Application
User Manual

Revision 1.3 - May 2011

Application User Manual

Revision 1.3 - 2011-05-20
Published by Eliwell Controls S.r.l.
Via dell'Industria, 15 Z.I. Paludi
32010 Pieve d’Alpago (BL)

© Eliwell Controls S.r.I. 2010.

All Rights Reserved.

||| |free BULIL

II

user manual

44l

Contents

1. Overview 1
1.1 The workspace 1
1.1.1 The output window 2
1.1.2 The status bar 2
1.1.3 The document bar 2
1.1.4 The watch window 3
1.1.5 The library window 3
1.1.6 The workspace window 5
1.1.7 The source code editors 6
2. Using the environment 7
2.1 Layout customization 7
2.2 Toolbars 7
2.2.1 Showing/hiding toolbars 7
2.2.2 Moving toolbars 7
2.3 Docking windows 9
2.3.1 Showing/hiding tool windows 9
2.3.2 Moving tool windows 10
2.4 Working with windows 11
2.4.1 The document bar 11
2.4.2 The window menu 12
2.5 Full screen mode 12
2.6 Environment options 13
3. Managing projects 15
3.1 Creating a new project 15
3.2 Uploading the project from the target device 15
3.3 Saving the project 17
3.3.1 Persisting changes to the project 17
3.3.2 Saving to an alternative location 17
3.4 Managing existing projects 18
3.4.1 Opening an existing Application project 18
3.4.2 Editing the project 18
3.4.3 Closing the project 18
3.5 Distributing projects 18
3.6 Project options 19
3.7 Selecting the target device 20
3.8 Working with libraries 20
user manual 111

3.8.1
3.8.2
3.8.3

4.1

4.1.1
4.1.2
4.1.3
4.1.4

4.2
4.2.1
4.2.2

4.3
4.3.1
4.3.2

4.4

4.4.1
4.4.2
4.4.3
4.4.4

4.5
4.5.1
4.5.2

4.6

5.1

5.1.1
5.1.2
5.1.3
5.1.4

5.2

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5

5.3

5.3.1
5.3.2
5.3.3

The library manager
Exporting to a library

Importing from a library or another source
Managing project elements

Program Organization Units
Creating a new Program Organization Unit
Editing POUs

Deleting POUs

Source code encryption

Variables
Global variables

Local variables

Tasks
Assigning a program to a task

Task configuration

Derived data types
Typedefs

Structures

Enumerations

Subranges

Browsing the project
object browser

Searching with the Find in project command
Working with Application extensions
Editing the source code

Instruction List (IL) editor
Editing functions

Reference to PLC objects
Automatic error location

Bookmarks

Structured Text (ST) Editor
Creating and editing ST objects
Editing functions

Reference to PLC objects

Automatic error location

Bookmarks

Ladder Diagram (LD) editor
Creating a new LD document
Adding/Removing networks

Labeling networks

20
22
23

25

25
25
26
27
28

29
29
35

36
36
37

37
37
39
41
42

44
44
53

55
57

57
57
57
57
58

58
58
58
59
59
59

59
60
60
60

v

user manual

5.3.4 Inserting contacts 61
5.3.5 Inserting coils 62
5.3.6 Inserting blocks 62
5.3.7 Editing coils and contacts properties 62
5.3.8 Editing networks 63
5.3.9 Modifying properties of blocks 63
5.3.10 Getting information on a block 63
5.3.11 Automatic error retrieval 63
5.4 Function Block Diagram (FBD) editor 64
5.4.1 Creating a new FBD document 64
5.4.2 Adding/Removing networks 64
5.4.3 Labeling networks 64
5.4.4 Inserting and connecting blocks 65
5.4.5 Editing networks 66
5.4.6 Modifying properties of blocks 66
5.4.7 Getting information on a block 66
5.4.8 Automatic error retrieval 66
5.5 Sequential Function Chart (SFC) Editor 67
5.5.1 Creating a new SFC document 67
5.5.2 Inserting a new SFC element 67
5.5.3 Connecting SFC elements 67
5.5.4 Assigning an action to a step 67
5.5.5 Specifying a constant/a variable as the condition of a transition 69
5.5.6 Assigning conditional code to a transition 69
5.5.7 Specifying the destination of a jump 71
5.5.8 Editing SFC networks 71
5.6 Variables editor 71
5.6.1 Opening a variables editor 72
5.6.2 Creating a new variable 73
5.6.3 Editing variables 73
5.6.4 Deleting variables 75
5.6.5 Sorting variables 76
5.6.6 Copying variables 77
6. Compiling 79
6.1 Compiling the project 79
6.1.1 Image file loading 79
6.2 Compiler output 80
6.2.1 Compiler errors 80
6.3 Command-line compiler 82
7. Launching the application 83
7.1 Setting up the communication 83
user manual \Y

7.1.1

7.2
7.2.1
7.2.2

7.3
7.3.1

7.4

8.1

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6

8.2

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7

8.3

8.4

8.4.1
8.4.2
8.4.3
8.4.4

8.5
8.5.1
8.5.2

8.6
8.6.1
8.6.2

9.1

9.1.1
9.1.2
9.1.3

Saving the last used communication port

On-line status
Connection status

Application status

Downloading the application

Controlling source code download
Simulation
Debugging

Watch window

Opening and closing the watch window
Adding items to the watch window
Removing a variable

Refreshment of values

Changing the format of data

Working with watch lists

Oscilloscope

Opening and closing the oscilloscope
Adding items to the oscilloscope
Removing a variable

Variables sampling

Controlling data acquisition and display
Changing the polling rate

Saving and printing the graph

Edit and debug mode
Live debug

SFC animation
LD animation
FBD animation

IL and ST animation

Triggers
Trigger window

Debugging with trigger windows

Graphic triggers

Graphic trigger window

Debugging with the graphic trigger window

Application reference

Menus reference
File menu
Edit menu

View menu

85

85
85
85

86
86

88
89

89
89
90
93
93
94
95

96
97
98
100
100
101
107
108

109

110
111
111
112
112

112
112
118

129
129
135

145

145
145
146
146

VI

user manual

9.1.4 Project menu 147
9.1.5 Debug menu 148
9.1.6 Communication menu 148
9.1.7 Scheme menu 149
9.1.8 Variables menu 150
9.1.9 Definitions menu 150
9.1.10 Window menu 150
9.1.11 Help menu 150
9.2 Toolbars reference 151
9.2.1 Main toolbar 151
9.2.2 FBD toolbar 152
9.2.3 LD toolbar 153
9.2.4 SFC toolbar 154
9.2.5 Project toolbar 155
9.2.6 Network toolbar 156
9.2.7 Debug toolbar 156
10. Language reference 157
10.1 Common elements 157
10.1.1 Basic elements 157
10.1.2 Elementary data types 157
10.1.3 Derived data types 158
10.1.4 Literals 160
10.1.5 Variables 161
10.1.6 Program Organization Units 164
10.2 Instruction List (IL) 170
10.2.1 Syntax and semantics 170
10.2.2 Standard operators 171
10.2.3 Calling Functions and Function blocks 172
10.3 Function Block Diagram (FBD) 173
10.3.1 Representation of lines and blocks 173
10.3.2 Direction of flow in networks 174
10.3.3 Evaluation of networks 174
10.3.4 Execution control elements 175
10.4 Ladder Diagram (LD) 177
10.4.1 Power rails 177
10.4.2 Link elements and states 177
10.4.3 Contacts 178
10.4.4 Coils 179
10.4.5 Operators, functions and function blocks 179
10.5 Structured Text (ST) 180
10.5.1 Expressions 180
user manual VII

10.5.2

10.6
10.6.1
10.6.2
10.6.3

10.7
10.7.1
10.7.2

Statements in ST

Sequential Function Chart (SFC)
Steps
Transitions

Rules of evolution

Application Language Extensions
Macros

Pointers

||| |free BULIL

181

186
186
188
189

191
191
192

VIII

user manual

44l

IR stocio

1. OVERVIEW

Application is an IEC61131-3 Integrated Development Environment supporting the whole
range of languages defined in the standard.

In order to support the user in all the activities involved in the development of an applica-
tion, Application includes:

textual source code editors for the Instruction List (briefly, IL) and Structured Text
(briefly, ST) programming languages (see Chapter 6.);

graphical source code editors for the Ladder Diagram (briefly, LD), Function Block Dia-
gram (briefly, FBD), and Sequential Function Chart (briefly, SFC) programming lan-
guages (see Chapter 6.);

a compiler, which translates applications written according to the IEC standard directly
into machine code, avoiding the need for a run-time interpreter, thus making the pro-
gram execution as fast as possible (see Chapter 7.);

a communication system which allows the download of the application to the target
environment (see Chapter 8.);

a rich set of debugging tools, ranging from an easy-to-use watch window to more pow-
erful tools, which allows the sampling of fast changing data directly on the target envi-
ronment, ensuring the information is accurate and reliable (see Chapter 9.).

1.1 THE WORKSPACE

The figure below shows a view of Application’s workspace, including many of its more
commonly used components.

Viprkspace Source code

windaw editors Dacument bar Watch window

I e R I

A3 = b il
L LT Lo e
| oy | B s RN ey 11
- | i e
¥ P T
ra w
e
i n ¥
= =
ey =
M=
=, i
e i
= O Bt it
i et i
iyl]
o L ma o -
o 1 M ke Wi
= 1] armtarn)
5 B imiass e
1 i n
] Teprray T
e i
KT Tk
i A e
o
g = =
B = e
W=

: 8 o
o | = e
- et L i
o | e By L |
Output window Lilnrary windaow Status bar

GIIW" user manual 1

Ap

g

The following paragraphs give an overview of these elements.

1.1.1 THE OUTPUT WINDOW

The Output window is the place where Application prints its output messages. This win-
dow contains four tabs: Build, Find in project, Debug, and Resources.

Duatput X

Preprocessing Global shared completed. A
Preprocessing Henu completed.

Preprocessing basic completed.

Preprocessing thermmodel completed.

Reading symbol file L:~Applicazioni~IEC~IEC sym.zml .. conpleted.

Reading target svymbol file L “Applicazioni~IEC~IEC =vt . =Zml .. completed.

0 warning=, 0 errors.

4| » [\ Build [Findin poject) Debug ' Resources [

Build

The Build panel displays the output of the following activities:
- opening a project;

- compiling a project;

- downloading code to a target.

Find in project

This panel shows the result of the Find in project activity.
Debug

The Debug panel displays information about advanced debugging activities (for example,
breakpoints).

Resources

The Resources panel displays messages related to the specific target device Application
is interfacing with.

1.1.2 THE STATUS BAR

The Status bar displays the state of the application at its left border, and an animated
control reporting the state of communication at its right border.

Ready EDIT MODE CONNECTED v

1.1.3 THE DOCUMENT BAR

The Document bar lists all the documents currently open for editing in Application.

PI= Fast Main % Global variables

2 user manual

The Watch window is one of the many debugging tools supplied by Application. Among
the other debugging tools, it is worth mentioning the Oscilloscope (see Paragraph 9.2),
triggers, and the live debug mode (see Paragraph 9.4).

1.1.4 THE WATCH WINDOW

‘wiatch X
b

Symbol Yalue Type Loca

= CHT_1.ENAELE TRIE BOOL @pLe

- " PROVASTRU - STRUTTURA @pLe

w REALE 0.584264 REAL @PLe

+ [J INTERD - INT[] @pLe

- [1cuT_0 - COMTATORE[] @PLC

- 0] - CONTATORE @FPLC

= ENABLE FALSE BOOL @pLe

== RESET FALSE BOOL @PLe

— COLNTER 0 LIINT @PLe

+ 1] - CONTATORE @PLC

+ 2] . COMTATORE @PLC

+ ¥ [3] - COMTATORE @PLC

< »

1.1.5 THE LIBRARY WINDOW

The Library window contains a set of different panels, which fall into the categories ex-
plained in the following paragraphs.

You can choose the display mode by clicking the right button of your mouse. In the View
1ist mode, each element is represented by its name and icon. Instead, a table appears
in the View details mode, each row of which is associated with one of the embedded
elements. The latter mode also displays the Type (Operator/Function) and the description
of each element.

If you right-click one of the elements of this panel, and you click Object properties from
the dialog box, then a window appears with further details on the element you selected
(input and output supported types, name of input and output pins, etc.).

1.1.5.1 OPERATORS AND STANDARD BLOCKS

This panel lists basic language elements, such as operators and functions defined by the
IEC 61131-3 standard.

* Mame | Type | Crescripkion |
=] ags Function Absolute value
@ACOS Function ArCCasine
P.DD Cperator Arithrnetic addickion
[&]amD Cperator Logical/bibwise ARD
@ASIN Function ArCsine
|Z|P.TF'.N Funckion Arckangent
4| v [\ Operator and standard blocks { Target vaniables) basic) thermmadel [

user manual 3

Ap
:
1.1.5.2 TARGET VARIABLES

This panel lists all the system variables, also called target variables, which are the inter-
face between firmware and PLC application code.

*| hame | Type | Address | Group | Description |
|I|.0.d_InPo INT Mo, DEE - AMALOG-DIGITAL EM... incremental position
mAd_NuCi INT SEMWO,12 DEB - AMALCE-DIGITAL EM... D3P cvcles without position increment
.ﬂ.d_F‘eSp DINT “aMW0. 10 DEE - ANALOG-DIGITAL EM... calculated speed
mAd_SEOF INT SEMWO,D DEB - AMALCE-DIGITAL EM... sine channel offset
..D.d ViPo DINT “alWO, 2 DEE - AMALOG-DIGITAL EM... virtual position
|_|F'.d ViPolni DIMN HeMW0, 215 DEE - AMALOG-DIGITAL EM. ..
4 | » [\ Operatar and standard blocks) Target variables [basic) themmadel [

1.1.5.3 TARGET BLOCKS

This panel lists all the system functions and function blocks available on the specific target

device.

Libnarp X
M ame Tyvpe Descriptian “

T wvsMaglrienk ono Furction Checks messages flom sngle aks L.

I =20 vicsinerotonoPle Furczion Verifies the end of an imberpalated sin.

& =R eaesireemM onoFic Furiction Rmzets an wispalabed singhs a0z mo

& sk Furction Ptz bhe comznd ksk in the skeeping = .

7 s Stallnlepyons Function Starlz anirk=ipdated zngle axe mow.

T wv=SanlneiprdonaPl: Furction Starls an inkzipolated sinole axi mow..

I 22T arpetlnieroh ool e Furczion Werifies if the laigat af an mterpokaied |

& e atnmpMano Furczion LWigits kil the end of & inkapolaead . bt

i | » [Operstor and standzd blocke | Tanget waiizbles | Taroel blocks [basic |

1.1.5.4 INCLUDED LIBRARY PANELS

The panels described in the preceding paragraphs are usually always available in the L7 -
brary window. However, other panels may be added to this window, one for each library
included in the current Application project. For example, the picture above was taken from
a Application project having two included libraries, basic.pl1 and thermmodel.pl] (see
also Paragraph 4.7).

* | name | Type | Liescripkion |
& BitToByte Function Compose a byte From & bits
& eitToword Function Compose a word from 16 biks
E BykeTobit Function block Split a byte into bits
& evteToword Function Compose a word from 2 bykes
E F_TRIG Function block Falling edge detector
% FF D Furction block. D-tvpe flip-flop
» [Operator and standard blocks) Target vanables) basic [thermmodel i

4 user manual

IR studio

1.1.6 THE WORKSPACE WINDOW

The Workspace window consists of three distinct panels, as shown in the following picture.

Pt

ﬂ-l";;ﬂ- wi Becdrators | 95 Fagowces

oot
B Puopet| —2 Dbvstaies | PR Bisccances

- o
| ppeidiahy
N lnakary
= " 10
o | sl
o | s
| i
wll E P it
1B S
o i f
— Hacer

(4]
B P | =2 Dopbrtges | T Ssianrns

1) o ki
- E Foehon et
EL 0 Dl P e e
EQM i
Frare
L7 T A e
g
(] 13 Feoperg

T

yf bap

1.1.6.1 PROJECT

The Project panel contains a set of folders:

- Program, Function blocks, Functions: each folder contains Program Organization
Units (briefly, POUs - see Paragraph 5.1) of the type specified by the folder name.

- Global variables: it is further divided in Variables, I/0 Variables, Constants and
Retain variables. Each folder contains global variables of the type specified by the
folder name (see Paragraph 5.2).

- Tasks: this item lists the system tasks and the programs assigned to each task (see
Paragraph 5.3).

1.1.6.2 DEFINITIONS

The Definitions panel contains the definitions of all user-defined data types, such as
structures or enumerated types.

1.1.6.3 RESOURCES

The contents of the Resources panel depends on the target device Application is interfac-
ing with: it may include configuration elements, schemas, wizards, and so on.

user manual 5

44l

||| |free BULIL

1.1.7 THE SOURCE CODE EDITORS

The Application programming environment includes a set of editors to manage, edit,
and print source files written in any of the 5 programming languages defined by the IEC
61131-3 standard (see Chapter 6.).

MalErmhied

HatlRnnniran

Hame

Aeadngat I)

fhuEnwm

Type BddmEs LUET Intwadyg
1 |fblchkema Bt Auta Ha 0
[ag'} T Aum Ho 1]
1 ThEEE Elal Aiba Hao [x]
i *
thoch=mary 11 = 1npl. 1Y = 1npl. 11 = 1nypa
L= -1 L o = RN
(% Tpodown logic on amalog oubput 1 #)

= agutl + incr

IF agutd »= 2047 THEH
InCT TO_INTY walld

wont 3

& -]

EISIF ecutd &= —pil4d THEN
ipcy o= TO_IATY walld §:
END_IF

= BSOS 3 A s E | A

{m Anslog cutput 0 = saslog inp 0 + ansleoc®™

inoripus st 16

The definition of both global and local variables is supported by specific spreadsheet-like

editors.

|
2
3
4
5
E
7

Harme
frEeRURC oL res DIMT
Iner INT
netiod REAL
valueFiil REAL
& REAL
walueRar REAL
Kinilnge INT

TepE

Address Group Airray Initvalue AHE ke Ciescrption

At i}]

At AOEIOD QUL MO a

BMD11T Onda quadea Mo a

w1 Onda gquadia Mo a

MO8 Onda quade Mo a

MO0 Ond3 guadia Mo a .

Auta Anglogould Mo 50 COMSTAMT

user manual

44l

2. USING THE ENVIRONMENT

This chapter shows you how to deal with the many UI elements Application is composed
of, in order to let you set up the IDE in the way which best suits to your specific develop-
ment process.

2.1 LAYOUT CUSTOMIZATION

The layout of Application’s workspace can be freely customized in order to suit your needs.

Application takes care to save the layout configuration on application exit, in order to per-
sist your preferences between different working sessions.

2.2 TOOLBARS
2.2.1 SHOWING/HIDING TOOLBARS

In details, in order to show (or hide) a toolbar, open the View>Toolbars menu and select
the desired toolbar (for example, the Function Block Diagram bar).

edc RE:EN Proec: Debug Communiczbion Scheme varables window Tools Heln

| Toobas [w] Man tadbar BEEE T B
. Tanl windomas #[w] SttusBer E—
B Fdisesn Cubsll Debugher Chisl
5| g Fast
: o FED bar LD
jeck | [LD ber Chivd | Marne
———— =
pepks Frojac: SFC bar Ll IEETEE
:l:og;:y |“ Proiect bar kel 2 ﬂJF!Ith:IFI
B i Metwok — Cife AL [foFiter
[Hsi [¥] Docurerttar CriM 4l
£ Functionblocks 3 hSmlikD
L) Schena £

o St m—
i =T
The toolbar is then shown (hidden).

B8 Fio Edt Wew Project Dabug Commonication Scheme Yarables Wandow Took

= ~ & B W S (A (MR RE S
"% & B oD
e+ e R - T 4]
Frajact ¥ B Fa
ER Pioject & Defrbion: Hame Type A
= B pepe Progct 1 mPulsE Pulse Autn
= 1 Progianns 2 | MFIpFlap FF_D Autn
w W@ Fast 3 foFier TusFMEr Aut
ELT;“ 4 mepin BweToAN AU
[Funchion blacks 5 rspito ByeToR Aum
£ :_I Fuchie: ¢
£ 1_] Glohel vananks:
— | =l

2.2.2 MOVING TOOLBARS

You can move a toolbar by clicking on its left border and then dragging and dropping it to
the destination.

™= Fle Edit Yew Project Debug Communication Scheme Yariables Window Tools Help

B & o ¥ W SR DEEES
B B BOD R
e G A E 44 BR

The toolbar shows up in the new position.

user manual 7

"= Fle Edit Wiew Project Debug Communication Scheme Wariables Window Tools Help

) o W 2R (DR ES

B EY o o 2 Ch g g [IR N D Y
Project X W %

You can change the shape of the toolbar, from horizontal to vertical, either by pressing the

Shift key or by moving the toolbar next to the vertical border of any window.

Watch Watch
Description Description
Symb Symb
> >
~ -~
ipFlap ipFlop
FD Fo
a q
=l
o
&y
=
T} [
L
»|
]
~
il
- b
3 <
Description
Absolute value Description
Arceagine
o . Abgzolute value

You can also make the toolbar float, either by pressing the CTRL key or by moving the
toolbar away from any window border.

Communicstion Schama varablas wandow Took Help

W ER MEDES L B

Communication Schame varabls Window Took Halp

W SR MEREE B

HE d @&.ﬁ-& E B - R R HE 6 5]
Tame Tipe Address arvay | Intualue Al Tarmz Tipe A e 17t al ue A
1 Pz Pulse AUt Ia o 1 Pulse Pulse At Tia 0
2 TBFIpFIop FF_D AUt Ia 0 2 TFIpFIop FF_D At Ta 0
1 ThFifer TusFir A Ia 0 3 Fifer TusFiEr AU Tia 0
4 ThEpt BETaEl Aub Ia 0 ERLEL BwETaAN Aut Tia 0
5 ThEpit0 BEToEl Aub Ia 0 5 hEpi0 BETaAN Aut Tia 0
£ €
| R - PR R A N R E .
warsmevs oo sfpd 7 L ulpd 7 L
e . ctdneebisn o
b Pulse L &) 1t Pulze
Rt Pulze 5% BB Dx e
in 7 anabla au A anablu s
. . TOLUINT — patlad Iz) . TOLUINT _[pasiad
prizd —— - . prizd —— -

user manual

IR studio Ap

2.3 DOCKING WINDOWS
2.3.1 SHOWING/HIDING TOOL WINDOWS

The View>Tool windows menu allows you to show (or hide) a tool window (for example,
the Output window).

=& Fis Edtmprmeﬂ Debup Communization Schema Yarables “Wnoow Tools Helo

‘BB Tedbas vh i ah PESES - @

|§J‘ Y Tool windaws wholkspace Clile
ﬁ = [E] Fulscreer Cul<l Librany CukL
ﬂ - = ouel . Cie |
Froject = E] fwrcashicwindos Chl
[Ef Picject = Deﬁnﬁms| “wialch window Cul+T Type Ldress
2 [popc Propect 1 [faFulze Fulze Ao
= 0 Pregum: 2 |faFliaFlon FF_O At
] & 3 [mFier TusFilter At
E e 4 |mEom BASTOBE At
= (2 Funchion blochs 5 |[mEpi_D BuleToBl Auin
i Schema < v |
Ao Sl
£ 0 Furchons ooy T
£ 11 Glohel wajichies N Square waue on output T
H @ Tasks Feliod = 0 ma " vali1
1T S
. TO_WIKHT
jperiod »———
£ M
| Dupw | Liray
Freproces=ing Hodule TARGET completed Hama
Freproces=ing Hodule HAIN conpleted Tl
Freproce==ing ba=zic conpleted Q”'BS
ing thermmodel completed. w5 AO0S
+ 40D
0 warning=. 0 crrors & aND
L8N
FATEN
|« | +[\ Buld | Fidinprajae | Debug

Shaw o hids the Cutpat bar

The tool window is then shown (hidden).

B8 Fie Edt Wew Proiect Debup Commumication Scheme Merichles Window Tacs Help
BERs - nikE &y SR (CEEES T B
(Gl BB @BRd]-10 & 0

ol A RS WIS B

| Pravcct »| Fl R
R Pioject |42 Dd”-'limsl NEme Type Beldrass
= (B peplc Propct 1 |foPulse Pulze Ao
=2 Fregams 2 foFlipFlap FF_D Audn
53 Fast 3 foFilter TusFifler Auin
::% i 4 foepli BsToBit Auo
=1 Funcben bincks 5 foSpli_0 Bg=ToBit Ao
1M} Schema F) il |
i s
=] Funchonz noat oL
- /_] Glchel vanshlez e Squais waws on outpul 7
3..@ Tazks Fanzd = 10 ms® walli
A] TO_WKT
eiigd
F |
| Litrary
Mame Type Dezcrpeion
i Functicn fbealuae vale
lL]acos Funclich Arzozaing
[*|anD Operator Arithmetic addiion
L& |AND Dparater Lageelfmimiaes AHD
[]As5IH Furclicn Arcrre
LlaTaN Furclicn Srclangent
LaTanz Funzticn Arctangental v,
4| ¥[| Opsrator and stendand Hooks | Taigatvariables | bacic | thermmadal

Reay

GIIW" user manual 9

2.3.2 MOVING TOOL WINDOWS

||| |free BULIL

In order to move a tool window, click on its name (at the top of the window) and then drag
and drop it to the destination.

