE Evolution
	4.1.1	PLC
	4.1.2	HMI
	4.1.3	CANopen
	4.1.4	RS485
	4.1.5	Ethernet

	4.2	FREE Evolution EVC
	4.3	Generic Modbus
	4.3.1	Modbus messages

	4.4	Modbus Custom
	4.4.1	Creating a new Modbus custom device
	4.4.2	Editing an existing Modbus custom device
	4.4.3	Deleting a Modbus custom device
	4.4.4	Using a Modbus custom device

	4.5	CAN custom
	4.5.1	Importing a new CAN custom device
	4.5.2	Deleting a CAN Custom device
	4.5.3	Using a CAN custom device

	4.6	FREE Evolution EVK
	4.6.1	CANopen

	4.7	FREE Evolution EVP
	4.7.1	PLC
	4.7.2	HMI
	4.7.3	Providing HMI pages
	4.7.4	CANopen
	4.7.5	RS485
	4.7.6	Ethernet

	4.8	FREE Evolution EXP
	4.8.1	Using FREE Evolution EXP as CANopen field slave
	4.8.2	Using FREE Evolution EXP as RS485 field slave

	4.9	Virtual channels assignment criteria
	4.9.1	CANopen network - virtual SDO servers
	4.9.2	Ethernet - TCP Slave Channels
	4.9.3	CANopen field - virtual master channels

	5.	Technical reference
	5.1	CANopen protocol
	5.1.1	Overview
	5.1.2	Physical structure of a CANopen network
	5.1.3	COB and COB-ID
	5.1.4	The object Dictionary
	5.1.5	The Service Data Objects (SDO)
	5.1.6	The Process Data Objects (PDO)
	5.1.7	PDO transmission modes
	5.1.8	The Emergency Object
	5.1.9	SYNC Object and Time Stamp Object
	5.1.10	Error Control: Node guarding
	5.1.11	Error control: Heartbeat
	5.1.12	The Network Behavior
	5.1.13	The Boot-up Message
	5.1.14	The CANopen Device Profiles

	5.2	Modbus protocol
	5.2.1	Overview
	5.2.2	Data types
	5.2.3	Function codes
	5.2.4	Error detection and CRC
	5.2.5	Protocol versions