You can

| watch

B

Dastriptian

=]

x|

Symbel

-
[~

Wahig

Tepe

135 3¢ | (3

tian

i addhon
Eitvaise SHD

ark
=k of
#avakie

diz eosing
i dwiian

aporerntid

) basic_) Heemmoded [

Deseripian
- |
Cowerw L
. o
e L
& E
JuFlIE
R -
>
|| [Wach x|
I
[y =ymbal ahug
)
i E b3

make the tool window float, by double-clicking on its name, or by pressing the
CTRL key, or by moving the tool window away from the main window borders.

|Wwatch [x|
o | v |
Symbol Walue Type

n

= v |

Symbol

Yalue

(>

A tool window can be resized by clicking-and-dragging on its border until the desired size

is reached.

X|| [watch x|
[] AL b | [
|| Symbal Yalue
o
2

i I l

x| [watch x|
[] AL | v | [
= Symbol Walue Type Location
pu
_
0 m £

user manual

44l

IR studio Ap

2.4 WORKING WITH WINDOWS

Application allows to open many source code editors so that the workspace could get
rather messy.

You can easily navigate between these windows through the Document bar and the Win-

dow menu.
m Toak Hal -
F Cawade
I e oo+l -1 | P
] 'E:z:g:llmm [Ere [Est|FEe B Gobalvarisles " Runring
Class F. Narme Type Array Init¥aluz Afribute A
g | IE 1 |var MOTE NI Ed BOOL M FALEE . Transition result
[e] zsiai 2 |vmr PIOTRU ARG BO0L M FALEE ! Transito resu
BEkey ER rutE 1O £ AooL i FALSE . Transiion resui
ekl PR n DINT i 0 . ;
pRghg 5 |vaR Running BOCL 1o FALGE . Transition result
6 [YRR_IMPUT 0 enab AooL i FALGE
7 |vaR_INFUT 1 mn AOCL 1o FALGE

| £

[~
|

| ®

é!@_ﬂé::ff::ff::ff::ff::ff::ff::fff::ff::ff::ff:::

. E“.ub.géﬁﬁééﬁﬁﬁﬁﬁﬁZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

2.4.1 THE DOCUMENT BAR

The Document bar allows to switch between all the currently open editors, simply by click-
ing on the corresponding name.

oo Fat 1 Sati | e [Bp siobd varisbles *iAunring
Class [Pl Harme Type Array It ual e It brte
1 |WaR hotEnahbled BodL (0] FALSE i
2 WaR MotRun ning B o FALSE
p 3 waR RntStnnne A fln FAl 5F

Feading ut WiE A

I.I: Fast Is_ﬁ Skati I Exec J% Global variables "’“‘[}Munning

You can show or hide the Document bar with the menu option of the same name in the
menu View>Toolbars.

QIIW" user manual 11

Ap

:

2.4.2 THE WINDOW MENU

2.5

The Window menu is an alternative to the Document bar: it lists all the currently open
editors and allows to switch between them.

TGRS Tools Help

Cazcade

Tile:

Arnange lcong
Claze A1

1 Fast M
256 ¢

3 Exec

4 Global variables

5 Running

Moreover, this menu supplies a few commands to automate some basic tasks, such as
closing all windows.

FULL SCREEN MODE

In order to ease the coding of your application, you may want to switch on the full screen
mode. In full screen mode, the source code editor extends to the whole working area,
making easier the job of editing the code, notably when graphical programming languag-
es (that is, LD. FBD, and SFC) are involved.

Belpk BN b BT Deha Cemsrcien Sdand v GTdes el Hebg S E]

Pgrar oum M o L
Ty Tme e Gow bdmue Msber E
1 (W s " :
2w o i) "
i |we niew " !
4w bl !
& WaTalr s '
e
o "
s ' = e
b . -— .
W pasas
he -
- s
- . —
iR s—1Jm
T o
- bt
b o W
o
- -
M——__am
e
- e
e
e

You can switch on and off the full screen mode with the Full screen option of the menu

View or with the corresponding command of the Main toolbar.

Edit WUEME Project Debug Communicatio

1 Toolbars 4

Tool windows (>

1 84 &
= Full screen ‘\\{ Cl+L
oot | Grid

| peple Project
(27 Programs
B8 Fast
Init
W ain

12

user manual - E

If you click Options... in the File menu, a multi-tab dialog box appears and lets you
customize some options of Application.

2.6 ENVIRONMENT OPTIONS

General

Autosave: if the Enable Autosave box is checked, Application periodically saves the
whole project. You can specify the period of execution of this task by entering the number
of minutes between two automatic savings in the Autosave interval text box.

Graphic Editor
This panel lets you edit the properties of the LD, FBD, and SFC source code editors.

Gered | Graphic Edbar | Text Ediors | Lenouege | Diecloier | Toals

Font nam= Girsph Obpects

S -~ MNefwork gnd color

5 psbem | | Backgrourd nebwonk ol
Tehoma Salection color

Templs Sanz ITC Obiject cok

T erminal Tewfcolor

Selcted et calar

T Mew Roma Bakic Erior cabai

Times Mew Fama CE e || Comment color o
T me hlmess Mlmnn e T —- [i et

Font dimeraion

10 . —

B

b

7 [oo | awews || 1|

]

n
12 ¥| Lbiap

Text Editors

Language

You can change the language of the environment by selecting a new one from the list
shown in this panel.

After selecting the new language, press the Select button and confirm by clicking 0K.
This change will be effective only the next time you start Application.

General | Graphic Editor TexlEd\tnrs‘ Language | Directories | Tools

Select the program language

“r'ou need to restart the program
far the change to take effect

ak H Cancel][Help

Tools

You can add up to 16 commands to the Tools menu. These commands can be associated
with any program that will run on your operating system. You can also specify arguments
for any command that you add to the Too7s menu. The following procedure shows you
how to add a tool to the Tools menu.

E user manual 13

[] [free BYETS

1) Type the full path of the executable file of the tool in the Command text box. Other-
wise, you can specify the filename by selecting it from Windows Explorer, which you
open by clicking the Browse button.

| General | Graphic Editor | Test Editors | Lamguage | Directories | Tools |_

Command | | %
Arguments | |
|

Menu string |

[add || Dpeste |[Modiv |

[ok][nnue J[7]

2) Inthe Arguments text box, type the arguments - if any - to be passed to the execut-
able command mentioned at step 1. They must be separated by a space.

3) Enterin Menu string the name you want to give to the tool you are adding. This is the
string that will be displayed in the Tools menu.

4) Press Add to effectively insert the new command into the suitable menu.
5) Press 0K to confirm, or Cancel to quit.

For example, let us assume that you want to add Windows calculator to the Tools
menu:

- Fill the fields of the dialog box as displayed.

| General | Graphic Editor | Teut Editors || Language | Directories | Took |_

Command | CAWINDOWShaystern32\cale exe

CJ

|
Arguments | |
|

Menu string | Cald

[s QA[Delete | [Modiy |

[ok J[e J[2 |

- Press Add. The name you gave to the new tool is now displayed in the list box at the
top of the panel.

| General | Graphic Editor | Text Editars | Language | Directories| Taals |_

[

Command |EI:\W’INDDWS\system32\c:aIc.exe | C]
Arguments | |
benu string | Calc |
[add][Deete |[Mody |
[ok][enue J[2 |

And in the Tools menu as well.

14 user manual QIIVG"

3.1

3.2

MANAGING PROJECTS

This chapter focuses on Application projects.

A project corresponds to a PLC application and includes all the required elements to run
that application on the target device, including its source code, links to libraries, informa-
tion about the target device and so on.

The following paragraphs explain how to properly work with projects and their elements.

CREATING A NEW PROJECT

To start a new project, click New project in the File menu of the Application main win-
dow. The same command is available in the Main toolbar and, if no project is open, in
Application’s Welcome page. This causes the following dialog box to appear.

New project @

Project

Mame | |

Directary | C:ADocuments and SettingshDefault UserDesktop | B

Target zelection

Select the target for a new project L |

Optionz

[] Caze sensitive

[aK] [Cancel l

You are required to enter the name of the new project in the Name control. The string you
enter will also be the name of the folder which will contain all the files making up the Ap-
plication project. The pathname in the Directory control indicates the default location
of this folder.

Target selection allows you to specify the target device which will run the project.

Finally, you can make the project case-sensitive by activating the related option. Note
that, by default, this option is not active, in compliance with IEC 61131-3 standard: when
you choose to create a case-sensitive project, it will not be standard-compliant.

When you confirm your decision to create a new project and the whole required informa-
tion has been provided, Application completes the operation, creating the project direc-
tory and all project files; then, the project is opened.

The list of devices from which you can select the target for the project you are creating
depends on the contents of the catalog of target devices available to Application.

When the desired target is missing, either you have run the wrong setup executable or
you have to run a separate setup which is responsible to update the catalog to include
the target device. In both cases, you should contact your hardware supplier for support.

UPLOADING THE PROJECT FROM THE TARGET DEVICE

Depending on the target device you are interfacing with, you may be able to upload a
working Application project from the target itself.

user manual 15

Ap I studio

In order to upload the project from the target device, follow the procedure below:
1) Select the item Import project from target in the menu File.

N Edit Wiew Project Debug Communication
Mew project
Open project

| Impart project from target
4

YWiew project [read only)

2) Select the target device you are connecting to, from the list shown in the Target Tist
window.

3) Set up the communication (refer to Setting up the communication section for details).

Target list |£|
Mame A
v
“Werify Connection [Cammunication setkings [g

4) You may optionally test the connection with the target device.

Target list |Z|
Marme A
A

| Madbus:1,1000,M#COM:1,9600,E, 5, 1,H |

“erify Connection [: ’ Caommunication sekkings]

l Upload Sources H Cancel]

Application tries to open the connection and reports the test result.

Connection verified

. | J The connection with the karget is available,

16 user manual QIIVQ"

5) Confirm the operation.

Target list

%)

Mame

| SiaxProComm: 0, 1000, T#TCPIP:10,0,0,222{12001,5000 |

[verify Connection l

’ Cornmunication settings]

Cancel]

[Upload Sources '\g [
L

When the application upload completes successfully, the project is open for editing.

3.3 SAVING THE PROJECT
3.3.1

PERSISTING CHANGES TO THE PROJECT

When you make any change to the project (for example, you add a new Program Organi-
zation Unit) you are required to save the project in order to persist that change.

To save the project, you can select the corresponding item of the menu File or the Main

toolbar.

Edit ‘iew Project Debug Com

rge)
v &

4

MHew project
Open project

Wiew project [read only)

=

Save project h |

Save project A\%

3.3.2 SAVING TO AN ALTERNATIVE LOCATION

When you do not want to (or cannot - for example, because the file is read-only) overwrite
the project file, you may save the modified version of the project to an alternative loca-
tion, by selecting Save project as... from the file menu.

Edit “iew Project Debug Com

IFEZRr=]
il

&

MNew project
Open project
Wiew project [read only]

Save project

-

Save project Az e |

(=78

W

Claze nrnieet

Application asks you to select the new destination (which must be an empty directory),
then saves a copy of the project to that location and opens this new project file for editing.

user manual 17

Ap

3.4

g

MANAGING EXISTING PROJECTS

3.4.1 OPENING AN EXISTING APPLICATION PROJECT

To open an existing project, click Open project in the File menu of Application’s main
window, or in the Main toolbar, or in the Welcome page (when no project is open). This
causes a dialog box to appear, which lets you load the directory containing the project and
select the relative project file.

3.4.2 EDITING THE PROJECT

In order to modify an element of a project, you need first to open that element by double-
clicking its name, which you can find by browsing the tree structure of the project tab of
the Workspace bar.

By double-clicking the name of the object you want to modify, you open an editor consist-
ent with the object type: for example, when you double-click the name of a project POU,
the appropriate source code editor is shown; if you double-click the name of a global vari-
able, the variable editor is shown.

Note that Application prevents you from applying changes to elements of a project, when
at least one of the following conditions holds:

- You cannot modify any object of the project if you are in debug mode.

- You cannot edit an object of an included library, whereas you can modify an object that
you imported from a library.

- The project is opened in read-only mode (view project).

3.4.3 CLOSING THE PROJECT

3.5

You can terminate the working session either by explicitly closing the project or by exiting
Application. In both cases, when there are changes not yet persisted to file, Application
asks you to choose between saving and discarding them.

\‘_‘:’r/ Save current project ¥

I Yes H] H Cancel]

To close the project, select the item Close project from the File menu; Application
shows the Welcome page, so that you can rapidly start a new working session.

DISTRIBUTING PROJECTS

When you need to share a project with another developer you can send him/her either
a copy of the project file(s) or a redistributable source module (RSM) generated by Ap-
plication.

In the former case, the number of files you have to share depends on the format of the
project file:

- PLC single project file (.ppjs file extension): the project file itself contains the whole
information needed to run the application (assuming the receiving developer has an ap-
propriate target device available) including all source code modules, so that you need
to share only the .ppJjs file.

- PLC multiple project file (.ppjx or .ppj file extension): the project file contains only
the links to the source code modules composing the project, which are stored as single
files in the project directory. You need to share the whole directory.

18

user manual

IR studio

Alternatively, you can generate a redistributable source module (RSM) with the corre-
sponding item of the Project menu or toolbar.

aols Help

S o0 (mE

b b & %l

R

Application notifies you of the name of the RSM file and lets you choose whether to protect
the file with a password or not. If you choose to protect the file, Application asks you to
insert the password.

Generate redistributable source module

Protect with password

| PlcExample_09082010150726. rsm ‘

Get password

[Ok] [Cancel

]

Password:

Canfirm password:

The advantages of the RSM file format are:
- the source code is encoded in binary format, thus it cannot be read by third parties

which do not use Application, making a transfer over the Internet more secure;

- it can be protected with a password, which will be required by Application on file open-

ing;

- being a binary file, its size is reduced.

3.6 PROJECT OPTIONS

You can edit some basic properties of the project, such as application name and version,
in the window which pops up after you select the item Options... in the Project menu.

Project info | Code generation || Debug || Build events|

Release : |:-|_|:; [— |
Version: |15 |
Author |John Dos |
Mote : | |

The information you enter here is shown in any printed document and may also be down-
loaded to the target device.

44l

user manual

19

Ap

3.7 SELECTING THE TARGET DEVICE

You may need to port a PLC application on a target device which differs from that you
originally wrote the code for. Follow the instructions below to adapt your Application pro-
ject to a new target device.

1) Click Select target in the Project menu of the Application main window. This
causes the following dialog box to appear.

Select karget 5]
Awailable T argets

2) Select one of the target devices listed in the combo box.
3) Click Change to confirm your choice, Cancel to abort.
4) If you confirm, Application displays the following dialog box.

P, This operation requires to save the project,
\-'f/ Continue the operation ?

[es] [Mo]

Press Yes to complete the conversion, No to quit.
If you press Yes, Application updates the project to work with the new target.

It also makes a backup copy of the project file(s) in a sub-directory inside the project
directory, so that you can roll-back the operation by manually (i.e., using Windows
Explorer) replacing the project file(s) with the backup copy.

3.8 WORKING WITH LIBRARIES

Libraries are a powerful tool for sharing objects between Application projects. Libraries
are usually stored in dedicated source file, whose extension is .pT7.

3.8.1 THE LIBRARY MANAGER

Project library list FE
Name Link Add
Close

The library manager lists all the libraries currently included in a Application project. It also
allows you to include or remove libraries.

20 user manual z

To access the library manager, click Library manager in the Project menu.

3.8.1.1 INCLUDING A LIBRARY

The following procedure shows you how to include a library in a Application project, which
results in all the library’s objects becoming available to the current project.

Including a library means that a reference to the library’s .pl1 file is added to the cur-
rent project, and that a local copy of the library is made. Note that you cannot edit the
elements of an included library, unlike imported objects.

If you want to copy or move a project which includes one or more libraries, make sure
that references to those libraries are still valid in the new location.

1) Click Library manager in the Project menu, which opens the Library manager
dialog box.

2) Press the Add button, which causes an explorer dialog box to appear, to let you select
the .pl117 file of the library you want to open.

3) When you have found the .pT7] file, open it either by double-clicking it or by press-
ing the Open button. The name of the library and its absolute pathname are now
displayed in a new row at the bottom of the list in the white box.

Project library list -FE
Mame Lirk. Add
basic: c:hprogram filesh...
Cloze

4) Repeat step 1, 2, and 3 for all the libraries you wish to include.

5) When you have finished including libraries, press either 0K to confirm, or Cancel to
quit.

3.8.1.2 REMOVING A LIBRARY

The following procedure shows you how to remove an included library from the current
project. Remember that removing a library does not mean erasing the library itself, but
the project’s reference to it.

1) Click Library manager in the Project menu of the Application main window, which
opens the Library manager dialog box.

Project library list 3]
M ame Link. [Add
basic c:hprogram filesh...
thermmodel c:hprogram filesh...
Cloze

- z user manual 21

2)

3)
4)

5)

Select the library you wish to remove by clicking its name once. The Remove button
is now enabled.

Project library list E]
Name Link. Add
cohprogram filesh. ..
cohprogram filesh,
Remove all
Close

Click the Remove button, which causes the reference to the selected library to disap-
pear from the Project Ilibrary list.

Repeat for all the libraries you wish to include. Alternatively, if you want to remove all
the libraries, you can press the Remove all button.

When you have finished removing libraries, press either 0K to confirm, or Cancel not
to apply changes.

3.8.2 EXPORTING TO A LIBRARY

You may export an object from the currently open project to a library, in order to make
that object available to other projects. The following procedure shows you how to export
objects to a library.

1)

2)

3)

4)

5)

Look for the object you want to export by browsing the tree structure of the project
tab of the Workspace bar, then click once the name of the object.

Click Export object to Tlibrary in the Project menu. This causes the following
dialog box to appear.

v I 5

Espoit bo e, [-]

Codesrcypion |7

&) (=)

Enter the destination library by specifying the location of its .p77 file. You can do
this by:

- typing the full pathname in the white text box;

- clicking the Browse button , in order to open an explorer dialog box which allows
you to browse your disk and the network.

You may optionally choose to encrypt the source code of the POU you are exporting,
in order to protect your intellectual property.

Click 0K to confirm the operation, otherwise press Cancel to quit.

If at Step 3 of this procedure you enter the name of a non-existing .pT7 file, Application
creates the file, thus establishing a new library.

3.8.2.1 UNDOING EXPORT TO A LIBRARY

So far, it is not possible to undo export to a library. The only possibility to remove an ob-
ject is to create another library containing all the objects of the current one, except the
one you wish to delete.

22

user manual z

3.8.3

IMPORTING FROM A LIBRARY OR ANOTHER SOURCE

You can import an object from a library in order to use it in the current project. When
you import an object from a library, the local copy of the object loses its reference to the
original library and it belongs exclusively to the current project. Therefore, you can edit
imported objects, unlike objects of included libraries.

There are two ways of getting a POU from a library. The following procedure shows you
how to import objects from a library.

1)

2)

3)

4)
5)

Click Import object from library in the Project menu. This causes an explorer
dialog box to appear, which lets you select the .p77 file of the library you want to
open.

When you have found the .pl77 file, open it either by double-clicking it or by pressing
the Open button. The dialog box of the library explorer appears in foreground. Each
tab in the dialog box contains a list of objects of a type consistent with the tab’s title.

ovectbrowser .

Olbyecls Rker

W aime Type

|| Proprams] el ors ﬂ: BuieT it Furclian blocks
|#| Furetion Elacts 1A Furclian bincks
[Z] Furetians Starderd funchions E b Furehian Blocks
] ariable= Local variables E Pulze Furclian blocks
[usertppes e A_TRIG Furlion Hocks
Function blocks

| Creckdl | Checknone Furefion Hoeks
] Furchan blocks

Furclion blocks
Dther lite1z {0 v/ eriT Bl Furitian tocks
Heme © -':'Kl i '/ ordToByhe Funfian blncks

Localan 4|
Libram

Ware ypa | Al

Cancel l[mp-:ll-:t-ieclxj l Select al J Swelect rone

Select the tab of the type of the object(s) you want to import. You can also make
simple queries on the objects in each tab by using Filters. However, note that only
the Name filter actually applies to libraries. To use it, select a tab, then enter the name
of the desired object(s), even using the * wildcard, if necessary.

Select the object(s) you want to import, then press the Import object button.

When you have finished importing objects, press indifferently 0K or Cancel to close
the Library browser.

3.8.3.1 UNDOING IMPORT FROM A LIBRARY

When you import an object in a Application project, you actually make a local copy of that
object. Therefore, you just need to delete the local object in order to undo import.

y ‘ JSE user manual 23

||| |free BULIL

24

user manual

divll

IR studio

4.

4.1

MANAGING PROJECT ELEMENTS

This chapter shows you how to deal with the elements which compose a project, namely:

Program Organization Units (briefly, POUs), tasks, derived data types, and variables.

PROGRAM ORGANIZATION UNITS

This paragraph shows you how to add new POUs to the project, how to edit and eventu-

ally remove them.

4.1.1 CREATING A NEW PROGRAM ORGANIZATION UNIT

1) Select the New object item in the Project menu.

GRS Debug Communication Tools Help

Mew abject [Mew program

New function block

Mew function

Mew wariable 4

2) Specify what kind of POU you want to create by clicking one of the items in the sub-

menu which pops up.
3) Select the language you will use to implement the POU.

Newpogrem N Op————
Laiguage Laguage

G OFD O @ os BIL @FD ®L0 @5 B 5T
Mame Name

tan
Tezk Tezk
Aszignio |- -2 Aszanto - -
o | [goneal o] [Cocel |

Enter the name of the new module.

Language
(@]} OFD QLD ®sT QSFC

Narme

[Mairl \

4) Confirm the operation by clicking on the OK button.

Alternatively, you can create a new POU of a specific type (program, function block, or

function) by right-clicking on the correspondent item of the project tree.

Ficiect | &3 Definitions

Functions Hew fun
Global vat
(L Autamatic variables

([Constants
(2] Retain varisbles
&8 Tasks

44l

user manual

25

Ap [] [free BYETE

4.1.1.1 ASSIGNING A PROGRAM TO A TASK AT CREATION TIME

When creating a new program, Application gives you the chance to assign that program
to a task at the same time: select the task you want the program to be assigned to from
the list shown in the Task section of the New program window.

Laguage
Il

Mame
Mﬂl‘l

Tesk

Assgnio (dnil

4.1.2 EDITING POUS

All the POUs of the project are listed in the Programs, Function blocks, and Functions
folders in the Project tab of the Workspace bar.

The following procedure shows you how to edit the source code of an existing POU.

1) Open the folder in the Project tab of the workspace that contains the object you
want to edit by double-clicking the folder name.

2) Double-click the name of the object you want to edit. The relative editor opens and

Project | {95 Definitions|

= PlcE=ample Project
R
(1 Function blocks
[Functions
Cl Global vanables
- EY Tasks

Project | 43 Defiritions

= PleE warnple Project
=@

M ain

[Z Function blocks
{1 Functions
(2] Glabal varisbles
-EH Tasks

lets you modify the source code of the POU.

= PleE sample Project
BD Programs
H

3 Function'blocks

(22 Functions
[#-[] Glabal variables
- Tasks

Praject | 4@ Defiritions

Pioject | @ Defintions

= FleExample Froject

B[:I Programs
.. 4l

Functionblocks

Furctiors
-] Global variables

MName Type A
1 |counter INT Aut

B Tasks oooLl |
oooz2
oooz3
o0oo4
ooos

(®* A =zimple counter
counter := counter +

You may want to change the name of the POU:

1) Openthe Object properties editor from the contextual menu which pops up when
right-clicking the POU name in the project tree (alternatively, select the correspond-
ent item in the Project menu).

26 user manual

44l

IR studio Ap

Project | £ Definitions |

=] Progetto PlcExample
BD Programs

L
..... (23 Functian Edit source

""" (23 Funzioni Program properties [,
[Z1 Global ve
27 Autol Duplicate program
o Delete program

3 Reta Export prograrm to library
-8 Tasks

Copy [name) ChlC

Crypt

2) Change the object name and confirm.

Object properties X
Object name |MainF‘rog |
Propertiez | Description |
Type PROGRAM
Code type ST

[Ok M [Cancel]

Finally, you can create a duplicate of the POU in this way:
1) Select Dupiicate from the contextual menu (or the Project menu).

Project | £ Definitions

= PlcExample Project
=3 Programs

Edit source

Program properties

| Duplicate program [, |

Dielete program

Export program to libran

A Tasks Copy [harme] Chl+C

Crypt

2) Enter the name of the new POU and confirm.

New object name

|mu |

[ok R‘J[Cancel |

4.1.3 DELETING POUS

Follow this procedure to remove a POU from your project:

1) Open the folder in the Project tab of the workspace that contains the object you
want to delete by double-clicking the folder name.

QIIW" user manual 27

Ap I studio

2) Right-click the name of the object you want to delete. A context menu appears re-
ferred to the selected object.

Praject | &3 Defintions

[= B8 PlcEsample Project
BD Prograns

Edit source

: Frogram properties
D Global .
-5 Tasks Duplicate program

Delete pragram h |
5

Export program bo brary

Copy [name] Chi+C

3) Click Delete object in the context menu, then press Yes to confirm your choice.

9P Delete the selected PLC Object 7
. J

Type - Program
Mame - Main

[es %_l ’_ o

4.1.4 SOURCE CODE ENCRYPTION

You may want to hide the source code of one or more POUSs.
Application lets you encrypt POUs and protect them with a password.
To encrypt a POU, perform the following steps:

1) Right-click the POU name in the project tree and choose Crypt from the contextual
menu.

Project | £ Definitions|

= PlcE xample Project
=3 Frograms
i

Edit source

Program properties

Duplicate program

Delete program

Export program to library

G Tasks Copy [hame) Ctrl+C

oy |

2) Enter the password twice (to avoid any problem which may arise from typos) and
confirm the operation.

Get password

Password: R

Canfirm passward: k|

Cance
3

28 user manual 4"V€"

To decrypt a POU, right-click the POU name in the project tree and choose Decrypt from
the contextual menu.

Project |a Definitions
= PlcExample Project
= a Programs

i | FL-Anction Edit source
(3 Functians Program properties

=[] Global vg
23 Autor Duplicate program
Doy Delete program
[Z1 Cons
[Z Retai Expart program to library
8l Tasks
. Copy [name] ChikC
| Decrypt Ny

Application prompt you to enter the password.
You can choose to encrypt all the unencrypted POUs at once:

Project |e Definitions I
=] PlcE sample Projech _ 11 Ienunter
=29 Programs Mew object »
Main Import abject from library
(23 Function black :
[C1 Functions Crypt all objects N |
=[] Global variable: Decrypt &l objects =
[Z Autornatic vansbies [Toooz

the same password applies to all objects.

4.2 VARIABLES

There are two classes of variables in Application: global variables and local variables.

This paragraph shows you how to add to the project, edit, and eventually remove both
global and local variables.

4.2.1

GLOBAL VARIABLES

Global variables can be seen and referenced by any module of the project.

4.2.1.1

CLASSES OF GLOBAL VARIABLES

Global variables are listed in the project tree, in the GTobal variables folder, where they
are further classified according to their properties as Automatic variables, Mapped vari-
ables, Constants, and Retain variables.

4.2.1.2

Automatic variables include all the variables that the compiler automatically allocates to
an appropriate location in the target device memory.

Mapped variables, on the other way, do have an assigned address in the target device
logical addressing system, which shall be specified by the developer.

Constants list all the variables which the developer declared as having the CONSTANT
attribute, so that they cannot be written.

Retain variables list all the variables which the developer declared as having the RE-
TAIN attribute, so that their values are stored in a persistent memory area of the target
device.

GROUPS OF GLOBAL VARIABLES

You can further categorize the set of all global variables by grouping them according to
application-specific criteria. In order to define a new group, follow this procedure:

user manual 29

Ap

:

1) Select Group from the Variables menu (note that this menu is available only if the
Global variables editor is open).

i Irsert P |E

= Delete

[,
1 |freeRunCounte

2) Enter the name of the new variable group, then click Add.

ariables groups

]
Group name

| Cycle |

Analog out 3
Onda quadra Add

Remove

3) You can now use the variable group in the declaration of new global variables.

4.2.1.3 CREATING A NEW GLOBAL VARIABLE

Apply the following procedure to declare a new global variable:
1) Select New object in the Project menu.

(L= Debug Communication Warisbles ‘window Tools Help

| Mew object P Mew program gL

Copy Object S Mew function block
MHew function 'B_c
Duplicate vanable Mew vanable r
Delete variable - e
2) Select New variable from the menu that shows up.
FLEWS Debug Communication Yarisbles Window Tools Help
| MHew ohject Mew progrann Y =y

Copy Object Mew function block
Mew function

Duplicate variable Mew wvariable Automatic

Delete variable NT Auto 140 wvariable
\é:iahl:pmperties REAL wMD gnns.lant
t t
3 ject Browser REAL B etain

3) Choose the class of the variable you want to declare (Automatic variables, Mapped
variables, Constants, or Retain variables).

FLIEWS Debug Communication Yarisbles Window Tools Help

| Mew object Mew program 1 ﬂ_ﬂ
Copy Object Mew function block
MHew function [—————
Duplicate variable Mew variable | Autumatick_l
Delete varishle 140 wariable
“Yariable properties T L Constant
REAL FmDy
% Object Browser REAL Shii Retain

4) Enter the name of the variable (remember that some characters, such as ‘?’, ., '/,
and so on, cannot be used: the variable name must be a valid IEC 61131-3 identifier).

30 user manual

IR studio Ap

e W1 w1

Gop | g me [%]
Attibute | AUTO | It values |:| -
Description | |

]

[Cancel] [Ok

5) Specify the type of the variable either by typing it

Name [k e =
wap Jomw [|
Attibute | AUTO | It values |:| -

Description |

=)

[Cancel] [Ok

or by selecting it from the list that Application displays when you click on the Browse
button.

New variable (]

Name [k | T I:I

Gop | v]
Attribute | AUTO | Init values I:I E]
Description | |

[Cancel] [Ok J

Object browser ®

Function blocks | Basic types | User Types | Filters

BOOL MName

EYTE | B |

DINT

::L\#’DHD Symbol location

REAL | v

SINT]

STRING Library

LIDINT | &l 7 |

LIMT

USINT Wars bype

WORD | al = |
[Cancel] [oK %_l

6) If you want to declare an array, you can specify its size.

Size of ¥ariable

O Scalar
(&) Anray / Matriz

7) You may optionally assign the initial value to the variable.

QIIW" user manual 31

New variable

||| |free BULIL

5]
Name [k L Tee i
O v ome [wa |
Aftrbute | AUTO | Initvalues @
Description | 1
[Cancel] L Ok]
Array value \z|
Walue | Edit ‘
Walue Type
4] OMedeoima
a () Binary
e
(%) Decimal
() Baoolean
[0K [\‘J [Cancel] [Help]
La;

8) Finally, you can add a brief description and then confirm the operation.

New variable

Name | k. | Tupe
Group | w | Array
Attibute | AUTO |

Ihit walugs 1.0.02 C]

X

w0
~ e O

Description |Proportional gaing

|
Cancel Ok [

If you create a new mapped variable, you are required to specify the address of the vari-
able during its definition. In order to do so, you may do one of the following actions:

- Click on the button to open the editor of the address, then enter the desired value.

1D variable dedaration

Hame [’ Diala lype UDINT Ld
Group " Siee: o E]
Data block % Sunindan | i [I]
Lecation 140 dta block, Bara acd, Sizs Unused
Llzen vanahk: ZHO.0 15 1
Ot et blocke
D aszription

user manual

44l

variable address 53]

Automatic address

Size Lacation
O Bit) Imput
) Byte (8 bit]) Output
O wiord [16 bit) @) Memory

(%) Double word [32 bit)

Data block Index
.

- Select from the list that Application shows you the memory area you want to use: the
tool automatically chooses the address of the first free memory location of that area.

HName k [iala e I l:l
GraLp e Stz ’T [:J
Datableck | o 1 E] Suiindan | 0 E]
LseeTesi 10 data blocl Bass acdl. Sz Unuzed

ZH0.0

Deszription

4.2.1.4 EDITING A GLOBAL VARIABLE

To edit the definition of an existing global variable:

1) Open the folder in the Project tab of the workspace that contains the variable you
want to edit.

=R] Global variables
3 Automatic varables
[Analog out 3
freeRunCourter
[ui] k
[140 variables
([Constants
([Retain varisbles
Tasks

2) Double-click the name of the variable you want to edit: the global variables editor
opens and lets you modify its definition.

Mt Schema 7

E?. Klnilner IMT Auto Analog
Stati
=-[_ Functions g |k UIMT Auto

W ait

=21 Global variables
=23 Automatic variables
[&nalog out 3
freeRunCounter
[ui]
[140 afiables
(L] Constants
[Z7 Retain variables

If you just want to change the name of the variable:

user manual 33

Ap I studio

1) Open the Variable properties editor from the contextual menu which pops up

when right-clicking the variable name in the project tree (alternatively, select the
correspondent item in the Project menu).

= Global variables
253 Automatic variables
-7 Analog out 3
freeRunCounter

] IHDH| Wariable properties |~

Duplicate variable

Delete variable

-- Tazks

Export variable to libram

Copy [name) ChkC

2) Change the variable name and confirm.

Object properties 5]
Object name | kel |
Properties | Description |
Type S WARIABLE
Altribuite : Mormal
Wal type CUINT
Address : At

[DKM [Cancel]

Finally, you can create a duplicate of the variable in this way:

1) Select Duplicate variable from the contextual menu (or the Project menu).

- a Automatic variables
v Analog out 3

- D Global vanables
[di] freeRunCourter

Caoy Yariable properties
(2 Cansl | Duplicate variable e
Delete variable <3

E=port variable to library

Copy (name] Ctrl+C

2) Enter the name of the new variable and confirm.

New object name X

M |

[DKE’ Cancel |

34

| |
user manual QIIVG"

4.2.1.5 DELETING A GLOBAL VARIABLE

Follow this procedure to remove a global variable from you project:

1)

2)

3)

Open the folder in the Project tab of the workspace that contains the variable you
want to delete.

=REE] Global vaniables
3 Automatic vaniables
[Analog out 3
freeRunCounter
[ui] ki
[ui] kp
[C) 140 variables
(L) Constants
[C] Rietain vaniables

Tasks

Right-click the name of the variable you want to delete. A context menu appears re-
ferred to the selected variable.

=[] Global variables
= a Automatic variables
2 Analog out 3
freeRunCounter
[ui] ki
@ kp
& I.:"Dg Yariable properties
|_ Consta Duplicate variable
(3 Retain Delete variable
Tasks Iy

Export wariable to library

Copy [name) Chl+C
Click Delete variable in the context menu, then press Yes to confirm you choice.

o Delete the selected PLC Objeck 7

Type - Variable
Mame - kp

[veshl\gl Mo

4.2.2 LOCAL VARIABLES

Local variables are declared within a POU (either program, or function, or function block),
the module itself being the only project element which can refer to and access them.

Local variables are listed in the project tree under the POU which declares them (only
when that POU is open for editing), where they are further classified according to their
class (e.g., as input or inout variables).

= [Function blocks

=R = chema

=-3[E Input variables
i
2
i3

= @3 DOutput variahles
ol

= @ Local wariables
ud| elapsedT
£ timPit

I, Stati

user manual 35

||| |free BULIL

In order to create, edit, and delete local variables, you have to open the Program Organi-
zation Unit for editing and use the local variables editor.

[Project | o8 Fast fidt schema
@ Pioject | = Dnﬁnﬁmsl Class [F. Mame Type Rrray Inid
= B pepc Propct 1 weR tim Rt Teh o a
=-1_1l Progiams 2 [weR elapsedT UDIHT Mo i
-G Fat 3 |[WAR_IMPUT o i B0 Mo FALE
::% e 1 AR HPUIT 1 BOOL Mo FaLs
) e 5 |wAR_IHPUT 1 BOI0L Ho FHLE
=121 Function biocks E [WaR_OLTPUT ool BOOL Ho FHLE
=
=133 Ingu varichie:
LT i
il
T i tmA i
El [Localvariatles S —
- o] dlapsed e
o tmAk T iz
_m S 1 | | | T in q

Refer to the corresponding section in this manual for details (see Paragraph 6.6.1.2).

4.3 TASKS
4.3.1 ASSIGNING A PROGRAM TO A TASK

Read the instructions below to know how to make a task execute a program.

1) The tasks running on the target device are listed in the Project tab of the Work-
space window. Right-click the name of the task you want to execute the program and
choose Add program from the contextual menu.

Project | £ Definitians

= PlcExample Project
=1 Programs

-[E] Main

-[Z7 Function blocks

-2 Functions

Aidd program 5&

Tazk properties

2) Select the program you want the task to execute from the list which shows up and
confirm your choice.

Object browser

Programs Filters
CE—— Nane
Sumbol location
&l v

®

Library
&l v/

Wars lppe
Y v|

[Cancel | | DK%_I
36 user manual 4"V€"

3) The program has been assigned to the task, as you can see in the project tree.

Project | £ Definitions

= FlzExample Project
=-[C Programs
M ain
([Function blocks
[Functions
[Glabal variables
= Tasks
£+ Timed

Note that you can assign more than a program to a task. From the contextual menu you
can sort and, eventually, remove program assignments to tasks.
R Tasks

£+ Timed
£¥ Background

Rerove prograni

Move down

Output

4.3.2 TASK CONFIGURATION

Depending on the target device you are interfacing with, you may have the chance to
configure some of the PLC tasks’ settings.

1) Select the Task configuration item in the contextual menu which pops up, if you
right-click on the name of the task you want to configure.

=] Tasks | |
o
i

g té I Task properties

= Task configuration k

Add program

2) Inthe Task configuration window you can edit the task execution period.

Task configuration

Set kask period

Taskperiod[ms]:l 1EI|| [Cancel]

4.4 DERIVED DATA TYPES

The Definitions section of the Workspace window lets you define derived data types.

4.4.1 TYPEDEFS

The following paragraphs show you how to manage typedefs.

- z user manual 37

4.4.1.1 CREATING A NEW TYPEDEF

||| |free BULIL

In order to define a new typedef follow this procedure:
1) Right-click the TypeDefs folder and choose New TypeDef from the contextual menu.

Project &3 Definitions

PlzE wample Definitions

5 =0

2) Type the name of the typedef.

New Typedef =
Name [UINTS_T| |
O E— s 0
mtvae || [

Description | |
Cancel | [__ 0Kk |
3) Select the type you are defining an alias for

New Typedef E3
Name [UINTE_T |
Type L 1] l% Array C.J
mitvawe || []

Description | |
Cancel | | oK. |

LINTE_T

Type:

Irit. Wi Ohjzects liter

Dremiinlion Progiams
I Function Blocks

Operaton:

: Funchonz : Stendaid lurchons
_ | Wanebles " Locel wanshl=x
T Uses bypes W Basi lypss

| Cheskal | [Chech none|

Othez1 fikers
Mame .
Leesben [l -
Lbiap IM ']
Varaipe |41 -J
[el | [Dk

Mame Tupe

[FriooL Basic nes
[b]BYTE Basic es
[CTE Basic e
o Chaf A D Basic bypes
[T Basic pnes
[rIREAL Basicimes
el 5T Basic tues
et STRING Bosic e
o LICIHT Basic bppes
[uil LT Easic hpoes
Basic ipoes
[l wroRD Basic bypes
L] L) 3

(if you want to define an alias for an array type, you shall choose the array size).

38 user manual

44l

4) Enter a meaningful description (optional) and confirm the operation.

MNew Typedef &|

Narne [UINTE_T |

[o

Dezcription |8-bit unsigned integed |

[Cancel] [0K, RSJ

4.4.1.2 EDITING A TYPEDEF

The typedefs of the project are listed under the TypeDefs folder. In order to edit a typedef
you just have to double-click on its name.

Project X ,m
Project | €3 Definitions | Mame Type Array Initvalue
2 =0 PleExample Definitions 1 |UINTE_T LSINT Mo 0 8-hit unsic
=L TypeDefs
&
Q Stuctures

4.4.1.3 DELETING A TYPEDEF

To delete a typedef, follow this procedure:
1) Right-click the typedef name and choose Delete from the contextual menu.

F'miedl e Definitions |
= = PlcExample Definitions
= TypeDets
L
[Structures Properties
[Erumneratiol
[SubRanges

2 Macro

2) Confirm your choice.

\i:) Delete the selected PLC Object ?
-

Type - Typedef
Marne - UINTE_T

| ves RJ[Mo

4.4.2 STRUCTURES
The following paragraphs show you how to manage structures.
4.4.2.1 CREATING A NEW STRUCTURE

Follow this procedure to create a new structure:

1) Right-click the Structures folder and choose New structure from the contextual
menu.

E user manual 39

||| |free BULIL

Project e D efinitions
= - Fl=Example Definitions

BD TypeDefs

C @ UINTET

2) Type the name of the structure.

Name [coMPLEX

Diescription | |

[Cancel] [0K]

3) Enter a meaningful description and confirm the operation.

Mame |coMPLEX |

Description |C0mple:-c numbed |

[Cancel] [oK R’l

4.4.2.2 EDITING A STRUCTURE

The structures of the project are listed under the Structures folder. In order to edit a
structure (for example, to define its fields) you have to double-click on its name.

[Project x| [* CompLER *
Project| €3 Definitians | Marne Pos. Type Array Init value
(5 o PlcExample Defiritions 1 |Re 0 REAL Mo i]
BD TypeDefs 2 |lm 1 REAL Mo 0
© o UINTELT
BD Shuctures

4.4.2.3 DELETING A STRUCTURE

Follow this procedure to delete a structure:
1) Right-click the structure name and choose Delete from the contextual menu.

B Praes| B Dwons |

= e PlcEsample Definitions
=] TypeDefs

----- & LIMTE T
[Structures

a
~[C3 Enumerations
; ~[1 SubRanges

Froperties

2) Confirm your choice.

D]) Delete the selected PLC Object 7
-

Type - Structure
Marne - COMPLER

[ves %_H Mo
40 user manual 4"V€"

IR studio

4.4.3 ENUMERATIONS
The following paragraphs show you how to manage enumerations.
4.4.3.1 CREATING A NEW ENUMERATION

Follow this procedure to create a new enumeration:

1) Right-click the Enumerations folder and choose New enumeration from the contex-
tual menu.

Froject [m]_

= = PlcExzample Definitions
BD Tupelefs
% UINTET

=[] Structures

M COMPLEX

G Mew Enumeration S:

~+[Z1 SubRanges
D Macmo

2) Type the name of the enumeration.

Mew Enumeration

Name |HYDROCARBOM

Dezcription | |

[Cancel] [Ok]

Mew Enumeration

Name |HYDROCARBON

Description | List the hydrocarbons |

Cancel] l Ok %J

4.4.3.2 EDITING AN ENUMERATION

The enumerations of the project are listed under the Enumerations folder. In order to edit
an enumeration (for example, to define its values) you have to double-click on its name.

|F'r0iect X| "{}HYDRW
Project &3 Definitions MNarme Initvalue
[o PleExample Defiritions 1 |Methane 1
= [0 TypeDefs 2 Butane 4
D Shuctures

- ™8 COMPLEX
=] Enumerations

~{.} HYDROCAREOM
[_ SubRanges

[Z Macra

éllwu user manual 41

||| |free BULIL

4.4.3.3 DELETING AN ENUMERATION

Follow this procedure to delete an enumeration:
1) Right-click the enumeration name and choose Delete from the contextual menu.

& Proet| & Dot |

= =2 PlcExample Definitions
E| [Z0 TwpeDefs
o UINTET

[Z7 Stuctures

.M COMPLEX
L Enumerations

(Z SubRanges Properties

2) Confirm your choice.

<P) Delete the selected PLC Object 7
-

Type - Enumeration
Mame - HYDROCAREOMN

[es kj [Mo

4.4.4 SUBRANGES
The following paragraphs show you how to manage subranges.
4.4.4.1 CREATING A NEW SUBRANGE

Follow this procedure to create a new subrange:

1) Right-click the Subranges folder and choose New Subrange from the contextual
menu.

Froject [m

= = FlcExample Definitions
- TypeDefs
@ UINTET

"% COMPLEY
[Enumerations

£} HYDROCAREON
@

5.7 S

D Macro

2) Type the name of the subrange.

Mew Subrange

Name [WATER_TEMPERATURE \
O —
Min Ve || Mawabe | |

Deseription | |

42 user manual GIIW"

IR studio

3) Select the basic type for the subrange.

Mame

Topa

M. Yahie

Diezeriphion

Mew Subrange

Mame [WATER_TEMPERATURE |

L —
] MawVae | |

Description | |

Min. Walue

WATER_TEMPERATURE

[Crves S
Obizets fikzr
Hare
Progiame Operzhars i DINT
Function Block e
[Functors [Slandsid hunchions L1l
[eniduler [JLocd veriables gUDINT Basic bypes
' i i JIMT Basic tppes
e ypes | Aesic bpes ur
e | SINT iz bupes
Check all || Check nooe |
Dbz Flfers
e s
Location [all *|
Liaraiy All vl
Varznoe Al -
Fl ml *
[Cameal | [ov |

4) Enter minimum and maximum values of the subrange.

New Subrange

Name |waTER_TEMPERATURE |

Type INT]

Minvae | 0 Mar. Value

Drescription | ‘

5) Enter a meaningful description (optional) and confirm the operation.

Mew Subrange

Name |wATER_TEMPERATURE |

Type INT E]

Minvae | 0 Ma. Value

Description |Tempe|atura of the water ‘

44l

user manual 43

Ap I studio

4.4.4.2 EDITING A SUBRANGE

The subranges of the project are listed under the Subranges folder. In order to edit a
subrange you just have to double-click on its name.

| Project x| “: Subrange defi...

Project &3 Definitions Marme Tipe Win -
1

2 w2 PleE warple Defiritians WATER_TEMPERATLINT 0 100 Ter
B[:I TypeDefs
o UINTAT
=21 Stuctures
O COMPLEX
=121 Enumerations
~{} HYDROCARBON
221 5ubRanges

[Macro

4.4.4.3 DELETING A SUBRANGE

Follow this procedure to delete a subrange:
1) Right-click the subrange name and choose Delete from the contextual menu.

|Pr0|ec:t X\

F'roiect‘ 3 Defintians ‘

= =0 PlcExample Definitions
B TypeDefs

% UINTET

Stuctures

"1 COMPLEX

=-[_1 Enumerations

{} HYDROCARBON

BCI SubRanges

¢ J&TER_TEMPERATLIRE

Froperties

2) Confirm your choice.

Delete the selected PLC Object 7

©

Tvpe - Subrange
Mame - WATER_TEMPERATLURE

[Yes %J [o

4.5 BROWSING THE PROJECT

Projects may grow huge, hence Application provides two tools to search for an object
within a project: the Object browser and the Find in project feature.

4.5.1 OBJECT BROWSER

Application provides a useful tool for browsing the objects of your project: the 0Object
browser.

44 user manual €||W|I

IR studio

4.5.1.

Obyects hiker

|#| Programz O pestakors
|#] Functian Blocks
[+#] Furetians
[ariables

Starderd funchions

ocal varsbles

Haine
TF EvteT cBit

| | ByieT owiand
I3 CrecPaE atreDIM T _4,
I CiecPaE s =DIMT_B
I CiecPaEsrzDINT_C

Furnction blocks
Furchion:
Furetion:
Furchans
Furnclians

[] Usertpnes Basic bpoes
f} F_TRIG Furetian Hecks | _

I raTeat Furtion Hocks
FF_Dn Furchion bHocks
E Fulze Furztion blocks
A TRIG Furiiian blocks
grs Furction Hocks
E SR Furchon Hocks
Localian | BT Boal Ld% Proorams
] : B T_Bcal Logc Froorams
Litrary | T 1_Coat_tdvancad Frograms

s ! I_ENLEDDL En:-;mms

4 T

| Check al

Check none

Oiher liteiz

Hame

| selectal |

Cancel | lgaq:-uth:uibra'yl _galale nb'pm_ lgp-an cOuCe J

Sebect none

This tool is context dependent, this implies that the kind of objects that can be selected
and that the available operations on the objects in the different context are not the same.

Object browser can be opened in these three main ways:
- Browser mode.

- Import object mode.

- Select object mode.

User interaction with 0Object browser is mainly the same for all the three modes and is
described in the next paragraph.

1 COMMON CHARACTERISTICS AND USAGE OF OBJECT BROWSER

This section describes the features and the usage of the Object browser that are com-
mon to every mode in which 0Object browser can be used.

Objects filter

Obpects fille:
|| Frograme Dperatars
|| Function Blocks
| Function: Standand luncliore
| anisbies Local waiiatle:
[l Uzer lyp=x Barc lyp=x

 Checkal | [Check none |

This is the main filter of the Object browser. User can check one of the available (ena-
bled) object items.

In this example, Programs, Function Blocks, Functions are selected, so objects of this
type are shown in the object list. Variables and User types objects can be selected
by user but objects of that type are not currently shown in the object list. Operators,
Standard functions, Local variables, and Basic types cannot be checked by user
(because of the context) so cannot be browsed.

44l

user manual 45

||| |free BULIL

User can also click Check alTl button to select all available objects at one time or can click
Check none button to deselect all objects at one time.

Other filters

Cither liteiz
Heme ~
Location [) -I
Libezy |l -|
Varg lvpe [&ll -l

Selected objects can be also filtered by name, symbol location, specific library and var

type.

Filters are all additive and are immediately applied after setting.

Name

Function

Filters objects on the base of their name.

Set of legal values

All the strings of characters.

Type a string to display the specific object whose name
matches the string. Use the * wildcard if you want to
display all the objects whose name contains the string in

Use the Name text box. Type * if you want to disable this filter.
Press Enter when edit box is focused or click on the 0K
button near the edit box to apply the filter.

Applies to All object types.

Oyt hiker

|| Programz

|| Funitian Bladkis & BT awond Furefians

[+] Furctians
[+#] " ariablex
Uz bppes

Mame Type
0 pestators I EicTod e Funclians

Skarderd funclions
ocal varables

Basic bppes

| Check. &l Check none

Cither lileiz

H e A

Localan |
Libramy

Ware ivpe

Export o ibvay| | Delele objcts [Setectal Sakct rons

46

| |
user manual QIIVG"

IR studio

Symbol location

Function

Filters objects on the base of their location.

Set of legal values

All, Project, Target, Library, Aux. Sources.

All= Disables this filter.
Project= Objects declared in the Application project.
Target= Firmware objects.

Use
Library= Objects contained in a library. In this case, use
simultaneously also the Library filter, described below.
Aux sources= Shows aux sources only.
Applies to All objects types.

Obyects hker

|| Propram:

|#] Furctian Blacks

[+#] Furctians
] riables
L=arbpoes

0 pezolk o “ariables
Varables
Warables
Wearables
Wariables

Wariables

Starderd funchions
ocal varsbles

Bz e
1 zaud

| Check al

R — ook Variatles

Cither ez

H e i

Localian |
Libramy

WVare lype

E=poit Lo Ibrzn,

Library

Warmables
Wariables
ariables
Varables
Wariables
Wariables
Wariables
Varables
Varables

i eoukd
V| inpd
LT inpd
@ Wit tal
W onpii
.] VT inp2
gk
Vilnpl4
_J gnpﬂS

£

Dakele chiects

| Selectal |

Opzn soirce Sekaict none

Function

Completes the specification of a query on objects contained
in libraries. The value of this control is relevant only if the
Symbol Tocation filter is setto Library.

Set of legal values

All, librarynamel, libraryname2, ...

All= Shows objects contained in whatever library.

Use LibrarynameN= Shows only the objects contained in the
library named librarynameN.
Applies to All objects types.

44l

user manual 47

Oyt fiker

|¥#] Programz
|#] Functian Blacks
|+] Furclians
[#] " ariables
U z=r bppes

||| |free BULIL

[Type

O peiatoe: T ciTodpe Furtians

I BT o ord Fursfianz
Starderd funclions IF Bvtel cbit Furcthion blocks
I EuteT cwfard Furchans

Fr TRIG Furlian Hocks
fErr oD Furiiian Hocks

Local varables

Basic oes

| Crechal || Cheeknone I Puiee Furstian Hoeks

Cither filerz

H e

Localian -|_|:.|a-}|

Libraiy

Ware iwpe

A_TAIG Furchan blocks
3 RS Furnclion blocks
E 0 3] Funifian blocks
o or Fursfian Hocks

TOH Furchan blocks

‘whordTaBil Furilion blocks
ﬂ'l.-\-'u'dTuByba Furnction blocks

E=pioit, b fibw =, [isbale chpEcts Op=n mowrce l Selact sl Sabact none

Vars Type

Function

Filters global variables and system variables (also known
as firmware variables) according to their type.

Set of legal values

All, Normal, Constant, Retain

All= Shows all the global and system variables.
Normal= Shows normal global variables only.

Use
Constant= Shows constants only.
Retain= Shows retain variables only.
Applies to Variables.

Obyects hker

|| Program:

|| Furction Black: Variatles

|| Furctians
[#] W ariablex
[E vzertipes

0 pezolk o “ariables

Slarderd lunchons b Varables
= Warables
ariables
W ariables

Local varables

Bazic e

| Check al Check non= Variables

Cither fileiz
H o
Localan -,d.‘||

Libramy -_,d\u

Wariables
Wariables
Wariables
Varables
l'.l'n!l'lﬂblﬂ‘:
ariables
Wariables
Warables

Warg pe Ehll:-lmd

al

Mamnal
Cohseni

Wariables

RA=tan

l Select sl] | Sedact none |

48

| |
user manual éllwu

IR studio

Object list

]

I 1ectrlanatel W ORD
I testrlagate/ ORD

Tupe
Furctiars
Furctionsz

D escriplion

ﬁ RS Furchon Blocks Biztable, resmt dominare
ILF Sk Furciion blocks Bist=ble, et dommieni
& EiTod pe Funclions Compoee a byte fram 2 bits
& BT olwond Furctians Comooze a word from 16 bits
& ButeT cwiard Furciions Compose a word from 2 bptes
¥ FF O Furclian Hocks 0 -typ= Rip-Aeo
E F_TRIG Furzlion blocks Faling =dge delechn
IF ToF Furctian Hlocks OFF dalay timer
L& ron Furction Hocks M delay times

Pulze Furchion blocks Pulze generstar

A_TRIG Furclion blocks A kg edoe debectar
EunteT cBit Furction blocks Splic a bybs into bitg ™=
ﬁ'l.-'.-'-:ﬂ:lT-:lElil Furction Blocks Split & weond irko biks
ﬁ".‘.-'cn:lTu:lEl_'.ll'c Furction blocka Splic a weond inko bao butes e
4 | 1] 3

| Sedect 2l | | Sebact none |

Object Tist shows all the filtered objects. List can be ordered in ascending or discend-
ing way by clicking on the header of the column. So it is possible to order items by Name,

Type, or Description.

Double-clicking on an item allows the user to perform the default associated operation

(the action is the same of the 0K, Import object, or Open source button actions).

When item multiselection is allowed, Select all and Select none buttons are visible.

It is possible to select all objects by clicking on Select all button. Select none dese-
lects all objects.

If at least an item is selected on the list operation, buttons are enabled.

o & bybe fran
woord From 16 bi
waond from 2

[Sedact 2l] |Se|e-|:!:n-:una-

44l

user manual

49

Ap

Resize

Window can be resized, the cursor changes along the border of the dialog and allows the
user to resize window. When reopened, 0Object browser dialog takes the same size and
position of the previous usage.

Close dialog
You have two options for closing the Object browser:
- Press the button near the right-end border of the caption bar.

.
—=|

- Press the Cancel/0K button below the filter box.

4.5.1.2 USING OBJECT BROWSER AS A BROWSER

To use Object browser in this way click on 0Object browser in the Project menu. This
causes the Object browser dialog box to appear, which lets you navigate between the
objects of the currently open project.

File Wiew N Debug Communication Tools Help
BEaL New object 4
Project

Praojed

= PLC Object properties Alt+E nter
C|7e Dbject Browser [

#% Compile F7

Fecompile al
BP Generate redistibutable source module

Import object fram library

Available objects

In this mode you can list objects of these types:
- Programs.

- Function Blocks.

- Functions.

- Variables.

- User types.

These items can be checked or unchecked in Objects filter section to show or to hide
the objects of the chosen type in the list.

Other types of objects (Operators, Standard functions, Local variables, Basic types) can-
not be browsed in this context so they are unchecked and disabled).

Available operations

Caredl | |Epotlolbeary| Dekiocbiect: | Opsnsowee | | Selestal | | Sebctrore |

50

user manual z

Allowed operations in this mode are:

Open source, default operation for double-click on an item

Opens the editor by which the selected object was created

Function and displays the relevant source code.
If the object is a program, or a function, or a function
block, this button opens the relevant source code editor.
If the object is a variable, then this button opens the
Use . :
variable editor.
Select the object whose editor you want to open, then click
on the Open source button.
Export to library
Function To export an object to a library.
U Select the objects you want to export, then press the
se .
Export to Tibrary button.
Delete objects
Function Allows you to delete an object.
Use Select the object you want to delete, then press the

Delete object button.

Multi selection

Multi selection is allowed for this mode, Select all and Select none buttons are visible.

4.5.1.3 USING OBJECT BROWSER FOR IMPORT

Object browser is also used to support objects importation in the project from a desired
external library. Select Import object from Iibrary inthe Project menu, then choose

the desired library.

- et E——
| Project | Debug Communication Tools Helg

Mew abject v E
4
4% PLC Dhirct properies Mt+Erter
#k Ohjzct Broveser
[Comple F7
[& Racompila al
B Gansrae redistrbutable acurca moduls

Import abject from ibmEne

[E Lbranymanager
Macma k
Select tanget

Cioticna....

user manual

51

p

Available objects

In this mode you can list objects of these types:
- Programs.

- Function blocks.

- Functions.

- Variables.

- User types.

These items can be checked or unchecked in Objects filter section to show or to hide
the objects of the chosen type in the list.

Other types of objects (Operators, Standard functions, Local variables, Basic types) can-
not be imported so they are unchecked and disabled.

Available operations

! | Careel | [mpott abiects | | seectal | | Sekctrere | !

Import objects is the only operation supported in this mode. It is possible to import
selected objects by clicking on Import objects button or by double-clicking on one of
the objects in the list.

Multi selection
Multi selection is allowed for this mode, Select all and Select none buttons are visible.

4.5.1.4 USING OBJECT BROWSER FOR OBJECT SELECTION

Object browser dialog is useful for many operations that requires the selection of a single
PLC object. So Object browser can be used to select the program to add to a task, to se-
lect the type of a variable, to select an item to find in the project, etc..

Available objects

Available objects are strictly dependent on the context, for example in the program as-
signment to a task operation the only available objects are programs objects.

It is possible that not all available objects are selected by default.

Available operations

Cacl | Ok | H

In this mode it is possible to select a single object by double-clicking on the list or by click-
ing on the 0K button, then the dialog is automatically closed.

Multi selection

Multi selection is not allowed for this mode, Select all and Select none buttons are
not visible.

52

user manual

IR studio Ap

4.5.2 SEARCHING WITH THE FIND IN PROJECT COMMAND

The Find in project command retrieves all the instances of a specified character string
in the project. Follow the procedure to use it correctly.

1) Click Find in project... in the Edit menu or in the Main toolbar.

File View Project Debug Communication
‘B8 #h o Gy
WL
Copy Ctr+C Main
‘ File Edit “iew Project Debug Communication Wariables b
. Delete line Cti+E 1 leou E a & LRI cIﬁI:- E M ﬁ %% @%
- [y Find in project [Ctl+ShittsF |)
Bookmark.s... A 4
- i
Goba line
Find... Ch+F 999}

This causes the following dialog box to appear.

ind in project]

o I=
Location | &l " |

Filters

Program Wariablez Uszer Types
Function blocks Dezcrption

Function Types

[] Match whole word oy

[]Match casze

2) Inthe Find what text box, type the name of the object you want to look for.

Fird what : .| | Fnd
- ,;

Fikers
Program
B Preg Objzcts hker T
[+#] Furictian Hame Type
) o Piograms 7| Operatars Er = [y
] F {I 5
Hreen J Furction Blocks & BiTowad Furdians
W Functons 7 Slandad furchions E i T Furciion blocks
[Z] hatth e 7Y analer ety 4o p=Tawiod Furchians
| Match cae 3] Use: bes B osic boes Fr 1RIE Furicfian blocks
fArrD Furctian Hocks
| e) r— Frue= Furetian Hocks
—— :I Tr_TRIG Functian blocks
A5 Furchian blecks
Dbk Flless 3R Furction blocks
Hame - $or Furctian Hocks
Locoeian [Ijt(ay v] word ToBE Furclion blocks
\WodToEye Furiclion blocks
Lbany [basic v]
Warg e [AII -']
q T I
[cencal | [ok

éllwu user manual 53

||| |free BULIL

Otherwise, click the Browse button to the right of the text box, and select the name
of the object from the list of all the existing items.

Find in project

Firid whit :

ind in project

=

Find what : |

[Find

Location | All

Lt
g

Filters

Program
Function blocks
Function

[Match whols word
[tatch case

Wariables
Description
Types

only

Uzer Types

J

Location &l

Fikers
[+] Pragram

[*] Furciian Hos
[+#] Furistian

[T Match ekl
[Mateh caze

Objesck browser
| Wanshles | Bz lyp=x | Fibes
| Starderd functicne | DOpertoes | UsarTppmes | Home
Frogramz Functicn blozks Furclions
B b=T bk SA
CAE R Tesl Eymballocaton
F_TRIE Theemhlads] H v|
FF_D T0F :
b i Ll Libramy
[GEAS R LT TusFikzi |."|I “ |
[EATE R ‘et w3 calar
F_TRIG WinndTofl pee
ALS L4 v
Ribd5
P Bl 2irin
A5 | Cancel || o
]

3) Select one of the values listed in the Location combo box, so as to specify a con-
straint on the location of the objects to be inspected.

4)

5)
6)
7)

Find in project

]

Find what : | t

|L]

[Fnd |

Location | Project

3|

Filters
Progr

Parameters

User Types

IFupd Aun. Sources

Function

[Match caze

Types

[Match whale waord only

Cancel

The frame named Filters contains 7 checkboxes, each of which, if ticked, enables
research of the string among the object it refers to.

Tick Match whole word only if you want to compare your string to entire word only.
Tick Match case if you want your search to be case-sensitive.
Press Find to start the search, otherwise click Cancel to abandon.

54

user manual

44l

Find in project X

Find what : [t | (] [__Find ,i
Location |F'r0iec:t v|

Filters

Program Wariables User Types
Function block s Description

Function Types

Match whole word anly
Match case

The results will be printed in the Find in project tab of the Output window.

(L0 Glchal vaiizhles |
H 2=l Tazks
oo .
1
B
qop0 —
£
O ik

Scarching fox "t

1 — F'Ell:lh'%:herl.e
1 cccurrence(=) haws boen found .

4| v[| Buld) Findinpeoies! [Deouwg [

u

4.6 WORKING WITH APPLICATION EXTENSIONS

Application’s Workspace window may include a section whose contents completely depend
on the target device the IDE is interfacing with: the Resources panel.

If the Resources panel is visible, you can access some additional features related to the
target device (configuration elements, schemas, wizards, and so on).

Project b4
Project| € Definitions [0 Resqurces
= =0 CheckSFC Definitions a0

L3 TypeDefs

(23 Stuctures

ﬁ F nimerabinns

Information about these features may be found in a separate document: refer to your
hardware supplier for details.

- E user manual 55

||| |free BULIL

56

user manual

divll

EDITING THE SOURCE CODE

PLC editors

Application includes five source code editors, which support the whole range of IEC 61131-
3 programming languages: Instruction List (IL), Structured Text (ST), Ladder Diagram
(LD), Function Block Diagram (FBD), and Sequential Function Chart (SFC).

Moreover, Application includes a grid-like editor to support the user in the definition of
variables.

This chapter focuses on all these editors.

5.1 INSTRUCTION LIST (IL) EDITOR

5.1.1

oood -
0oos 1D =y=Ig ﬂ
0006 ML =y=lg

ooo? 5T IgDW

ooos SHE 16404

ooog ADD addIgSg

ooio ST addIgSqg

0oll

ooiz n =y=Id

0013 HOL sy=Id

0old 5T I4DW

0ois SHE 16404

00le ADD addIdSg

0017 ST 2ddId5g

DElF _I;I
4 3

The IL editor allows you to code and modify POUs using IL (i.e., Instruction List), one of
the IEC-compliant languages.

EDITING FUNCTIONS

The IL editor is endowed with functions common to most editors running on a Windows
platform, namely:

- Text selection.

- Cut, Copy, and Paste operations.
- Find and Replace functions.

- Drag-and-drop of selected text.

Many of these functions are accessible through the £dit menu or through the Main tool-
bar.

5.1.2 REFERENCE TO PLC OBJECTS

If you need to add to your IL code a reference to an existing PLC object, you have two

options:

- You can type directly the name of the PLC object.

- You can drag it to a suitable location. For example, global variables can be taken from
the Workspace window, whereas standard operators and embedded functions can be

dragged from the Libraries window, whereas local variables can be selected from the
local variables editor.

5.1.3 AUTOMATIC ERROR LOCATION

The IL editor also automatically displays the location of compiler errors. To know where
a compiler error occurred, double-click the corresponding error line in the Output bar.

user manual 57

Ap

5.1.4 BOOKMARKS

You can set bookmarks to mark frequently accessed lines in your source file. Once a book-
mark is set, you can use a keyboard command to move to it. You can remove a bookmark
when you no longer need it.

5.1.4.1 SETTING A BOOKMARK

Move the insertion point to the line where you want to set a bookmark, then press
Ctri+F2. The line is marked in the margin by a light-blue circle.

ooza

0029
oozn

5.1.4.2 JUMPING TO A BOOKMARK

Press F2 repeatedly, until you reach the desired line

5.1.4.3 REMOVING A BOOKMARK

Move the cursor to anywhere on the line containing the bookmark, then press Ctri+ F2.

5.2 STRUCTURED TEXT (ST) EDITOR

000z IgDW = =y=lg * =vs=lg ;

0003 addIgSqg := addIgSg + SHR{ IgDW. 16404)

0004

0oos IdDW = sysld * sy=Id

0006 2ddIdSg ;- addIdSg + SHR{ IdDW, 16#04 3 ;

0oo?

0008 IF & » b THEW

0oo9 a = o

gola n :=a#*h=*c;

0011 END_IF:

goiz2

0013 e
K| 3

The ST editor allows you to code and modify POUs using ST (i.e. Structured Text), one of
the IEC-compliant languages.

5.2.1 CREATING AND EDITING ST OBJECTS

See the Creating and Editing POUs section (Paragraphs 5.1.1 and 5.1.2).

5.2.2 EDITING FUNCTIONS

The ST editor is endowed with functions common to most editors running on a Windows
platform, namely:

- Text selection.

- Cut, Copy, and Paste operations.
- Find and Replace functions.

- Drag-and-drop of selected text.

Many of these functions are accessible through the Edit menu or through the Main tool-
bar.

58 user manual

5.2.3 REFERENCE TO PLC OBJECTS

If you need to add to your ST code a reference to an existing PLC object, you
have two options:

- You can type directly the name of the PLC object.

- You can drag it to a suitable location. For example, global variables can be taken from
the Workspace window, whereas embedded functions can be dragged from the Librar-
ies window, whereas local variables can be selected from the local variables editor.

5.2.4 AUTOMATIC ERROR LOCATION

The ST editor also automatically displays the location of compiler errors. To know where a
compiler error has occurred, double-click the corresponding error line in the Output bar.

5.2.5 BOOKMARKS

You can set bookmarks to mark frequently accessed lines in your source file. Once a book-
mark is set, you can use a keyboard command to move to it. You can remove a bookmark
when you no longer need it.

5.2.5.1 SETTING A BOOKMARK

Move the insertion point to the line where you want to set a bookmark, then press
Ctri+F2. The line is marked in the margin by a light-blue circle.

0oZs

0029
0030

5.2.5.2 JUMPING TO A BOOKMARK

Press f2 repeatedly, until you reach the desired line.

5.2.5.3 REMOVING A BOOKMARK

Move the cursor to anywhere on the line containing the bookmark, then press Ctri+F2.

5.3 LADDER DIAGRAM (LD) EDITOR

oood || Stepd:. -
Time2
..... 5@'1 - . . - - - - . . - - - - - . - m" . . - - - . . . - 9}'5[:'01
1] i
1T m q ik
. 20 }- - pt et
Flag1 . R ss002
I
Diginpl - Diglnp2 - - - - | - = = = -« + = = - . Flag3
[i}
Flag2 -« + + « = = « « | « & c o a e o e e e e e e e e e
O
L
0002 .
tr a N
stal-r TDH test . a -
| | »

user manual 59

A

p

The LD editor allows you to code and modify POUs using LD (i.e. Ladder Diagram), one of
the IEC-compliant languages.

5.3.1 CREATING A NEW LD DOCUMENT

See the Creating and Editing POUs section (Paragraphs 5.1.1 and 5.1.2).

5.3.2 ADDING/REMOVING NETWORKS

Every POU coded in LD consists of a sequence of networks. A network is defined as a
maximal set of interconnected graphic elements. The upper and lower bounds of every
network are fixed by two straight lines, while each network is delimited on the left by a
grey raised button containing the network number.

OO0 01 L

On each LD network the right and the left power rail are represented, according to the LD
language indication.

On the new LD network a horizontal line links the two power rails. It is called the “power
link”. On this link, all the LD elements (contacts, coils and blocks) are to be placed.

You can perform the following operations on networks:

- To add a new blank network, click Network>New in the Scheme menu, or press one of
the equivalent buttons in the Network toolbar.

To assign a label to a selected network, give the Network>Label command from the
Scheme menu. This enables jumping to the labeled network.

To display a background grid which helps you to align objects, press View grid in the
Network toolbar.

To add a comment, press the Comment button in the FBD toolbar.

5.3.3 LABELING NETWORKS

You can modify the usual order of execution of networks through a jump statement, which
transfers the program control to a labeled network. To assign a label to a network, double-
click the raised grey button on the left, which bears the network number.

<I oooz

£

This causes a dialog box to appear, where you can type the label you want to associate
with the selected network.

MNetwork label E|

Mew netwaork label
|Labeb

e — Cancel | Ok I
{alulu}c)

If you press 0K, the label is printed in the top left-hand corner of the selected network.

Wl | Label::

60

user manual

5.3.4

INSERTING CONTACTS

To insert new contacts on the network apply one of the following options:

- Select a contact, a block or a connection. Select the insertion mode between serial or

parallel (using the button on the LD toolbar or the Scheme menu). Insert the appropriate
contact (using the button on the LD toolbar, the Scheme>0bject>New or the pop-up
menu option). For serial insertion, the new contact will be inserted on the right side of
the selected contact/block or in the middle of the selected connection depending on the
element selected before the insertion. For parallel insertions, several contacts/blocks
can be selected before performing the insertion. The new contact will be inserted at the
endpoints of the selection block.

o004 oo
Step 1 Step 2
Cn1 Cn b
il | | il
ooo-
Step 2fa

Cni
|

- Drag a boolean variable to the desired place over a connection. For example, global

variables can be taken from the Workspace window, whereas local variables can be se-
lected from the local variables editor. The dialog box shown below will appear, request-
ing to define whether the variable should be inserted as a contact, coil or variable (like
FBD schemes). Choose the appropriate contact type. Contacts inserted with drag and
drop will always be inserted in series.

— Object ypa
LD Objgcl " Variable
— LD ohjecd
* Noma 7 MNegae
% Coriac
* Mepattve ™ Positive
" Col
= Gat " Peset
Warnizhie hpe
iE N[y
1 Dumw: Canc=l I

user manual 61

Ap

5.3.5

5.3.6

5.3.7

9

INSERTING COILS

To insert new coils on the network apply one of the following options:

- Press one of the coil buttons in the LD toolbar. The new coil will be inserted and linked
to the right power rail. If other coils are already present in the network, the new coil will
be added in parallel with the previous ones.

Dt Ot

. R T
LI
Stepd Stepz ‘ 7 \

- Drag a boolean variable on the network. For example, global variables can be taken
from the Workspace window, whereas local variables can be selected from the local vari-
ables editor. A dialog box will appear, requesting to indicate whether the variable should
be inserted as a contact, coil or variable. Choose the appropriate coil type.

INSERTING BLOCKS

Operators, functions and function blocks can be inserted into an LD network in the follow-
ing modes:

- On the power link, as contacts and coils.

- Outside the power link (to do so, follow the indications as for the FBD blocks).

To insert blocks on the network apply one of the following options:

- Select a contact, connection or block then click Object>New in the Scheme menu.

- Select a contact, connection or block, then press the New block button in the FBD
toolbar, which causes a dialog box to appear listing all the objects of the project, then
choose one item from the list. If the block is a constant, a return statement, or a jump
statement, you can directly press the relevant buttons in the FBD toolbar.

- Drag the selected object (from the Workspace window, the Libraries window or the
local variables editor) over the desired connection.

The two upper pins will be connected to the power link. The EN/ENO pins should be acti-
vated before the insertion.

EDITING COILS AND CONTACTS PROPERTIES

The type of a contact (normal, negated) or a coil (normal, negated, set, reset) can be
changed by one of the following operations:

- Double-click on the element (contact or coil).
- Select the element and then press the Enter key.

- Select the element, activate the pop-up menu with the right mouse button, then select
Properties.

An apposite dialog box will appear. Select the desired element type from the list presented
and then press 0K.

62

user manual

The LD editor is endowed with functions common to most graphic applications running on
a Windows platform, namely:

5.3.8 EDITING NETWORKS

Selection of a block.

Selection of a set of blocks by pressing Shift+Right button and by drawing a frame
including the blocks to select.

Cut, Copy, and Paste operations of a single block as well as of a set of blocks.
Drag-and-drop.

All the mentioned functions are accessible through the £dit menu or through the Main
toolbar.

5.3.9 MODIFYING PROPERTIES OF BLOCKS
- Click Increment pins + in the Scheme menu, or press the Inc pins button in the FBD

toolbar, to increment the number of input pins of some operators and embedded func-
tions.

hALLE

1 '+

=11

- Click Enable EN/ENO pins in the Scheme menu, or press the EN/ENO button in the FBD
toolbar, to display the enable input and output pins.

- Click Object . Instance name in the Scheme menu, or press the FBD properties but-
ton in the FBD toolbar, to change the name of an instance of a function block.

5.3.10 GETTING INFORMATION ON A BLOCK

You can always get information on a block that you added to an LD document, by selecting
it and then performing one of the following operations:

- Click Object>0pen sourcein the Scheme menu, or press the View source button in the
FBD toolbar, to open the source code of a block.

- Click Object properties in the Scheme menu, or press the FBD properties button in
the FBD toolbar, to see properties and input/output pins of the selected block.

5.3.11 AUTOMATIC ERROR RETRIEVAL

The LD editor also automatically displays the location of compiler errors. To reach the
block where a compiler error occurred, double-click the corresponding error line in the
Output bar.

user manual 63

Ap

5.4 FUNCTION BLOCK DIAGRAM (FBD) EDITOR

o044

dl

The FBD editor allows you to code and modify POUs using FBD (i.e. Function Block Dia-
gram), one of the IEC-compliant languages.

5.4.1 CREATING A NEW FBD DOCUMENT

See the Creating and editing POUs section (Paragraphs 5.1.1 and 5.1.2).

5.4.2 ADDING/REMOVING NETWORKS

Every POU coded in FBD consists of a sequence of networks. A network is defined as a
maximal set of interconnected graphic elements. The upper and lower bounds of every
network are fixed by two straight lines, while each network is delimited on the left by a
grey raised button containing the network number.

o004 0 L

You can perform the following operations on networks:

- To add a new blank network, click Network>New in the Scheme menu, or press one of
the equivalent buttons in the Network toolbar.

- To assign a label to a selected network, give the Network>Label command from the
Scheme menu. This enables jumping to the labeled network.

- To display a background grid which helps you to align objects, press View grid in the
Network toolbar.

- To add a comment, press the Comment button in the FBD toolbar.

5.4.3 LABELING NETWORKS

You can modify the usual order of execution of networks through a jump statement, which
transfers the program control to a labeled network. To assign a label to a network, double-
click the raised grey button on the left, that bears the network number.

o002

64 user manual

This causes a dialog box to appear, which lets you type the label you want to associate
with the selected network.

Network label k|

Mew network label
|Labet<

T Cancel | Ok I

If you press 0K, the label is printed in the top left-hand corner of the selected network.

5.4.4

il | Label:

INSERTING AND CONNECTING BLOCKS

This paragraph shows you how to build a network.
Add a block to the blank network, by applying one of the following options:

Click Object>New in the Scheme menu.

Press the New block button in the FBD toolbar, which causes a dialog box to appear
listing all the objects of the project, then choose one item from the list. If the block is a
constant, a return statement, or a jump statement, you can directly press the relevant
buttons in the FBD toolbar.

Drag the selected object to the suitable location. For example, global variables can be
taken from the Workspace window, whereas standard operators and embedded func-
tions can be dragged from the Libraries window, whereas local variables can be se-
lected from the local variables editor.

Repeat until you have added all the blocks that will make up the network.
Then connect blocks:

Click Connection mode in the Edit menu, or press the Connection button in the FBD
toolbar, or simply press the space bar of your keyboard. Click once the source pin, then
move the mouse pointer to the destination pin: the FBD editor draws a logical wire from
the former to the latter.

If you want to connect two blocks having a one-to-one correspondence of pins, you can
enable the autoconnection mode by clicking Autoconnect in the Scheme menu, or by
pressing the Autoconnect button in the Network toolbar. Then take the two blocks,
drag them close to each other so as to let the corresponding pins coincide. The FBD edi-
tor automatically draws the logical wires.

Step 1 Step 2 Step 2
Biladkd Bilockd
A LI a rAUE Blocki R

WectorByScalar —K wector ByScalar | _ K “ector EyScalar —
—ail al -0 — a1 wl 0 —al wl [u]
—az w2 -1 —az 11 —az w2 11
— a3 w3 Bl — a3 12 — a3 w3 12
- a4 v -2 — a4 12 —ad v 13
—b —b —b

If you delete a block, its connections are not removed automatically, but they become in-
valid and they are redrawn red. Click Delete invalid connection in the Scheme menu,
or type Ctri+B on your keyboard.

user manual 65

Ap

5.4.5 EDITING NETWORKS

The FBD editor is endowed with functions common to most graphic applications running
on a Windows platform, namely:

- Selection of a block.

- Selection of a set of blocks by pressing Shift + left button and by drawing a frame
including the blocks to select.

- Cut, Copy and Paste operations of a single block as well as of a set of blocks.
- Drag-and-drop.

All the mentioned functions are accessible through the £dit menu or through the Main
toolbar.

5.4.6 MODIFYING PROPERTIES OF BLOCKS

- Click Increment pins + in the Scheme menu, or press the Inc pins button in the FBD
toolbar, to increment the number of input pins of some operators and embedded func-
tions.

B LI hALLE
18 !| -0

- -1z

- Click Enable EN/ENO pins in the Scheme menu, or press the £EN/ENO button in the FBD
toolbar, to display the enable input and output pins.

b R L1
—K = .
— 10 Mo
-

- Click Object>1Instance name in the Scheme menu, or press the FBD properties button
in the FBD toolbar, to change the name of an instance of a function block.

5.4.7 GETTING INFORMATION ON A BLOCK

You can always get information on a block that you added to an FBD document, by select-
ing it and then performing one of the following operations:

- Click Object> Open source in the Scheme menu, or press the V/iew source button in
the FBD toolbar, to open the source code of a block.

- Click Object properties in the Scheme menu, or press the FBD properties button in
the FBD toolbar, to see properties and input/output pins of the selected block.

5.4.8 AUTOMATIC ERROR RETRIEVAL

The FBD editor also automatically displays the location of compiler errors. To reach the
block where a compiler error occurred, double-click the corresponding error line in the
Output bar.

66 user manual

5.5 SEQUENTIAL FUNCTION CHART (SFC) EDITOR

The SFC editor allows you to code and modify POUs using SFC (i.e. Sequential Function
Chart), one of the IEC-compliant languages.

5.5.1 CREATING A NEW SFC DOCUMENT

See the creating and editing POUs section (Paragraphs 5.1.1 and 5.1.2).

5.5.2 INSERTING A NEW SFC ELEMENT

You can apply indifferently one of the following procedures:

- Click Object>New in the Scheme menu, then select the type of the new element (action,
transition, or jump).

- Press the New step, Add Transition or Add Jump button in the SFC toolbar.
In either case, the mouse pointer changes to:

E:' for steps;

&

%D for jumps.

for transitions;

5.5.3 CONNECTING SFC ELEMENTS

Follow this procedure to connect SFC blocks:

- Click Connection mode in the Edit menu, or press the Connection button in the FBD
toolbar, or simply press the space bar on your keyboard. Click once the source pin, then
move the mouse pointer to the destination pin: the SFC editor draws a logical wire from
the former to the latter.

- Alternatively, you can enable the autoconnection mode by clicking Autoconnect in the
Scheme menu, or by pressing the Autoconnect button in the Network toolbar. Then take
the two blocks, and drag them close to each other so as to let the respective pins coin-
cide, which makes the SFC editor draw automatically the logical wire.

5.5.4 ASSIGNING AN ACTION TO A STEP

This paragraph explains how to implement an action and how to assign it to a step.

5.5.4.1 WRITING THE CODE OF AN ACTION

To start implementing an action, you need to open an editor. Do it by applying one of the
following procedures:

- Click Code object>New action in the Scheme menu.

- Right-click on the name of the SFC POU in the Workspace window. A context menu ap-
pears, from which you can select the New Action command.

user manual 67

Ap

In either case, Application displays a dialog box like the one shown below.

E|

- Languages ——————————

L
Cancel

 FED 4'
LD
8T
" SFC

— Mame

Select one of the languages and type the name of the new action in the text box at the
bottom of the dialog box. Then either confirm by pressing 0K, or quit by clicking Cancel.

If you press 0K, Application opens automatically the editor associated with the language
you selected in the previous dialog box and you are ready to type the code of the new
action.

Note that you are not allowed to declare new local variables, as the module you are now
editing is a component of the original SFC module, which is the POU where local variables
can be declared. The scope of local variables extends to all the actions and transitions
making up the SFC diagram.

5.5.4.2 ASSIGNING AN ACTION TO A STEP

When you have finished writing the code, double-click the step you want to assign the
new action to. This causes the following dialog box to appear.

5FC Action Properties

From the list shown in the Code N box, select the name of the action you want to execute
if the step is active. You may also choose, from the list shown in the Code P (Pulse) box,
the name of the action you want to execute each time the step becomes active (that is,
the action is executed only once per step activation, regardless of the number of cycles
the step remains active). Confirm the assignments by pressing 0K.

In the SFC schema, action to step assignments are represented by letters on the step
block:

- action N by letter N in the top right corner;
- action P by letter P in the bottom right corner.

68

user manual Y W/ -

If later you need to edit the source code of the action, you can just double-click these
letters. Alternatively, you can double-click the name of the action in the Actions folder of
the Workspace window.

5.5.5 SPECIFYING A CONSTANT/A VARIABLE AS THE CONDITION OF
A TRANSITION

As stated in the relevant section of the language reference, a transition condition can be
assigned through a constant, a variable, or a piece of code. This paragraph explains how
to use the first two means, while conditional code is discussed in the next paragraph.

First of all double-click the transition you want to assign a condition to. This causes the
following dialog box to appear.

E
~ Wal I
alue i
&« Te

 False Cancel |
" Variable I |

" Code I[No code] j

Mame I

Comment

i3

Select True if you want this transition to be constantly cleared, FaTlse if you want the PLC
program to keep executing the preceding block.

Instead, if you select Variable the transition will depend on the value of a Boolean vari-
able. Click the corresponding bullet, to make the text box to its right available, and to
specify the name of the variable.

To this purpose, you can also make use of the objects browser, that you can invoke by
pressing the Browse button shown here below.

=

Click 0K to confirm, or Cancel to quit without applying changes.

5.5.6 ASSIGNING CONDITIONAL CODE TO A TRANSITION

This paragraph explains how to specify a condition through a piece of code, and how to
assign it to a transition.

user manual 69

Ap

5.5.6.1 WRITING THE CODE OF A CONDITION

Start by opening an editor, following one of these procedures:
- Click Code object>New transition in the Scheme menu.

- Right-click on the name of the SFC POU in the Workspace window, then select the New
transition command from the context menu that appears.

In either case, Application displays a dialog box similar the one shown in the following

picture.
£

r Languages —————

L
Cancel

" FED _l
LD
5T
 SFC

— MName

Note that you can use any language except SFC to code a condition. Select one of the
languages and type the name of the new condition in the text box at the bottom of the
dialog box. Then either confirm by pressing 0K, or quit by clicking Cancel.

If you press OK, Application opens automatically the editor associated with the language
you selected in the previous dialog box and you can type the code of the new condition.

Note that you are not allowed to declare new local variables, as the module you are now
editing is a component of the original SFC module, which is the POU where local variables
can be declared. The scope of local variables extends to all the actions and transitions
making up the SFC diagram.

5.5.6.2 ASSIGNING A CONDITION TO A TRANSITION

When you have finished writing the code, double-click the transition you want to assign
the new condition to. This causes the following dialog box to appear.

SFC Block properbies |
A
__________ s
__________ O e [_cencel]
=0 I
etop
' i Civaiizble |
stop M| @ Cade ||Nocada] -
[Mo code]
MolEnzbkd
e o . Mame [atFuri
- M TRUE C rt

Select the name of the condition you want to assign to this step. Then confirm by press-
ing OK.

If later you need to edit the source code of the condition, you can double-click the name

70 user manual z

of the transition in the Transitions folder of the Workspace window.

5.5.7 SPECIFYING THE DESTINATION OF A JUMP

To specify the destination step of a jump, double-click the jump block in the Chart area.
This causes the dialog box shown below to appear, listing the name of all the existing
steps. Select the destination step, then either press 0K to confirm or Cancel to quit.

SFC Jump properties #

OE.
Read nput Cancel
Stop
W aitCrnd

5.5.8 EDITING SFC NETWORKS

The SFC editor is endowed with functions common to most graphic applications running
on a Windows platform, namely:

Selection of a block.
Selection of a set of blocks by pressing Ctr1 + left button.

Cut, Copy, and Paste operations of a single block as well as of a set of blocks.
Drag-and-drop.

Some of these functions are accessible through the Edit menu or through the Main tool-
bar.

5.6 VARIABLES EDITOR

Application includes a graphical editor for both global and local variables that supplies a
user-friendly interface for declaring and editing variables: the tool takes care of the trans-
lation of the contents of these editors into syntactically correct IEC 61131-3 source code.

As an example, consider the contents of the Global variables editor represented in the
following figure.

MNarme Type Addrass Group Array Init value Aftribute
9 |gA BOOL Auto Mo TRIUE
10 gB REAL Auto [0..4] 50
1 |gc REAL %MDE0.20 Mo 1.0
12 gD INT Auto Mo -74 COMSTANT

user manual 71

||| |free BULIL

The corresponding source code will look like this:

VAR GLOBAL
gA : BOOL := TRUE;
gB : ARRAY[0..4] OF REAL;
gC AT $MD60.20 : REAL := 1.0;
END VAR

VAR GLOBAL CONSTANT
gb : INT := -74;
END VAR

5.6.1 OPENING A VARIABLES EDITOR
5.6.1.1 OPENING THE GLOBAL VARIABLES EDITOR

In order to open the Global variables editor, double-click on Global variables in the
project tree.

| Project x|

Project | £ Definitionsl

= peplc Project
|:| Programs
|:| Function blocks
|:| Funchions

3=
=28 Tasks
| Prowect X [Bp sbbalvanacks
Piogect 'ﬂ |:I=F|rll:i|:r|:| Fame Type Lddre
= B pople Project 1 |freeRunCountier DIMT Suto
=) Progiams 2 |iner [MT Ao
=+ Function biocks 3 |period REAL B,
f"g ELbitons 4 |valueFil REAL %M
2 W
=) Akamattya aakes 5 |kau REAL -1 ng0
= 140 valizble: G |valueRef REAL WD,
- Coratants 7|k LIRT Al
oy = Figtab vaniables & |klnilner INT Auto

5.6.1.2 OPENING A LOCAL VARIABLES EDITOR

To open a local variables editor, just open the Program Organization Unit the variables you
want to edit are local to.

| Froject X|

Project | {5 Definitinnsl

= peple Project
EI[:l Pragrams

] Medibm
{2 Function blocks
[:l Functionz

EI[:I Global variables

72 user manual 4"V€"

Frowct X I E ™ain

Pioiect | 4™ Dehrabion: M me Type fddre
= R popic Froject 1 |hSchema Schema Aulo
=) Proguams 2 |ent IHT Ao
"3 Fast 3 |mSiat Sta A1t
& It
* B Mo
| e T[T
E-27 Function blocks ooz {® Ladder logic =)
> : TE,
- Functions nnn4 thSchenal i1 := dinpd. i
. J jmIL |
= Globd vaiizble: nons cutll = EbSchens ol;

5.6.2 CREATING A NEW VARIABLE

In order to create a new variable, you may click on the Insert record item in the Pro-
Jject toolbar.

s -lbS - LY
Init value Aftribute
0
TRUE
1.0 :
-74 COMSTANT

Alternatively, you may access the Variables menu and choose Insert.

VENEREEN Window Tools Help

| Ihzert | Automatic[VEGEEEN Window Tools
= Delete 140 wariable |E|G
= Delet]
Constant . -]
By . T e
Retain
1 |freeRunCa 1 |hSchema

R LT

5.6.3 EDITING VARIABLES

Follow this procedure to edit the declaration of a variable in a variables editor (all the fol-
lowing steps are optional and you will typically skip most of them when editing a variable):

1) Edit the name of the variable by entering the new name in the corresponding cell.

- IR e P e

3 oA BOOL Auto

10 [olobB]] |REAL Auto
11 gc REAL %MDED 20

2) Change the variable type, either by editing the type name in the corresponding cell
or by clicking on the button in that cell and select the desired type from the list that

pops up.
9 gA BOOL Auto t
10 | glokB REAL Autn [

1 o REAL %MDED. 20 f

user manual 73

Object browser

Function blocks| Basic types | Uzer Tupes

Filters

BOOL
BYTE

Mame

Symbol location

| v
Library

| v
Yarg type

& v|

[Cancel]l k. RQ—]

3) Edit the address of the variable by clicking on the button in the corresponding cell
and entering the required information in the window that shows up. Note that, in the
case of global variables, this operation may change the position of the variable in the

project tree.

9

[eI28

10 |alohB

1

qc

BOOL
DhoRD
REAL

ariable address

[&wtamatic: address

Size

Bt

() Bute [bit)
() word (16 bit)

() Double word [32 bit)

Data block Index

AENN S (A

I FRTE T TEE P

Auto [

Auta ﬁ [
%MDA0.2 i

®

Lozation

) Input
) Output
#) Memory

4) In the case of global variables, you can assign the variable to a group, by selecting
it from the list which opens when you click on the corresponding cell. This operation
will change the position of the variable in the project tree.

g
10
i
12

gA

BOOL

globB DWORD
ac REAL
oD INT

[e e

Auto
BMWTZT | Cycle w

%MDB0.20
Auto Analog out 3
Onda guadra

5) Choose whether a variable is an array or not; if it is, edit the size of the variable.

BOOL

oRD

REAL

e e e e —

Auto
Sabh1 2T Cyele
%MDED.20

MNa TRUE
[0.4] %5(0)
MNa 1.0

74

user manual

Size of ¥ariable X

() Scalar
() Anray / Matriz

Cancel Ok
(o) o

6) Edit the initial values of the variable: click on the button in the corresponding cell and
enter the values in the window that pops up.

Array value ['5__<|
Walue | Edit
Walue Type
|E | () Hexadecimal
o
i
0) Octal
() Decimal
() Boolean
I_ ak, ,\J [Cancel] [Help]
X,

7) Assign an attribute to the variable (for example, CONSTANT or RETAIN), by selecting it
from the list which opens when you click on the corresponding cell.

— e e - —— I

ta Ma TRUE

w127 Cycle [0.1,0.1] 0,400 . w
WDe0.20 Ma 1.0 .

0 Mo T4 COMETANT

8) Type a description for the variable in the corresponding cell. Note that, in the case of
global variables, this operation may change the position of the variable in the project

tree.
Mo TRUE
[0.1,0.1] 04,00 RETAIM |Glnbal 32-hit a] |

Mo 1.0

9) Save the project to persist the changes you made to the declaration of the variable.

5.6.4 DELETING VARIABLES

In order to delete one or more variables, select them in the editor: you may use the CTRL
or the SHIFT keys to select multiple elements.

Mame Type Address
1 |freeRunCaountar DINT Auta
2 |gA BOOL Auta
3 |ogC REAL %MOED.20
4~ g0 IMNT Auta
5 ki UIMT Alta
E |incr INT Auto
7 |kinilner INT Auta
3 |globB DWORD Yhiiy1 2.7
3 |period REAL %MD1.11
10 [tau REAL %MD1.9
11 |valueFilt REAL %My .8

17 lualnaDaf [=]=F31] GLhAMA AN

z user manual 75

Then, click on the Delete record in the Project toolbar.

)\ Lo} -% @

Init value Attribute
1]
TRUE
1.0
-74 COMSTANT

Alternatively, you may access the Variables menu and choose Delete.

VENEEER Window To

o Insert |E|L:

Mame

El Al

Notice that you cannot delete the RESULT of an IEC61131-3 FUNCTION.

Class F.. Mame Type
1 |RESULT it Undefined
Logicl.ab E|
@ Unable to delete the selected variable |
oool
anoz
ooo3

5.6.5 SORTING VARIABLES

You can sort the variables in the editor by clicking on the column header of the field you
want to use as the sorting criterion.

Mame %] Type A Marne i Type AL

1 valueFilt REAL %l 1 |freeRunCounter DINT Auto

2 tau REAL %[2 incr INT Auto

3 |valueRef REAL %ML - U il acll

4 perind REAL P 4 kIn|.Incr IMNT Auto

5 5 |period REAL ol

5 Klnilncr INT Auto 6 ltau REAL ol

5 |u Ui (it 7 lvalueFilt REAL %N

7 |incr INT Auto 8 |valueRef REAL M
8 |[freeRunounter DINT Auto

76 user manual

IR studio

5.6.6 COPYING VARIABLES

The variables editor allows you to quickly copy and paste elements. You can either use
keyboard shortcuts or the £dit menu to access these features.

mﬂw.l Project Debug Communicaton Yadzbles Wndaw Tass Help

ﬁ II-;\. Ia @ EIE} EIE E @ I- o MName Type Address
Kl |® oo varizbks 1 |freeRunCounter DINT Auto
2 |incr INT Auto An
4 Cu Chil+ Mame T 3 ki UINT auto
B2 Copp Chl+C 1 [freeRuncounter OINT 4 |Klnilncr INT Auto An
|E Pt [, Ciey | 2 liner IT 5 |period REAL HMO111 Or
= 7 |k UINT £ |tau REAL %MD1.8 Or
; 7 |valueFilt REAL HMATE Or
. . 4 Knilner T ——
Cly Find i peoiest CiheShilteF = i =TT 8 |valueRef REAL HMD110 Or
8 Medun pent 3 [taut REAL EMD1G Or
1 Funchee hiochs B tau REAL
I Functions 7 |velizFie REAL

4"V€" user manual 77

||| |free BULIL

78

user manual

divll

Compilation consists of taking the PLC source code and automatically translating it into
binary code, which can be executed by the processor on the target device.

6. COMPILING

6.1 COMPILING THE PROJECT

Before starting actual compilation, make sure that at least one program has been as-
signed to a task.

=8

£+ Timed

PSS E ok orouind
B Main

£+ EBoot

£+ Init

When this pre-condition does not hold, compilation aborts with a meaningful error mes-
sage.

Output X
error P20e68: Ho task defined for the application

0 warnings., 1 errors.

In order to start compilation, click the Compi e button in the Project toolbar.

' o % A ®
Alternatively, you can choose Compile from the Project menu or press F7 on your key-
board.
it Wiew REGIEES Debug Communication Variables Window Tools
' Mew object r |@|
| E
gram
ﬂ De PLC Object properties Al+Erter T
Example F #% Object Browser INT
Di;a:nhg Campile N F7

PPy Recompile all
Function B Generate redistributable source module

Note that Application automatically saves all changes to the project before starting the
compilation.

6.1.1 IMAGE FILE LOADING

Before performing the actual compilation, the compiler needs to load the image file (7mg
file), which contains the map of memory of the target device. If the target is connected
when compilation is started, the compiler seeks the image file directly on the target. Oth-
erwise, it loads the local copy of the image file from the working folder. If the target device
is disconnected and there is no local copy of the image file, compilation cannot be carried
out: you are then required to connect to a working target device.

user manual 79

Cutput X

FlcExample ing — error I0001:
Invalid mencory image file.
Flea=e upload memory image from the target

6.2 COMPILER OUTPUT

If the previous step was accomplished, the compiler performs the actual compilation, then
prints a report in the Output bar. The last string of the report has the following format:

m warnings, n errors

It tells the user the outcome of compilation.

Condition Description

Compiler error(s). The PLC code contains one or more serious errors,
which cannot be worked around by the compiler.

Emission of warning(s). The PLC code contains one or more minor
errors, which the compiler automatically spotted and worked around.
However, you are informed that the PLC program may act in a
different way from what you expected: you are encouraged to get rid
of these warnings by editing and re-compiling the application until no
warning messages are emitted.

PLC code entirely correct, compilation accomplished. You should
always work with 0 warnings, 0 errors.

n>0

n=0, m>0

n=m=0

6.2.1 COMPILER ERRORS

When your application contains one or more errors, some useful information is printed in
the Output window for each of those errors.

Oupue X
Generating unrte=olwed .
completed I
Code size: S50h [0 EEvte)
Free code =pace: PFFEOR [511 EEyte=)
Lata space. 10000k [&4 EEvie)
Fres data space: FFFch [63 EEvisl
BEit data =pace: Oh [0 EBEryted
Free b1t data space: (h [0 KEvte)
FEiten data space 0h [0 KBEwte)
Free riten data space. 0k [0 EBEvte)
HAIH[2) — warning S1303 U=ele=s =xpres=i1cn
L warning=s, 0 srrors.
_E
o | [\ Buld ;| Findinprajpes |, Debug |

As you can see, the information includes:

- the name of the Program Organization Unit affected by the error;

- the number of the source code line which procured the error;

- whether it is a fatal error (error) or one that the compiler could work around (warn-
ing);

- the error code;

- the error description.

80 user manual

IR studio

Refer to the appropriate section for the compiler error reference.

If you double-click the error message in the Output bar, Application opens the source
code and highlights the line containing the error.

| Praject

= [FIcExample Project
=-1_) Frogiame
[Main

[MyProgam

-1 Function blacks
-1 Functiors:

= Global vaizle:

E'-@ Tazks

x| Eman

Fioiect | Definbon: Hame

1 n

Type
LIMT

Address
Auto

Mo

Al

onol
ooz L=t
ooon3

| Dt

+ 1.

x|

l=neTating unresolved
conpleted.

Code =1zc: Gk
Free code spac=: TFEBOL

Lata space:

Frem data =pocs:

Eit data =spacs:

Free bit dats spac=
REiten data spacs:
Free riten data =spacs:

HAIH| 2) — warning

L warningz. 0 orrors

i0000k
FFFEh

{ 0 EByte)
¢ 511 EHyte)

54 EByte)
631 HByte)
EByte)
0 HByte’
1 EByre)
0 KBvtel

=

i
{
Ok i
|
{
i

|

iIb Buld ¢ Find nprojesd | Detug f

You can then solve the problem and re-compile.

| Projert

= (28 FlcE=ample Project
=-1_) Frogiame
= [F] Main
] MyProgiam
- Function blacks
- Functiors:
- Global varisnles
@ Tazks
ik Fag
=8 Shawe
@ Mein

Il

i

* Ermen

Prciest G Diefnbion: Hame

Type
LIMT

Address
Autn

Mo

Al

[IT=T:

no+ 1

x|

l=neTating progran HATH
Cenerating unresolvsd
completed .

Code =ize dllh
Free code spacs: TFECOL

Data =pace:

Free data spacs:

Fit data =mpac—=

Free bit data spacs:
Eiten data spacs:
Free riten data =spacs:

0 warningz. 0 orrors

10000k
FEEEh

[0 EBHyte=)
{ 511 EByte)

54 HByte)
51 EByte)
EByte)
EByrte)
EBvte)

{
i
h i}
i
{
{ EBvtel

EE=T=1-1

I3

iIb Buld ¢ Find nprojesd | Detug [

Ap

44l

user manual

81

6.3 COMMAND-LINE COMPILER

Application’s compiler can be used independently from the IDE: in Application’s directory,
you can find an executable file, Command-1ine compiler, which can be invoked (for ex-
ample, in a batch file) with a number of options.

In order to get information about the syntax and the options of this command-line tool,
just launch the executable without parameters.

o< C:AWINDOWS\system32icmad. axe BEE

-

¥ tination file.
ault J
3 Bl o] : iahle track file.
auwlt

» the ylnhul variable track file.
‘annul;.

ing the pro

P nln dnunlnnﬂ fu
Rebuild tl a
Rehuild

Ferforn

H

(walid only wit
HL-File [, pued 1] Generate redis

pte: the Flags are case—sensilive

82 user manual

7.1

In order to download and debug the application, you have to establish a connection with
the target device. This chapter focuses on the operations required to connect to the target
and to download the application, while the wide range of Application’s debugging tools
deserves a separate chapter (see Chapter 9.).

LAUNCHING THE APPLICATION

SETTING UP THE COMMUNICATION

In order to establish the connection with the target device, make sure the physical link is
up (all the cables are plugged in, the network is properly configured, and so on).

Follow this procedure to set up and establish the connection to the target device:

1) Click Settings in the Communication menu of the Application main window. This
causes the following dialog box to appear.

Device Link Manager Config v10.0. 2 rg|

Curnent selected protocal : EwDk|

Frotocols Active

W Canlpen

W EwDMI Active

" Modbus

F ModbusTCP

[F'roperties] ’ Activate]
Description
Eliwell Dbl
[Ok, l [Canecel l

The elements in the list of communication protocols you can select from depend on
the setup executable(s) you have run on your PC (refer to your hardware provider if
a protocol you expect to appear in the list is missing).

2) Choose the appropriate protocol and make it the active protocol.

Device Link Manager Config v10.0.2 E|

Current selected protocal . EwDk|

Pratocols Active
H CanOpen
T EwDMI Aitive
¥ ModbusTCP

Description k

Modbuz Pratocal

Ok, l [Cancel

user manual 83

Ap I studio

3) Fill in all the protocol-specific settings (e.g., the address or the communication
timeout - that is how long Application must wait for an answer from the target before
displaying a communication error message).

Device Link Manager Config v10.0.2 [z|

Current selected protocol : Modbus
Fratocaols Active
? EarE)Dr\‘Tlen Modbus Config ¥10.0.2
wi
Device Link Manager Config v10.0.2 [X] ¥ Modbus Communication
- W ModbusTCP Port
Current selected pratocal : Madbus . W
Protocals Active Baudrate 38400 v
Can .
Active Deseription F5-422 mods
W ModbusTCP Modbus Pratocal
Protocal
@ Muodbus Addiess [T
[Properties ’ Activate] [
[(O Modbus ASCH Timeout [1000
excriphion
todbus Pratocal) Jbus
[Enable remate communication
[oK [Cancel Server name | |

[Enable modem communication

Dial number | |

4) Apply the changes you made to the communication settings.

Device Link Manager Config v10.0.2

Current selected pratocol : Modbus

Frotocol: Active
W CanOpen
T EwDMI
W Modbus Active
U ModbusTCP

L Properties _| [Activate]

Drezcription
Modbus Protocal

[o %[Cancel |

Now you can establish communication by clicking Connect in the Communication menu,
or by pressing the Connect button in the Project toolbar.

o= Tools Help

Connect [|

Settingz

|| &
B
%
aC
2~
=
Imaa)

84

| |
user manual €||W|I

When you connect to target devices using a serial port (COM port), you usually use the
same port for all devices (many modern PCs have only one COM port). You may save the
last used COM port and let Application use that port to override the project settings: this
feature proves especially useful when you share projects with other developers, which
may use a different COM port to connect to the target device.

In order to save your COM port settings, enable the Use Tast port optionin File > Op-
tions... menu.

7.1.1 SAVING THE LAST USED COMMUNICATION PORT

General ||3raphic Editor | Test Editors | Lang

Save ophonz
[¥] Autazave Interval [min)

Cutput window

@S Mincho
Congolas
Corier

Corier Mew

|

Font size

10 w

Communication

7.2 ON-LINE STATUS
7.2.1 CONNECTION STATUS

The state of communication is shown in a small box next to the right border of the Status
bar.

If you have not yet attempted to connect to the target, the state of communication is set
to Not connected.

NOT CONMECTED

When you try to connect to the target device, the state of communication becomes one
of the following:

- Error: the communication cannot be established. You should check both the physical
link and the communication settings.

EREOR

- Connected: the communication has been established.

COMNECTED

7.2.2 APPLICATION STATUS

Next to the communication status there is another small box which gives information
about the status of the application currently executing on the target device.

When the connection status is Connected, the application status takes on one of the fol-
lowing values.

- No code: ho application is executing on the target device.

WO CODE

user manual 85

7.3

- Diff. code: the application currently executing on the target device is not the same as
the one currently open in the IDE; moreover, no debug information consistent with the
running application is available: thus, the values shown in the watch window or in the
oscilloscope are not reliable and the debug mode cannot be activated.

DIFF. CODE

- Diff. code, Symbols OK: the application currently executing on the target device is
not the same as the one currently open in the IDE; however, some debug information
consistent with the running application is available (for example, because that applica-
tion has been previously downloaded to the target device from the same PC): the values
shown in the watch window or in the oscilloscope are reliable, but the debug mode still
cannot be activated.

DIFF. CODE (SYM)

- Source OK: the application currently executing on the target device is the same as the
one currently open in the IDE: the debug mode can be activated.

SOURCE OK

DOWNLOADING THE APPLICATION

A compiled PLC application must be downloaded to the target device in order to have
the processor execute it. This paragraph shows you how to send a PLC code to a target
device. Note that Application can download the code to the target device only if the latter
is connected to the PC where Application is running. See the related section for details.

To download the application, click on the related button in the Project toolbar.
W #0149

Alternatively, you can choose Download code from the Project menu or press the F5 key.

ola = Tools Help
||+|;| Download cade [, F& |

Connect g

Settings
Jpload IMG file

Application checks whether the project has unsaved changes. If this is the case, it auto-
matically starts the compilation of the application. The binary code is eventually sent to
the target device, which then undergoes automatic reset at the end of transmission. Now
the code you sent is actually executed by the processor on the target device.

7.3.1 CONTROLLING SOURCE CODE DOWNLOAD

Whether the source code of the application is downloaded along with the binary code or
not, depends on the target device you are interfacing with: some devices host the appli-
cation source code in their storage, in order to allow the developer to upload the project
in a later moment.

If this is the case, you can control some aspects of the source code download process, as
explained in the following paragraphs.

86

user manual

7.3.1.1 SUSPENDING SOURCE CODE DOWNLOAD

In order to speed up the development cycle, you may want to disable source code down-
load: uncheck the Source code download item in the Communication menu.

o]y M=l Tools Help

Source code download

23 Connect
Settings

When you stop developing the application, you can enable source code download again by
checking the same menu item.

Communication [e l=l]

| Source code download |
2 Conrect
Settings

When you disconnect from the target device, Application checks if the application cur-
rently executing on the target and the source code available on-board match, alerting you
if they do not.

Source code not up-to-date

The application currently executing on the target device and the source code file downloaded to the target device da not match
L Disconneck anyway?

Mo

7.3.1.2 PROTECTING THE SOURCE CODE WITH A PASSWORD

You may want to protect the source code downloaded to the target device with a pass-
word, so that Application will not open the uploaded project unless the correct password
is entered.

Open the Project options window (Project > Options ... menu) and set the pass-
word.

Project info | Code generation | Debug || Build events

Project: |P|-C sample | [max 10 charz)
Wersion: |1-5 | [example: 1.0]
Author: |.J0hn Doe |
I oike: | |
Enable Pazsward

Pazzward: |uuuu| |

z E user manual 87

||| |free BULIL

You may opt to disable the password, instead.

Projest infa | Code generation || Debug || Build event$|

Project: |F'|-C sample | [max 10 charz)
Version: |1-5 | [exampls: 1.0]
Author: |J0hn Dioe |

M obe: | |

Pazzword, | |

7.4 SIMULATION

Depending on the target device you are interfacing with, you may be able to simulate the
execution of the PLC application with Application’s integrated simulation environment:
Simulation.

In order to start the simulation, just click on the appropriate item on the Project toolbar.

Flle ‘iew Project Debug Communication Tools
BEaE&Hv s BB MA
BB s H0 L0 B AE W
| Project X|
Prciect | oo Definiions |

Refer to Simulation’s manual to gain information on how to control the simulation.

| |
user manual éllwu

8.1

Application provides several debugging tools, which help the developer to check whether
the application behaves as expected or not.

All these debugging tools basically allow the developer to watch the value of selected vari-
ables while the PLC application is running.

Application debugging tools can be gathered in two classes:

- Asynchronous debuggers. They read the values of the variables selected by the devel-
oper with successive queries issued to the target device. Both the manager of the de-
bugging tool (that runs on the PC) and, potentially, the task which is responsible to an-
swer those queries (on the target device) run independently from the PLC application.
Thus, there is no guarantee about the values of two distinct variables being sampled in
the same moment, with respect to the PLC application execution (one or more cycles
may have occurred); for the same reason, the evolution of the value of a single variable
is not reliable, especially when it changes fast.

- Synchronous debuggers. They require the definition of a trigger in the PLC code. They
refresh simultaneously all the variables they have been assigned every time the proces-
sor reaches the trigger, as no further instruction can be executed until the value of all
the variables is refreshed. As a result, synchronous debuggers obviate the limitations
affecting asynchronous ones.

This chapter shows you how to debug your application using both asynchronous and syn-
chronous tools.

DEBUGGING

WATCH WINDOW

The Watch window allows you to monitor the current values of a set of variables. Being
an asynchronous tool, the Watch window does not guarantee synchronization of values.
Therefore, when reading the values of the variables in the Watch window, be aware of
the possibility that they may refer to different execution cycles of the corresponding task.

The Watch window contains an item for each variable that you added to it. The informa-
tion shown in the Watch window includes the name of the variable, its value, its type, and
its location in the PLC application.

Oy L
Symbol Value Tvpe Location
—iricr 50 INT @alow Main
mm fbSchema.iz TRLUE BOOL @alow Main
mm FbPulse.enable FaL3E BOOL @Fask:Fask
—_—irrr]| T @ Trit: Trik

8.1.1 OPENING AND CLOSING THE WATCH WINDOW

To open the Watch window, click on the Watch button of the Main toolbar.

IE@@I%

To close the Watch window, click on the Watch button again.

LalbllEls

user manual 89

Ap

:

Alternatively, you can click on the Close button in the top right corner of the Watch win-

dow.
Watch T%

Symbol Yalue

In both cases, closing the Watch window means simply hiding it, not resetting it. As a
matter of fact, if you close the Watch window and then open it again, you will see that it
still contains all the variables you added to it.

8.1.2 ADDING ITEMS TO THE WATCH WINDOW

To watch a variable, you need to add it to the watch list.

Note that, unlike trigger windows and the Graphic trigger window, you can add to the
Watch window all the variables of the project, regardless of where they were declared.

8.1.2.1 ADDING A VARIABLE FROM A TEXTUAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Watch window from a textual (that is, IL or
ST) source code editor: select a variable, by double-clicking on it, and then drag it into
the watch window.

|ﬂ I b
k+ [F [
= 516 % e B
uﬂaassg EED mm Symbal | ¥akie | Locetion [
v " -

1354 e nIan sumlE 0546571 Sloww Mediom
0360

(LEL Lo =anll?

0362 A00 w2

0363 5T =unl2

0364

0365 LD e

0366 ADD 1

0367 5T k
| D368

The same procedure applies to all the variables you wish to inspect.

8.1.2.2 ADDING A VARIABLE FROM A GRAPHICAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Watch window from a graphical (that is, LD,
FBD, or SFC) source code editor:

1) Press the Watch button in the FBD bar.
DEE L-X- 2 18

2) Click on the block representing the variable you wish to be shown in the Watch win-
dow.

5= Main Test
E

Mame Type Address Array Initwa
£
o AND Lo
-] -
- SR

90 user manual

3) Adialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked on.

Symbol to add:

out]

Debug windows list IFE

Debug windows

iwfatch
O zrillozcope

[Cancel] I Ok]

In order to display the variable in the Watch window, select Watch, then press 0OK.

Symbol to add:

out]

Debug windows list .EI

Debug windows

Ozoillozcope

[Cancel] I DK%J

The variable name, value, and location are now displayed in a new row of the Watch win-

dow.

W atich

b

Symnbol
mm INPZ
mm INPE
mm COT1

Walue Type
FaLSE oL
TRLUE B0
FaLSE B0

Lacation
glabal
glabal
glabal

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Watch window all the variables you want to observe, you
should click on the Select/Move button in the FBD bar: the mouse cursor turns to its

original shape.

user manual

91

||| |free BULIL

8.1.2.3 ADDING A VARIABLE FROM A VARIABLES EDITOR

In order to add a variable to the Watch window, you can select the corresponding record
in the variables editor and then either drag-and-drop it in the Watch window

|E e = men [watch
Name Type Address Array Initvaluz Adripule S| Sl | e
1 |h3chema Schema Auio Mo 0 . Symhcl Vel
2 |fend INT Huio Ha 0 ¥
3 |thEtak Slati Auio Mo 1] . %
< il ¥
oooL A
Lannz [®= Ladder Logic %]
oona

or press the F8 key.

|E e = man [watch
Mame Tvpe Addrese Array Init valuz Afribuie _]_"l .11 (X3
1 |hSchema Schema Auio Mo 0 - Symhcl Vel
2 |end 1T Auio Ha 1] " + ﬁfb’;ch:ma
3 | h3tsl Stati Auto Ha 1}
€ I ¥
anoi P
nonz [® Ladder logic =]
[ITITIE]

8.1.2.4 ADDING A VARIABLE FROM THE PROJECT TREE

In order to add a variable to the Watch window, you can select it in the project tree and
then either drag-and-drop it in the Watch window

| Pt X|| [watch
Piciect | &8 D ehnlions | B | i | ns
= [poplc Project Al || Swrbel wel
=) Progiames il
- g Fast
B Init
=[] Mai
EE [Localvaiables
[
A bEchensz
A sl
=1 Function blacks
A Sehema
ke Sl -
-/ Functions
-1 Global vaizbles
=0 Autamatic vaizbies
L] esRiunCoe ¥
EII_‘| Ainzlag oul 3 =
[T
=1/ vaiizbles

()

or press the F8 key.

| Project X|| | watch
Ficioot |4 Defintions| EaE-Ila
= [peple Projct Syrrhicl wel
= Proguans — iner i
- g Fast
—-B Init
= [F Man
B [Localvaiables
==L et
- fF bEchens
A sl
-/ Function biocke
A Sehema
ke Sl -
-1 Functions
=] Global vaiizbles
= [Automaic waizbie:
- [di] freeRurCavriten
EII_‘| Hinalag ol 3

LT %
- 140 vaizbl

92 user manual éllwu

| »

(]

()

8.1.2.5 ADDING A VARIABLE FROM THE WATCH WINDOW TOOLBAR

You can also click on the appropriate item of the Watch window inner toolbar, in order to
add a variable to it.

Watch
Symbol My Yalue Type
— sumlgz 67,1034 REAL

You shall type (or select by browsing the project symbols) the name of the variable and
its location (where it has been declared).

: X
Symbal name | U2 | Browse: Address
Location | Medium | [Browse]

8.1.3 REMOVING A VARIABLE

If you want a variable not to be displayed any more in the Watch window, select it by
clicking on its name once, then press the Del key.

W atch X
r+
Syl Walue Type Location
mm INPZ FALSE EiCoL global
mm INPS TRUE BiioL global

BCiOL global

W atch X
r+
Symbal Yalue Tvpe Location
mm INP2 FALSE ECOL global
mm INPE TRUE EiCoL global

b

8.1.4 REFRESHMENT OF VALUES
8.1.4.1 NORMAL OPERATION

Let us consider the following example.

Main Medium Watch

0001 b

oooz2 pms] =uml(2

00032 ADD w102 Syrnbiol value Type
0004 ST sumlIQ2 — sumlQzZ 0.771999 REAL
gaos —k 3z UINT
0006 LD sumlif2

ono? ADD w2

0o0ng 5T sunWz

0009

onio 1D L

onii ADD 1

o001z 5T 1

user manual 93

Ap

The watch window manager reads periodically from memory the value of the variables.

However, this action is carried out asynchronously , that is it may happen that a higher-
priority task modifies the value of some of the variables while they are being read. Thus,
at the end of a refreshment process, the values displayed in the window may refer to dif-
ferent execution states of the PLC code.

8.1.4.2 TARGET DISCONNECTED

If the target device is disconnected, the Value column contains three dots.

=0 Q. HoeE | L4 [L
® |[F] Man [z Medium waich
o SN 3 e = TR
L ooDg ST sunlQz sumigz REAL
® DODE K e
OODE LD =unll2

in ooo? AL -

- ODDE ST sunl2
diim DoOg
w1 blocks onLo pA] k
hama noi1 AT i
& opiz ST k

8.1.4.3 OBIJECT NOT FOUND

If the PLC code changes and Application cannot retrieve the memory location of an object
in the Watch window, then the Value column contains three dots.

[Main TMediurm ‘wiatch

o001 p*

gggg %gn i‘fB%Qz Symbol Walue Type
0004 ST sunlQz2 — sumlQZ 1,134 REAL
ooos k. . LINT
0006 o sunlil2

007 ADD w2

000g 5T sunli2

o009

o010 [*

0011 o

001z ADD i

0013 ST

0014 *)

If you try to add to the Watch window a symbol which has not been allocated, Application
gives the following error message.

= man] Medum Wakzh

o >

o002 1D sunInd r

nnn: AL 102 iy vabie Type
oood ST sunl2 — sl 5.19438 REAL
0o0os

0006 io SunWa

nooy ADID iz

nnong ST =unlf2

o009

0010 (=

o0ii 1D

ggi% '":'_J-“ ,' !': k. svmiaal not Faund, Can't 2dd ta watch

o014 =

8.1.5 CHANGING THE FORMAT OF DATA

When you add a variable to the Watch window, Application automatically recognizes its
type (unsigned integer, signed integer, floating point, hexadecimal), and displays its value
consistently. Also, if the variable is floating point, Application assigns it a default number
of decimal figures.

However, you may need the variable to be printed in a different format.

94 user manual

IR studio

To impose another format than the one assigned by Application, press the Format value
button in the toolbar.

|Watch
% b
Swftubol \alue Type

LIIMNT

Choose the format and confirm your choice.

¥alue format 3]
il
(®) Signed k
(O Float
() Enadecimal
Float formnat
Murnber of decimal

8.1.6 WORKING WITH WATCH LISTS

You can store to file the set of all the items in the Watch window, in order to easily restore
the status of this debugging tools in a successive working session.

Follow this procedure to save a watch list:
1) Click on the corresponding item in the Watch window toolbar.

|W'atch

o v

Symbal Walue Type
- -138 UINT
A sumIGE 349,656 REAL
—_yIE 0,007 REAL
A SUmiE 200502 REAL
—_—NE 0.034 REAL

2) Enter the file name and choose its destination in the file system.

Select watch list file

Savein | L SofiParePl: = ¥ EF

_';% DEah

b p Hecent
Dacuments

&

[i=zkbap

[y Drocuments

by Ciamputer

. File name sl - | Saue
- '
i Mlehnk Sane 2 bpE: b sk e "] ~ [Cancal]

ellwu user manual 95

In order to load a watch list, follow this procedure:
1) Click on the corresponding item in the Watch window toolbar.

watch

3 &

Symbol

Type

2) Browse the file system and select the watch list file.

Select wateh list file

Lok in:

b p A ecenl
Dracuments

Iy Dacuments

%

by t‘nmmlar

iy Pk

|0 SefiPanelPic

|_Backun

File name

Fibes of 1wpe:

walchiuz

Watch lisk e ||

The set of symbols in the watch list is added to the Watch window.

8.2 OSCILLOSCOPE

The Oscilloscope allows you to plot the evolution of the values of a set of variables. Be-
ing an asynchronous tool, the Oscilloscope cannot guarantee synchronization of samples.

Opening the Oscilloscope causes a new window to appear next to the right-hand border
of the Application frame. This is the interface for accessing the debugging functions that
the Oscilloscope makes available. The Oscilloscope consists of three elements, as shown

in the following picture.

Watch

a

Symbal

-~ |

. snI02
—_yIQ2
A sUmWE
—_ W2

Type
UINT
REAL
REAL
REAL
REAL

user manual

Ozelinzzone X

BHE HAEH L0 |mn » & &

Treck Lim Finvau= Max valu= w
5 & 0,000 500,00 117
11,008 439, Al 117

{ X

The toolbar allows you to better control the Oscilloscope. A detailed description of the
function of each control is given later in this chapter.

The Chart area includes several items:
- Plot: area containing the curve of the variables.

- Vertical cursors: cursors identifying two distinct vertical lines. The values of each vari-
able at the intersection with these lines are reported in the corresponding columns.

- Scroll bar: if the scale of the x-axis is too large to display all the samples in the Plot
area, the scroll bar allows you to slide back and forth along the horizontal axis.

The lower section of the Oscilloscope is a table consisting of a row for each variable.

8.2.1 OPENING AND CLOSING THE OSCILLOSCOPE

To open the Oscilloscope, click on the Async button of the Main toolbar.

EE‘E@%

To close the Oscilloscope, click on the Async button again.

EE@@%

Alternatively, you can click on the Close button in the top right corner of the Oscillo-
scope window.

%

user manual 97

Ap

In both cases, closing the Oscilloscope means simply hiding it, not resetting it. As a mat-
ter of fact, if you open again the Oscilloscope after closing it, you will see that plotting of
the curve of all the variables you added to it starts again.

8.2.2 ADDING ITEMS TO THE OSCILLOSCOPE
In order to plot the evolution of the value of a variable, you need to add it to the Oscil-
loscope.

Note that unlike trigger windows and the Graphic trigger window, you can add to the
Oscilloscope all the variables of the project, regardless of where they were declared.

8.2.2.1 ADDING A VARIABLE FROM A TEXTUAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Oscilloscope from a textual (that is, IL or
ST) source code editor: select a variable by double-clicking on it, and then drag it into the
Oscilloscope window.

E] Medium Oacdozzope

nonz2 i sunlQl
nona AL w102
ST =unl?
000e in sunlr2
non? ADD w2
ST =unll?

0oLo hAs i
nni L AL

The same procedure applies to all the variables you wish to inspect.

8.2.2.2 ADDING A VARIABLE FROM A GRAPHICAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Oscilloscope from a graphical (that is, LD,
FBD, or SFC) source code editor:

1) Press the Watch button in the FBD bar.
[| or* -1% E

2) Click on the block representing the variable you wish to be shown in the Oscilloscope.

98 user manual

Ap

3) Adialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked on.

Symbal to add:
walueFilt

Debug windows

[Cancel] I DK[%J

Select Oscilloscope, the press 0K. The name of the variable is now displayed in the
Track column.

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Oscilloscope all the variables you want to observe, you should
click on the Select/Move button in the FBD bar: the mouse cursor turns to its original
shape.

8.2.2.3 ADDING A VARIABLE FROM A VARIABLES EDITOR

In order to add a variable to the Oscilloscope, you can select the corresponding record in
the variables editor and then either drag-and-drop it in the Oscilloscope

B8 Fast 5] TusFlter Daciloacope
Class [P Hame Type Array Initwal
1 [WeR umi REAL Mo 1]
2 [WmR yim1 REAL [l 1]
3 [WaR Den REAL [0 1]
4 [MARIHPLT a u REAL Mo 1]
5 [WRR_INPLT 1 Tau REAL [0 1]
i WAR_INPUT 2 TS REAL [n I
£ WAR_QUTPLT a T REAL R 1]

or press the F10 key and choose 0scilloscope from the list of debug windows which pops
up.

Symbal to add:
Wi

Debug windows

user manual 99

Ap

8.2.2.4 ADDING A VARIABLE FROM THE PROJECT TREE

In order to add a variable to the Oscilloscope, you can select it in the project tree and then
either drag-and-drop it in the Oscilloscope

=- 1) Funclion biocks
T Schera
I e
=) Furclions
R
=[] Glabal vansbles
=0 dulomatc wanshles
[di] freeFRurCounte:
5] &nslag cut 3
=] 140 vansbles
=21 Orda quacks
[F] pericd

[wabseFiel
+] Canstonts
F_I Retan vanshkes
= E.' Tashs

w13 Fost =

or press the FI10 key and choose Oscilloscope from the list of debug windows which
pops up.

Debug windows list

Symbol to add:
walueFilt

Debug windows

LCancel Ok [:

8.2.3 REMOVING A VARIABLE

If you want to remove a variable from the Oscilloscope, select it by clicking on its name
once, then press the Del key.

8.2.4 VARIABLES SAMPLING
8.2.4.1 NORMAL OPERATION

Let us consider the following example.

B et (8] TusFlter Ozclnacope X

T — mpaee——ss i EENEE T Y=Y A

©wspno
EytaToR

100 user manual

The Oscilloscope manager periodically reads from memory the value of the variables.

However, this action is carried out asynchronously, that is it may happen that a higher-
priority task modifies the value of some of the variables while they are being read. Thus,
at the end of a sampling process, data associated with the same value of the x-axis may
actually refer to different execution states of the PLC code.

8.2.4.2 TARGET DISCONNECTED

If the target device is disconnected, the curves of the dragged-in variables get frozen,
until communication is restored.

8.2.5 CONTROLLING DATA ACQUISITION AND DISPLAY

The Oscilloscope includes a toolbar with several commands, which can be used to control
the acquisition process and the way data are displayed. This paragraph focuses on these
commands.

Note that all the commands in the toolbar are disabled if no variable has been added to
the Oscilloscope.

8.2.5.1 STARTING AND STOPPING DATA ACQUISITION

When you add a variable to the Oscilloscope, data acquisition begins immediately.

Ozcilinzcone x

HHEBEAEH LA mnvE SH

Um Min wahie e wahae wici Re=d cursor
453 430 4l.d..,

L »

However, you can suspend the acquisition by clicking on Pause acquisition.

Oaclozzope X

HHE B a&saH 0 L=

user manual 101

Ap

The curve freezes (while the process of data acquisition is still running in background),
until you click on Restart acquisition.

Dscilloscope X

HHM B 430 &0 = njy & &H

In order to stop the acquisition you may click on Stop acquisition.

Dseiloscope X

BHHE Ba&aBH L40 8nv & G-

f]___g b 5__5_]

In this case, when you click on Restart acquisition, the evolution of the value of the
variable is plotted from scratch.

8.2.5.2 SETTING THE SCALE OF THE AXES

When you open the Oscilloscope, Application applies a default scale to the axes. However,
if you want to set a different scale, you may follow this procedure:

1) Open the graph properties by clicking on the corresponding item in the toolbar.

Dzciinzzope X

HHE B &l LI mn v S

Me wakbis i Re=d cursor
493,976

102 user manual

IR studio

Ap

2) Set the scale of the horizontal axis, which is common to all the tracks.

D= cillosoope settings

Show ond
Shia fim= ber
Shioy rachs i

Hama

|®FastF ot FEF ites i

Samol poling rate I'"S Aealrata 2070
Hoiizonldl scake 1mg et div
Bufler 1ee |4|II|II | sampll:s

Tracks list

Uil Waleddn OfFlzet Hide Show vale
0 244728 ol O
Il |
[Capcel] [oo | ok

3) For each variable, you may specify a distinct scale for the vertical axis.

D= cillosoope settings

Show grid
Shos = ber
Shie trach s izt

Hama

| FastF ok FEF tes i

Sarmola poling rate ""5 Aealrsba 2285
Honzonld scale 1000 maddiy
Bufler roe |.1IIIIII | ;amples

Tiacks list

Uril Waleddr Orffset Hide Show walue
o] 500 F ¥l
Il |
[cencel | [apow | [0k |

4) Confirm your settings. The graph adapts to reflect the new scale.

Oscilloscope settings

Showe oid Samole poling rale =
Shin lime ber Horizonld scale IW' medd
Shiw frachs st Eufler rze [40omn | samples
Tiacks list
Hama Uit Walsedd Difet
|EFashF et FEFiter wi 10m Am

Aealrsba 2537

Hide Show vale
F OJ

44l

user manual

103

Daciinzzope x

HLAT = P E S

Treck Lim Min welue Max valu= w)div

439,975

Finally, you may also quickly adapt the scale of the horizontal axis, the vertical axis, or
both to include all the samples, by clicking on the corresponding item of the toolbar.

Ozcdiozzone X Dailosone x

HHE B e E CaSfmnrE S EHEE A& EH L0 mn e & Sl

104

user manual

8.2.5.3 VERTICAL SPLIT

When you are watching the evolution of two or more variables, you may want to split the
respective tracks. For this purpose, click on the Vertical split item in the Oscillo-
scope toolbar.

Dzcilloscope

B E e S mnrE S

[B A €40 A S

8.2.5.4 VIEWING SAMPLES

If you click on the Show samples item in the Oscilloscope toolbar, the tool highlights
the single values detected during data acquisition.

Ozcilloscope x

M B &3 H {40 ne» i S &

You can click on the same item again, in order to go back to the default view mode.

Ozlossone X

HiHE B & 00O e S

user manual 105

8.2.5.5 TAKING MEASURES

The Oscilloscope includes two measure bars, which can be exploited to take some meas-
ures on the chart; in order to show and hide them, click on the Show measure bars item
in the Oscilloscope toolbar.

Oszcillozcope >

EE;&;&E:@:{D] nlr g &=

If you want to measure a time interval between two events, you just have to move one
bar to the point in the graph that corresponds to the first event and the other to the point
that corresponds to the second one.

Ozslossons X

HHE B FaH &R0 o S

You can use a measure bar also to read the value of all the variables in the Oscilloscope
at a particular moment: move the bar to the point in the graph which corresponds to the
instant you want to observe.

Ozcilloscope

HHE B $s8 KL

106

user manual

In the table below the chart, you can now read the values of all the variables at that par-
ticular moment.

8.2.5.6 OSCILLOSCOPE SETTINGS

You can further customize the appearance of the Oscilloscope by clicking on the Graph
properties item in the toolbar.

X
£ o [0 e ="

In the window that pops up you can choose whether to display or not the Background
grid, the Time slide bar, and the Track Tist.

Oscilloscope settings

Show grid n Sample p

Shiowy time bar Harizontz

Show tracks list Buffer ziz

8.2.6 CHANGING THE POLLING RATE

Application periodically sends queries to the target device, in order to read the data to be
plotted in the Oscilloscope.

The polling rate can be configured by following this procedure:
1) Click on the Graph properties item in the toolbar.

x

| ni» =

user manual 107

2) In the window that pops up edit the Sampiing polling rate.

Oscilloscope settings

Show grid Sample polling rate 1d I mz Realrate 2113
Show bime bar Huarizontal szale 1000 mz/div
Show tracks list Buffer size A0000 zamplez

3) Confirm your decision.

Note that the actual rate depends on the performance of the target device (in particular,
on the performance of its communication task). You can read the actual rate in the Osci -
Toscope settings window.

Sample polling rate "Iﬁ ms Realrate 11.31
Horizontal zcale 1000 | rnsddiv
Buffer zize iil:ll:ll:ll:l zamples

8.2.7 SAVING AND PRINTING THE GRAPH

Application allows you to persist the acquisition either by saving the data to a file or by
printing a view of the data plotted in the Oscilloscope.

8.2.7.1 SAVING DATA TO A FILE

You can save the samples acquired by the Oscilloscope to a file, in order to further analyze
the data with other tools.

1) You may want to stop acquisition before saving data to a file.
2) Click on the Save tracks data into file inthe Oscilloscope toolbar.

X
B LK@ = ur F &

3) Choose between the available output file format: osc is a simple plain-text file, con-
taining time and value of each sample; OSCX is an XML file, that includes more
complete information, which can be further analyzed with another tool, provided
separately from Application.

| Dscilloscope XML files %05 0] |
Ozcillozcope #ML files [0S0

Ozcillozcope files [*.05C]

Al files [7.7]

4) Choose a file name and a destination directory, then confirm the operation.

108 user manual

Ap

8.2.7.2 PRINTING THE GRAPH

Follow this procedure to print a view of the data plotted in the Oscilloscope:
1) Either suspend or stop the acquisition.

Dzcilloscope

BEHE B &3 H £ &0 P OE £

2) Move the time slide bar and adjust the zoom, in order to include in the view the ele-
ments you want to print.

X

P S

Osclinsone

B

B H a0

3) Click on the Print graph item.

X

Oscillozcope

BHE EH A8 L£0 | m P B &

8.3 EDIT AND DEBUG MODE

While both the Watch window and the Oscilloscope do not make use of the source code,
all the other debuggers do: thus, Application requires the developer to switch on the de-
bug mode, where changes to the source code are inhibited, before (s)he can access those

debugging tools.
To switch on and off the debug mode, you can click on the corresponding item in the De-
bug toolbar.

T

user manual 109

Ap

:

Alternatively, you can choose Debug mode from the Project menu.

Emrrurl-:ei:lm variables wWinoow Tools Help

Aod sprmdd ko walch F2
Aod sprndad ba a debug windaw Fio
| reeets pw ilern into @ debug wandow Shi+F10
Quick. wahch gmbol Fi1

= Debug mods [|
L4

The status bar shows whether the debug mode is active or not.

DEBUG MODE COMNECTED

Note that you cannot enter the debug mode if the connection status differs from Con-
nected.

8.4 LIVE DEBUG

Application can display meaningful animation of the current and changing state of execu-
tion over time of a Program Organization Unit (POU) coded in any IEC 61131-3 program-
ming language.

To switch on and off the live debug mode, you may click on the corresponding item in the
Debug toolbar

|@ﬁ¢@«@

or choose Live debug mode from the Project menu.

l:-:rrm.lrlcatlm variables wWndow Tools Help

Aod sprnbl b wealch Fa
Add prnbd ba & dabug windaw Fin
I rezerte pw il into & debug wind o Shilt+F10
Ouick webch sarbel F11
W dddfremoue led Ingger Fa
&F Addfremove grephic bigger Shifl<F4
. Ae=moue el bigg=rs Chl+Shii+F9
B Tigoerlist Cil+l
Dzbug mode
[Live debugmadd-.
I LTI t#* Up-down
gaa4

110 user manual - E

8.4.1 SFC ANIMATION

8.4.1.

As explained in the relevant section of the language reference, an SFC POU is structured
in a set of steps, each of which is either active or inactive at any given moment. Once
started up, this SFC-specific debugging tool animates the SFC documents by highlighting
the active steps.

Animation OFF Animation ON

Init Init

L] TRUE _!_| TRUE
[I [

_ﬁ serivivel _ﬁ ctriDown T| seriviviel T| ctrl D own

52 2 54 2 52 2| 34 2]

In the left column, a portion of an SFC network is shown, diagram animation being off.

In the right column the same portion of network is displayed when the live debug mode
is active. The picture in the right column shows that steps SI and $3 are currently active,
whereas Init, S2, and S4 are inactive.

Note that the SFC animation manager tests periodically the state of all steps, the user not
being allowed to edit the sampling period. Therefore, it may happen that a step remains
active for a slot of time too short to be displayed on the video.

The fact that a step is never highlighted does not imply that its action is not executed, it
may simply mean that the sampling rate is too slow to detect the execution.

1 DEBUGGING ACTIONS AND CONDITIONS

As explained in the SFC language reference, a step can be assigned to an action, and a
transition can be associated with a condition code. Actions and conditions can be coded in
any of the IEC 61131-3 languages. General-purpose debugging tools can be used within
each action/condition, as if it was a stand-alone POU.

8.4.2 LD ANIMATION

In live debug mode, Ladder Diagram schemes are animated by highlighting the contacts
and coils whose value is true (in the example, i1 and i2).

timRit
TOM
i1 i2 ol
f {1 l in q { }
|
f

1000 I— pt et elapsedT (750

user manual 111

A

o

Note that the LD animation manager tests periodically the state of all the elements. It
may happen that an element remains true for a slot of time too short to be displayed
on the video. The fact that an element is never highlighted does not imply that its value
never becomes true (the sampling rate may be too slow).

8.4.3 FBD ANIMATION

In live debug mode, Application displays the values of all the visible variables directly in
the graphical source code editor.

aoaz

ThFilfar
E o N TR EEe . T
- FALSE [Guir— — —u w —. walugF |0
w nn |_ — Ind s e ‘;,_ — Tau o i s

This works for both FBD and LD programming language.

timRit
TOM

o1
—in q {}

—pt &t elapsedT (750

Note that, once again, this tool is asynchronous.

8.4.4 IL AND ST ANIMATION

The live debug mode also applies to textual source code editors (the ones for IL and ST).
You can quickly watch the values of a variable by hovering with the mouse over it.

uuLo

o017 (# Analog output 0 = analog inp 0 + analog inp 1 #*)
oo0is

o019 aoutl := ainpl + ainpl:

ooz2n

oozl (®# SFC state logic =)

nna22

0023 fbStati{ enab := inpl0, run := inpll. stop := inpl2 }:
nn24

0nzs Cﬁ.t = cnt + 1;

002a

0o2z i

Ehzt 29133

8.5 TRIGGERS
8.5.1 TRIGGER WINDOW

The Trigger window tool allows you to select a set of variables and to have them updated
synchronously in a special pop-up window.

112

user manual

8.5.1.1 PRE-CONDITIONS TO OPEN A TRIGGER WINDOW

No need for special compilation

Application debugging tools operate at run-time. Thus, unlike other programming lan-
guages such as C++, the compiler does not need to be told whether or not to support trig-
ger windows: given a PLC code, the compiler’s output is unique, and there is no distinction
between debug and release version.

Memory availability

A trigger window takes a segment in the application code sector, having a well-defined
length. Obviously, in order to start up a trigger window, it is necessary that a sufficient
amount of memory is available, otherwise an error message appears.

Incompatibility with graphic trigger windows

A graphic trigger window takes the whole free space of the application code sector. There-
fore, once such a debugging tool has been started, it is not possible to add any trigger
window, and an error message appears if you attempt to start a new window. Once the
graphic trigger window is eventually closed, trigger windows are enabled again.

Note that all the trigger windows existing before the starting of a graphic trigger window
keep working normally. You are simply not allowed to add new ones.

8.5.1.2 TRIGGER WINDOW TOOLBAR

Trigger window icons are part of the Debug toolbar and are enabled only if Application is
in debug mode.

P K B

Button Command Description

In order to actually start a trigger window,

select the point of the PLC code where to insert

the relative trigger and then press this button.

ﬂ Set/Remove trigger | The same procedure applies to trigger window
removal: in order to definitely close a debug

window, click once the instruction/block where the

trigger was inserted, then press this button again.

This button operates exactly as the above Set/
Remove trigger, except for that it opens a
. graphic trigger window. It can be used likewise
gl Graphic trace L :
also to remove a graphic trigger window. Shortcut
key: pressing Shift + F9is equivalent to clicking
on Set/Remove trigger button.

Pressing this key causes all the existing trigger
windows and the graphic trigger window to be

Remove all : -
*{ triggers removed S|multa_neous!y. Shortcut_key: pressing
- Ctrl1+Shift+F9 is equivalent to clicking on this
button.
This key opens a dialog listing all the existing
E Trigger Tist trigger windows. Shortcut key: pressing Ctri+I is

equivalent to clicking on this button.

user manual 113

Trigger lisk £

Open |

Femowve

Remove all

Type | b adule | Line |
B Syztem -1
T RS -1
T Fazt 14
T el -1
T Slow -1

) [

Ok,

Each record refers to a trigger window, either graphic or textual. The following table ex-
plains the meaning of each field.

Field Description
T: trigger window.
Type o .
G: graphic trigger window.
Name of the program, function, or function block where
Module the trigger is placed. If the module is a function block, this
field contains its name, not the name of its instance where
you actually put the trigger.
For the textual languages (IL, ST) indicates the line in
Line which the trigger is placed. For the other languages the

value is always -1.

8.5.1.3 TRIGGER WINDOW INTERFACE

Setting a trigger causes a pop-up window to appear, which is called Interface window:
this is the interface to access the debugging functions that the trigger window makes
available. It consists of three elements, as shown below.

Caption bar

4 (L

Trigger n” 0 at MAIN#3 @
Cnt: 0 | Stop__|
Condition
Mare
Trigger Far
After
Symbaol Value Type

The Caption bar of the pop-up window shows information on the location of the trigger
which causes the refresh of the Variables window, when reached by the processor.

The text in the Caption bar has the following format:

Trigger n° X at ModuleName#Location

114

user manual

where

X Trigger identifier.

Name of the program, function, or function block where
the trigger was placed.

Exact location of the trigger, within module ModuTeName.
If ModuleName isin IL, Location has the following format:

ModuleName

N1
Otherwise, if ModuleName is in FBD, it becomes:
. N2S$SBT:BID

Location
where:
N1 = instruction line number
N2 = network number
BT = block type (operand, function, function block, etc.)

BID = block identifier

Controls section

This dialog box allows the user to better control the refresh of the trigger window to get
more information on the code under scope. A detailed description of the function of each
control is given in the Trigger window controls section (see 9.5.2.11).

All controls except Ac, the Accumuilator display button, are not accessible until at least
one variable is dragged into the debug window.
The Variables section

This lower section of the Debug window is a table consisting of a row for each variable that
you dragged in. Each row has four fields: the name of the variable, its value, its type, and
its location (@task:ModuleName) read from memory during the last refresh.

Trigger n® 0 at MAIN#5 @
Ac Crt: 2110
Condition [D

@ Mone
Trigger (7 For
() Aafter
Symbol Value Type
— A 10 UINT
mm B TRUE BEOOL
4 1 | I

8.5.1.4 TRIGGER WINDOW: DRAG AND DROP INFORMATION

To watch a variable, you need to copy it to the lower section of the Debug window.

This section is a table consisting of a row for each variable you dragged in. You can drag
into the trigger window only variables local to the module where you placed the relative
trigger, or global variables, or parameters. You cannot drag variables declared in another
program, or function, or function block.

user manual 115

A

P

8.5.1.5 REFRESH OF THE VALUES

Let us consider the following example.

P | e | @
» Main Watch
Mame Type Address Array Init value Aftribute Descriptior
1 |a UINT Auta Mo 0 Symi
Trigger n® 0 at MAIN#3 EI
4 | 1 [
ooo1 -
ooz ID 1 Condition
ooo3 ST a E]
o004 . o 2 @ Mane
goos ST a . _
0006 ID 3 Trigger () For
0007 ST a © After
Symbaol Value Type
— A 1 UINT
4 n L3

The value of variables is refreshed every time the window manager is triggered, that is
every time the processor executes the instruction marked by the green arrowhead. How-
ever, you can set controls in order to have variables refreshed only when triggers satisfy
the more limiting conditions you define.

Note that the value of the variables in column Symbol is read from memory just before
the marked instruction (in this case: the instruction at line 5) and immediately after the
previous instruction (the one at line 4) has been performed.

Thus, in the above example the second ST statement has not been executed yet when the
new value of a is read from memory and displayed in the trigger window. Thus the result
of the second ST a is 1.

8.5.1.6 TRIGGER WINDOW CONTROLS

This paragraph deals with the trigger window controls, which allows you to better super-
vise the working of this debugging tool, to get more information on the code under scope.

Trigger window controls act in a well-defined way on the behavior of the window, regard-
less for the type of the module (either IL or FBD) where the related trigger has been
inserted.

All controls except the Accumulator display are not accessible until at least one variable
is dragged into the Variables window.

Window controls are made accessible to users through the grey top half of the debug
window.

Trigger n* 0 at MAIN#S =

Ac Cnt: 183
Condition [:]

@ Mone

Lk

Trigger) Far
(71 After

| USSR - | LI . i

116

user manual

This control is used to start a triggering session.
If system is triggering you can click this button to
force stop. Otherwise session automatically stops
when conditions are reached. At this point you
can press this button to start another triggering
session.

This control is used to execute a single step
trigger. It is enabled only when there is no active
ﬂ Single step triggering session and None is selected. Specified

execution condition is considered. After the single step
trigger is done, triggering session automatically
stops.

This control adds the Accumulator to the list of
variables already dragged into the trigger window.

A A new row is added at the bottom of the table of
Ac | ccumulator

Button Command Description

T

Start/Stop

variables, containing the string Accumulator in
column Symbol, the accumulator’s value in column
Value, Type is not specified and Location is set
to global as shown in the following figure.

display

P |t |
x Main Watch
Name Type Address Array Initvalue Aftribute Descriptior
1l 1 |a UINT Auto No 0 Symt
Trigger n® 0 at MAIN#S @
ol 0 Ac o 1089 E
o001 -
oooz 101 Conditiar
ooo3 ST a E]
0004 b 1D 2 @ Mone
ooos 5T . -
0006 D 3 Trigger () For
ooo? 5T a () After
Symbol Value Type
—_A 1 UINT
— ACCUMULATOR 2
<] I »

In order to remove the accumulator from the table, click its name in Symbol column, and
press the Del key.

This control can be very useful if a trigger was inserted before a ST statement, because
it allows you to know what value is being written in the destination variable, during the
current execution of the task. You can get the same result by moving the trigger to an
instruction following the one marked by the green arrowhead.

Trigger counter

Cnt 26

This read-only control counts how many times the debug window manager has been trig-
gered, since the window was installed.

The window manager automatically resets this counter every time a new triggering ses-
sion is started.

user manual 117

A

p

Trigger state

This read-only control shows the user the state of the Debug window. It can assume the
following values.

Ready The trigger has not occurred during the current task execution.

Triggered The trigger has occurred during the current task execution.

System is not triggering. Triggering has not been started yet
or it has been stopped by user or an halt condition has been
reached.

Communication with target interrupted, the state of the trigger
window cannot be determined.

User-defined condition

H Condition Q ||

If you define a condition by using this control, the values in the Debug window are re-
freshed every time the window manager is triggered and the user-defined condition is
true.

After you have entered a condition, the control displays its simplified expression.

‘ ‘ Condition & GT 100 @ ‘ ‘
Counters
@ More
Trigger () Far
() After

These controls allow the user to define conditions on the trigger counter.
The trigger window can be in one of the following three states.

- None: no counter has been started up, thus no condition has been specified upon the
trigger.

- For: assuming that you gave the counter limit the value N, the window manager adds
1 to the current value of the counter and refreshes the value of its variables, each time
the debug window is triggered. However, when the counter equals N, the window stops
refreshing the values, and it changes to the Stop state.

- After: assuming that you gave the counter limit the value N, the window manager re-
sets the counter and adds 1 to its current value each time it is triggered. The window
remains in the Ready state and does not update the value of its variables until the
counter reaches N.

8.5.2 DEBUGGING WITH TRIGGER WINDOWS
8.5.2.1 INTRODUCTION

The trigger window tool allows the user to select a set of variables and to have their val-
ues displayed and updated synchronously in a pop-up window. Unlike the Watch window,
trigger windows refresh simultaneously all the variables they contain, every time they are
triggered.

118

user manual

Let us assume that you have an IL module, also containing the following instructions.

8.5.2.2 OPENING A TRIGGER WINDOW FROM AN IL MODULE

uuuL
nooz LD a
noo3 ADD b
noo4 5T a
noos
0006 LD o
noo? ADD d
noos 5T o
noog
noi1ao LD k
0011 ADD 1
no1z ST
nnia

Let us also assume that you want to know the value of b, d, and k, just before the ST k
instruction is executed. To do so, move the cursor to line 12.

uuue
0oio 1D k
0011 ADD 1
001z ST i
nnis

Then you can click the Set/Remove trigger button in the Debug toolbar

Ld
or you can press the F9 key.

In both cases, a green arrowhead appears next to the line number, and the related trigger
window pops up.

Not all the IL instructions support triggers. For example, it is not possible to place a trig-
ger at the beginning of a line containing a Jup statement.

8.5.2.3 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN IL MODULE

In order to watch the value of a variable, you need to add it to the trigger window. To this
purpose, select a variable by double-clicking it, and then drag it into the Variables win-
dow, that is the lower white box in the pop-up window. The variable’s name now appears
in the Symbol column.

0001

oooz ID =

gggi é?D — Trigger n” 0 at MAIN#12

RLLRLREE 3 a

0005 I Ac Cnt: 14805

0006 1D e e e L R

0007 ADD d Condition |

0008 ST c CJ

aoona @ Mane

noio D k : ¥

.D.Dl.l.:> ADD 1 Trigger () Far

ao1z ST k ©

0013) After

0014

0015 Symbol Value Type f_
»—E 0 UINT |

The same procedure applies to all the variables you wish to inspect.

user manual 119

||| |free BULIL

8.5.2.4 OPENING A TRIGGER WINDOW FROM AN FBD MODULE

Let us assume that you have an FBD module, also containing the following instructions.

<

| 3

0001

oooz

1

Il

| Mibeans

Let us also assume that you want to know the values of ¢, D, and K, just before the sT
k instruction is executed.

Provided that you can never place a trigger in a block representing a variable such as

~— 4

you must select the first available block preceding the selected variable. In the example
of the above figure, you must move the cursor to network 3, and click the ApD block.

You can click the Set/Remove trigger button in the Debug bar

Ld

or you can press the F9 key.

In both cases, the color of the selected block turns to green, a white circle with a number
inside appears in the middle of the block, and the related trigger window pops up.

m

<

o001

oo0z

vl

120

user manual

44l

IR stocio AP

When preprocessing FBD source code, the compiler translates it into IL instructions. The
ADD instruction in network 3 is expanded to:

LD k
ADD 1
ST k

When you add a trigger to an FBD block, you actually place the trigger before the first
statement of its IL equivalent code.

8.5.2.5 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN FBD MODULE

In order to watch the value of a variable, you need to add it to the trigger window. Let
us assume that you want to inspect the value of variable k of the FBD code in the figure
below.

To this purpose, press the Watch button in the FBD bar.

Y
A

Now you can click the block representing the variable you wish to be shown in the trigger
window.

The cursor will become as follows.

In the example we are considering, click the button block.

k-

A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

< 111] 3
ADD © -+ | Trigger n* 0 at MAINFED£3$0:3 [=]
. & c i
— S— S ERT ST -
. . e B e . . . N condton T D
® None
= . . Trgger () f Debug windows list
ADD P =
Symbal to add:
B q i :
. .1_>7 . - . - ||| Symbel
Debug windows
‘watch
. i Oseiloscape
L L L . L - | Trigger ' (0 at MAINFED#3$0:3
k -, II
Cancel | 0k
A« 111

il T

In order to display the variable k in the trigger window, select its reference in the Debug
windows column, then press 0K. The name of the variable is now printed in the Symbol
column.

ellwu user manual 121

0001

--------- AR rigger 0 at MAINFBD#340:3 =l
e [
o “ e « =
P Lo L LT Condtion | D
@ None
i L Tigger) Far =1 verts
P Lo ADD | . l:::lA"EI
- B < Il
.d >7 ------ Symbal Value Type EI
""""" s | 0 UINT
¥ S|
c_>7

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press the normal cursor button, so as to let the cursor take back its original

shape.

13

8.5.2.6 OPENING A TRIGGER WINDOW FROM AN LD MODULE

Let us assume that you have an LD module, also containing the following instructions.

o001

o0z

EN ENO|

s
o

You can place a trigger on a block such as follows.

A00
— EMNM EHDO

122

user manual

44l

In this case, the same rules apply as to insert a trigger in an FBD module on a contact

1+

or a coil

< F

In this case, follow the SE instructions. Let us also assume that you want to know the
value of some variables every time the processor reaches network number 1.

First you must click one of the items making up network number 1. Now you can click the
Set/Remove trigger button in the Debug bar.

Ld
Alternatively you can press the F9 key.

In both cases, the grey raised button containing the network number turns to green, and
a white circle with the number of the trigger inside appears in the middle of the button,
while the related trigger window pops up.

. Trigger n° 1 at MAINLDZ15CL:4 =]
. = I Ac Crt: 0
. N [_stor |
o P | condiion .
Non
Trigger Far BYENS
. Lo Lo Lo Lo Lo Lo After
[symbor Value Type ||
0002

Trigger n* 0 at MAINLDZ250:3

o A Crt: 0 mj

Condition l
None

Trigger For =] events I
Ater

Symbol Value Type

d]e] u] L< | F—— v 5]
X/ || Library l——

PRI FTPY-H [lacin Relrne e Ewr

ntn tarast momnl etad

Unlike the other languages supported by Application, LD does not allow you to insert a
trigger into a single contact or coil, as it lets you select only an entire network. Thus the
variables in the trigger window will be refreshed every time the processor reaches the
beginning of the selected network.

8.5.2.7 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN LD MODULE

In order to watch the value of a variable, you need to add it to the trigger window. Let
us assume that you want to inspect the value of variable b in the LD code represented in
the figure below.

To this purpose, press the Watch button in the FBD bar.

Y
A

The cursor will become as follows.

Y ‘ JSE user manual 123

||| |free BULIL

Now you can click the item representing the variable you wish to be shown in the trigger
window.

A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

Trigger n® 0 at MAINLD#1$ (7]
O A Ct: 0 | Stop |
Condition D

| Debug windows list = |
Trigger) F

. Symbol to add:
0002 A ‘ =

1| Symbol

Debug windows
EN ENG ‘Watch

Dseiloscope

t_>— —_ll oo Trigger " 0 at MAINLD#1§

In order to display variable B in the trigger window, select its reference in the Debug win-
dow column, then press 0K.

The name of the variable is now printed in the SymboTl column.
I

. | Trigger n” 0 at MAINLD#1S B
0 .

A e W
Condition EI |
@ None

Trigger () Far \:l events

0002 () Afer
C Symbaol Value Type
ADD
—B 0 UINT
EN ENO)
- ——l
o
L S—— ,

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press the Normal cursor button, so as to restore the original shape of

the cursor.

124

| |
user manual éllwu

Let us assume that you have an ST module, also containing the following instructions.

8.5.2.8 OPENING A TRIGGER WINDOW FROM AN ST MODULE

I

oool

aooz a :=b % b;

ooosz o = c + SHR{ a. 1o#04)
ooo4d

ooos d =2 % =;

000e f := f + SHR{ 4. 1o#04)
aoog

Let us also assume that you want to know the value of e, d, and £, just before the in-
struction

f := £+ SHR(d, 16#04)

is executed. To do so, move the cursor to line 6.
Then you can click the Set/Remove trigger button in the Debug toolbar

»
or you can press the F9 key.

In both cases, a green arrowhead appears next to the line number, and the related trigger
window pops up.

Trigger n° 0 at MAINST#6 =]

o0 [Stop |

o001
ooz
00oo3
0004
0005 e;

0006 [SHR({ d. 16#04 };
ooan7 After

Condition

[y=g

+ %+ %

b:
SHR({ a. 1a#04)

MHaone

L0

Trigger For

=}
f

Symbol Value Type

Not all the ST instructions support triggers. For example, it is not possible to place a trig-
ger on a line containing a terminator such as END IF, END FOR, END WHILE, etc..

8.5.2.9 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN ST MODULE

In order to watch the value of a variable, you need to add it to the trigger window. To
this purpose, select a variable, by double clicking it, and then drag it into the Variables
window, that is the the lower white box in the pop-up window. The variable name now
appears in the Symbol column.

user manual 125

Trigger n° 0 at MAINST#6

lis]
Ac R

gggé 5 B Condition [Z]
0003 SHR{ a. 16#04)

0004 e
0005 o Trigger () For
0006 = HR(d, 16#04): -
o0an? () After
0oog
goog Symbol Value Type

* — F 0 UINT

[}
[vig=g

Lt = SR Vi
o

mm

< [T | +

The same procedure applies to all the variables you wish to inspect.

8.5.2.10 REMOVING A VARIABLE FROM THE TRIGGER WINDOW

If you want a variable not to be displayed any more in the trigger window, select it by
clicking its name once, then press the Del key.

8.5.2.11 USING CONTROLS

This paragraph deals with trigger windows controls, which allow you to better supervise
the working of this debugging tool to get more information on the code under scope. The
main purpose of trigger window controls is to let you define more limiting conditions, so
that variables in Variables window are refreshed when the processor reaches the trig-
ger location and these conditions are satisfied. If you do not use controls, variables are
refreshed every single time the processor reaches the relative trigger.

Enabling controls
When you set a trigger, all the elements in the Control window look disabled.

oA om0
Condition | E

£ None

Trigger € For I 3: events

£ After

As a matter of fact, you cannot access any of the controls, except the Accumulator dis-
play, until at least one variable is dragged into the Debug window. When this happens
triggering automatically starts and the Controls window changes as follows.

] - Cnt: 391
: Condition | D

" MNone

Tiigger € For I 3: events

 dfter

Triggering can be started/stopped with the apposite button.

=

126

user manual

Fixing the number of refresh

If you want the values to be refreshed the first time the window is triggered, select None,
and press the single step button, otherwise set the counter to 1 and select For.

If you want the values to be refreshed the first X times the window is triggered, set the
counter to X and select For.

If you want the values to be refreshed after Y times the window is triggered, set the coun-
ter to Y and select After.

Triggers and conditions settings become the actual settings when the triggering is (re)
started.

Watching the accumulator

As stated in the Refresh of values section (see 9.5.1.5), when you insert a trigger on an
instruction line, you establish that the variables in the relative debugging window will be
updated every time the processor reaches that location, before the instruction itself is ex-
ecuted. In some cases, for example when a trigger is placed before a ST statement, it can
be useful to know the value of the accumulator. This allows you to forecast the outcome
of the instruction that will be executed after all the variables in the trigger window have
been updated. To add the accumulator to the trigger window, click on the Accumulator
display button.

Defining a condition

This control enables users to set a condition on the occurrences of a trigger. By default,
this condition is set to TRUE, and the values in the debug window are refreshed every time
the window manager is triggered.

If you want to put a restriction on the refreshment mechanism, you can specify a condi-
tion by clicking on the apposite button.

When you do so, a text window pops up, where you can write the IL code that sets the
condition.

Trigger condition @

ID a -
ST 100

Once you have finished writing the condition code, click the 0K button to install it, or press
the Esc button to cancel. If you choose to install it, the values in the debug window are
refreshed every time the window manager is triggered and the user-defined condition is
true.

A simplified expression of the condition now appears in the control.

‘ ‘ Condition & GT 100 D ‘ ‘

user manual 127

Ap

To modify it, press again the above mentioned button.

]

The text window appears, containing the text you originally wrote, which you can now
edit.

To completely remove a user-defined condition, delete the whole IL code in the text win-
dow, then click OK.

After the execution of the condition code, the accumulator must be of type Boolean (TRUE
or FALSE), otherwise a compiler error occurs.

Only global variables and dragged-in variables can be used in the condition code. Namely,
all variables local to the module where the trigger was originally inserted are out of scope,
if they have not been dragged into the debug window. No new variables can be declared
in the condition window.

8.5.2.12 CLOSING A TRIGGER WINDOW AND REMOVING A TRIGGER

This web page deals with what you can do when you finish a debug session with a trigger
window. You can choose between the following options.

- Closing the trigger window.

- Removing the trigger.

- Removing all the triggers.

Notice that the actions listed above produce very different results.

Closing the trigger window

If you have finished watching a set of variables by means of a trigger window, you may
want to close the Debug window, without removing the trigger. If you click the button in
the top right-hand corner, you just hide the interface window, while the window manager
and the relative trigger keep working.

Trigger n= 0 at MAINFED#150:4 (=
A
Ac Cot: 50
Conditioh E]
@ Mone
Trigger (0) For
() After
Symbol WValue Type
Il —a 0 UINT
4| 1 | 3
155

As a matter of fact, if later you want to resume debugging with a trigger window that you
previously hid, you just need to open the Trigger Tist window, to select the record
referred to that trigger window, and to click the Open button.

Trigger list < @

Type Module Line

T MaINFED -

0K

128 user manual

The interface window appears with value of variables and trigger counter updated, as if it
had not been closed.

Removing a trigger

If you choose this option, you completely remove the code both of the window manager
and of its trigger. To this purpose, just open the Trigger 1ist window, select the record
referred to the trigger window you want to eliminate, and click the Remove button.

Trigger list . =

Type Module Line
T MaINFED

Remove
Remove all

0K

I

Alternatively, you can move the cursor to the line (if the module is in IL or ST), or click
the block (if the module is in FBD or LD) where you placed the trigger. Now press the Set/
Remove trigger button in the Debug toolbar.

Removing all the triggers

Alternatively, you can remove all the existing triggers at once, regardless for which re-
cords are selected, by clicking on the Remove all button.

Trigger list e @

Tupe Module Line Open

T MAINFED

Remove
| m—__
-

Ty
< Remove all ’
e =

Bk

I

8.6 GRAPHIC TRIGGERS
8.6.1 GRAPHIC TRIGGER WINDOW

The graphic trigger window tool allows you to select a set of variables and to have them
sampled synchronously and to have their curve displayed in a special pop-up window.

Sampling of the dragged-in variables occurs every time the processor reaches the position
(i.e. the instruction - if IL, ST - or the block - if FBD, LD) where you placed the trigger.

8.6.1.1 PRE-CONDITIONS TO OPEN A GRAPHIC TRIGGER WINDOW

No need for special compilation

All the Application debugging tools operate at run-time. Thus, unlike other programming
languages such as C++, the compiler does not need to be told whether or not to support
trigger windows: given a PLC code, the compiler’s output is unique, and there is no dis-
tinction between debug and release version.

Memory availability

A graphic trigger window takes all the free memory space in the application code sector.
Obviously, in order to start up a trigger window, it is necessary that a sufficient amount
of memory is available, otherwise an error message appears.

user manual 129

8.6.1.2 GRAPHIC TRIGGER WINDOW INTERFACE

Setting a graphic trigger causes a pop-up window to appear, which is called Interface
window. This is the main interface for accessing the debugging functions that the graphic
trigger window makes available. It consists of several elements, as shown below.

T i w— Capsion bar
S NEDRESXE KR “ : BT . - s bar

— Chart area

WVariablas
windaw

The caption bar

The Caption bar at the top of the pop-up window shows information on the location of
the trigger which causes the variables listed in the Variables window to be sampled.

The text in the caption has the following format:

ModuleName#Location

Where

Name of program, function, or function block where the trigger was

ModuleName
placed.

Exact location of the trigger, within module ModuleName.
If ModuleName is in IL, ST, Location has the format:

N1

Otherwise, if ModuleName is in FBD, LD, it becomes:
Location N2$SBT:BID

N1 = instruction line number

N2 = network number

BT = block type (operand, function, function block, etc.)

BID = block identifier

The Controls bar

This dialog box allows you to better control the working of the graphic trigger window. A
detailed description of the function of each control is given in the Graphic trigger window
controls section (see 9.6.1.5).

The Chart area

The Chart area includes six items:

1) Plot: area containing the actual plot of the curve of the dragged-in variables.

130 user manual

2) Samples to acquire: number of samples to be collected by the graphic trigger window
manager.

3) Horizontal cursor: cursor identifying a horizontal line. The value of each variable at
the intersection with this line is reported in the column horz cursor.

4) Blue cursor: cursor identifying a vertical line. The value of each variable at the inter-
section with this line is reported in the column Teft cursor.

5) Red cursor: same as blue cursor.

6) Scroll bar: if the scale of the x-axis is too large to display all the samples in the Plot
area, the scroll bar allows you to slide back and forth along the horizontal axis.

The Variables window

This lower section of the Debug window is a table consisting of a row for each variable
that you have dragged in. Every row has several fields, which are described in detail in
the Drag and drop information section.

8.6.1.3 GRAPHIC TRIGGER WINDOW:DRAG AND DROP INFORMATION

To watch a variable, you need to copy it to the lower section of the Debug window.

E N
@ M E BB E LS &I Lr e

e 1h‘an_ri-all:lh?&:
windoww

This lower section of the Debug window is a table consisting of a row for each variable that
you dragged in. Each row has several fields, as shown in the picture below.

MMax walue widiv | Red cursor

Track Lm Min walus Blue cursor | Mote

ogtd Q000 0000 1,08 667 0,000 0,000 global

4]
Field Description
Track Name of the variable.
Um Unit of measurement.

Min value Minimum value in the record set.
Max value Maximum value in the record set.

user manual 131

Field Description
Cur value |Current value of the variable.

How many engineering units are represented by a unit
v/div of the y-axis (i.e. the space between two ticks on the
vertical axis).

Value of the variable at the intersection with the line
identified by the blue cursor.

Value of the variable at the intersection with the line
identified by the red cursor.

Value of the variable at the intersection with the line
identified by the horizontal cursor.

Blue cursor

Red cursor

Horz cursor

Note that you can drag into the graphic trigger window only variables local to the module
where you placed the relative trigger, or global variables, or parameters. You cannot drag
variables declared in another program, or function, or function block.

8.6.1.4 SAMPLING OF VARIABLES

Let us consider the following example.

The value of the variables is sampled every time the window manager is triggered, that is
every time the processor executes the instruction marked by the green arrowhead. How-
ever, you can set controls in order to have variables sampled when triggers also satisfy
further limiting conditions that you define.

The value of the variables in the column Track is read from memory just before the
marked instruction and immediately after the previous instruction.

8.6.1.5 GRAPHIC TRIGGER WINDOW CONTROLS

This paragraph deals with controls of the Graphic trigger window. Controls allow you
to specify in detail when Application is supposed to sample the variables added to the
Variables window.

Graphic trigger window controls act in a well-defined way on the behavior of the window,
regardless for the type of the module (IL, ST, FBD or LD) where the related trigger has
been inserted.

Window controls are made accessible to users through the Controls bar of the debug
window.

s BHHEB FFERXOE S ORI stp |

Button Command Description

When you push this button down, you let
Start araphic acquisition start. Now, if acquisition is running
" | grap and you release this button, you stop the sample
trace g
collection process, and you reset all the data you
have acquired so far.

The two cursors (red cursor, blue cursor) may be
Enable/Disable seen and moved along their axis as long as this
[cursors button is pressed. Release this button if you want

to hide simultaneously all the cursors.

This control is used to put in evidence the exact
E Show samples point in which the variables are triggered at each
—_— sample.

132

user manual

Button Command Description
When pressed, this control splits the y-axis into
r— . , as many segments as the dragged-in variables,
et Split variables so that the diagram of each variable is drawn in a
separate band.
It is used to fill in the graph window all the values
E Show all values |sampled for the selected variables in the current

recordset.

Zooming in is an operation that makes the curves
in the Chart area appear larger on the screen,
so that greater detail may be viewed. Zooming
out is an operation that makes the curves appear
smaller on the screen, so that it may be viewed
in its entirety. Horizontal zoom acts only on the
horizontal axis.

This control is used to horizontally center record
E Horizontal show [set samples. So first sample will be placed on the

all left margin, and last will be placed on the right
margin of the graphic window.

#‘: d; Horizontal Zoom In
and Zoom Out

Vertical Zoom In . _ _
t‘g 3{ and Zoom Out Vertical Zoom acts only on the vertical axis.

This control is used to vertically center record set

samples. So max value sample will be placed near
top margin and low value sample will be placed on
the bottom margin of the graphic window.

Pushing this button causes a tabs dialog box

to appear, which allows you to set general user
Graphic trigger |options affecting the action of the graphic trigger

window properties |[window. Since the options you can set are quite

numerous, they are dealt with in a section apart.

Click here to access this section.

|I| Vertical show all

. Push this button to print both the Chart area and
% Print chart ; .
the Variables window.
E Save chart Press this button to save the chart.

Trigger counter

Crt: 254100

This read-only control displays two numbers with the following format: x/v.

X indicates how many times the debug window manager has been triggered, since the
graphic trigger was installed.

Y represents the number of samples the graphic window has to collect before stopping
data acquisition and drawing the curves.
Trigger state

This read-only control shows you the state of the Debug window. It can assume the fol-
lowing values.

user manual 133

Heady

No sample(s) taken, as the trigger has not occurred during the
current task execution.

Triggered

Sample(s) collected, as the trigger has occurred during the
current task execution.

The trigger counter indicates that a number of samples
has been collected satisfying the user request or memory
constraints, thus the acquisition process is stopped.

Communication with target interrupted, the state of the trigger
window cannot be determined.

8.6.1.6 GRAPHIC TRIGGER WINDOW OPTIONS

In order to open the options tab, you must click the Properties button in the Controls

bar. When you do this, the following dialog box appears.

General
Syncronous oscilloscope seﬂingsL \E‘
Shaow grid Horizantal scale 500 samplesdiv
Show time bar Bulfer size 65535 zamples [max. 55535] I
Show tracks list Condition E]
Tracks list
Name Unit Walue/div Oiftset Hide
F 1 0 O
oot
Control
Control Description
. Tick this control to display a grid in the Chart area
Show grid
background.
Show time |[The scroll bar at the bottom of the Chart area is
bar available as long as this box is checked.

Show tracks

The Variables window is shown as long as this box
is checked, otherwise the Chart area extends to the

list bottom of the graphic trigger window.
Values
Control Description
Horizontal Number of samples per unit of the x-axis. By unit of the

scale) - : .
_ x-axis the space is meant between two vertical lines of

Unit of the x-axis .
— the background grid.

134

user manual

Control Description

Number of samples to acquire. When you open the
option tab, after having dragged-in all the variables you
want to watch, you can read a default number in this
field, representing the maximum number of samples you
can collect for each variable. You can therefore type a
number which is less or equal to the default one.

Buffer size

Tracks

This tab allows you to define some graphic properties of the plot of each variable. To select
a variable, click its name in the Track Tist column.

Control Description

Unit of measurement, printed in the table of the
Variables window.

A value per unit of the y-axis. By unit of the y-axis is
Value/div | meant the space between two horizontal lines of the
background grid.

Hide Check this flag to hide selected track on the graph.

Unit

Push Apply to make your changes effective, or push 0K to apply your changes and to
close the options tab.

User-defined condition

If you define a condition by using this control, the sampling process does not start until
that condition is satisfied. Note that, unlike trigger windows, once data acquisition begins,
samples are taken every time the window manager is triggered, regardless of the user
condition being still true or not.

After you enter a condition, the control displays its simplified expression.

‘ ‘ Condition & GT 100 D ‘ ‘

8.6.2 DEBUGGING WITH THE GRAPHIC TRIGGER WINDOW

The graphic trigger window tool allows you to select a set of variables and to have them
sampled synchronously and their curve displayed in a special pop-up window.

8.6.2.1 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN IL MODULE

Let us assume that you have an IL module, also containing the following instructions.

uuul
nooz LD a
noos ADD b
noo4 ST a
noos
0noe I c
ooz ADD d
oooa ST o
noog
noliao LD k
0011 ADD 1
no1z ST o
nnia

user manual 135

Let us also assume that you want to know the value of b, d, and k, just before the ST k
instruction is executed. To do so, move the cursor to line 12.

oo
0010 I Lk
o0o1i ADD 1
no1z ST W
nnis

Then click the Graphic trace button in the Debug toolbar.

|

A green arrowhead appears next to the line number, and the graphic trigger window pops
up.

b UINT Auto Na 0
S B

d UINT

k UINT

—
~ | IxTass fesh COSH [=IumiT E

Not all the IL instructions support triggers. For example, it is not possible to place a trig-
ger at the beginning of a line containing a Jvp statement.

8.6.2.2 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN IL MODULE

In order to get the diagram of a variable plotted, you need to add it to the graphic trigger
window. To this purpose, select a variable, by double clicking it, and then drag it into the
Variables window. The variable nhow appears in the Track column.

e
5 |k UINT Auto MAINZ12 =
o= BB EEEB *SEH @ e S
F

The same procedure applies to all the variables you wish to inspect.

Once the first variable is dropped into a graphic trace, the Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

136 user manual

Ap

Let us assume that you have an FBD module, also containing the following instructions.

8.6.2.3 OPENING THE GRAPHIC TRIGGER WINDOW FORM AN FBD MODULE

] i, b
0001
ADD
- B g
. b_>7
ooz
..... - ADD Ce e Ce e
- B d
. n_>7
ADD
k I(
B—
— |« 3 d
311 Nibrane

Let us also assume that you want to know the values of ¢, d, and k, just before the sT
k instruction is executed.

Provided that you can never place a trigger in a block representing a variable such as

~— 4

you must select the first available block preceding the selected variable. In the example
of the above figure, you must move the cursor to network 3, and click the ApD block.

Now click the Graphic trace button in the Debug toolbar.

|

This causes the colour of the selected block to turn to green, a white circle with the trig-
ger ID number inside to appear in the middle of the block, and the related trigger window
to pop up.

UNT Ate N 0 1
5 k UINT Auto No o RIS =)

> —
O
0002 L.)

ADD
> —_—
R
Di . k
R

TTE]AND GiE =0T TTToR B

user manual 137

Ap

{

When preprocessing the FBD source code, compiler translates it into IL instructions. The
ADD instruction in network 3 is expanded to:

LD k
ADD 1
ST k

When you add a trigger to an FBD block, you actually place the trigger before the first
statement of its IL equivalent code.

8.6.2.4 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN FBD
MODULE

In order to watch the diagram of a variable, you need to add it to the trigger window. Let
us assume that you want to see the plot of the variable k of the FBD code in the figure
below.

To this purpose, press the Watch button in the FBD bar.

Y
A

Now you can click the block representing the variable you wish to be shown in the graphic
trigger window.

In the example we are considering, click the button block.

k-

A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

Debug windows lisf =
Surmbol to add:
k

[ebug windows

Watch
Oscillozcope

The cursor will become as follows.

Graphic trace

In order to plot the curve of variable k, select Graphic Trace in the Debug windows col-
umn, then press 0K. The name of the variable is now printed in the Track column.

138 user manual & y/

UINT
UINT

Auto No

0
Auta No 0| MAINFBD#350:3 =}
A

0001

6| HHEBFIEK0& S ERC e |

S .
B
| R SRS N S S S -
ADD
s —d
a—

Um Min value Max value Curvalue v/div Redcursor E

=

gy T=TET oA TR TETEH

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press the Normal cursor button, in order to restore the original cursor.

)

Once the first variable is dropped into a graphic trace, the Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

8.6.2.5 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN LD MODULE

Let us assume that you have an LD module, also containing the following instructions.

0001

0002

You can place a trigger on a block such as follows.

A00
— EH ENO|—

In this case, the same rules apply as to insert the graphic trigger in an FBD module on a

contact

1+

user manual 139

Ap

8.6.2.

or coil

< ¥

In this case, follow the instructions. Let us also assume that you want to know the value
of some variables every time the processor reaches network number 1.

Click one of the items making up network nr. 1, then press the Graphic trace button in

the Debug toolbar.

This causes the grey raised button containing the network number to turn to green, a
white circle with a number inside to appear in the middle of the button, and the graphic
trigger window to pop up.

|
MAINLD#1§ =

EEEEEEEIEEIEIET" COCC - |

4

Toslr A I¥InnT el

« i
+lann I=lFn

Note that unlike the other languages supported by Application, LD does not allow you to
insert a trigger before a single contact or coil, as it lets you select only an entire network.
Thus the variables in the Graphic trigger window will be sampled every time the pro-
cessor reaches the beginning of the selected network.

6 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN LD
MODULE

In order to watch the diagram of a variable, you need to add it to the Graphic trigger
window. Let us assume that you want to see the plot of the variable b in the LD code
represented in the figure below.

To this purpose, press the Watch button in the FBD bar.

Y
A

Now you can click the item representing the variable you wish to be shown in the Graphic
trigger window.

A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

In order to plot the curve of variable b, select Graphic trace in the Debug windows col-
umn, then press 0K. The name of the variable is now printed in the Track column.

The cursor will become as follows.

140

user manual

|

MAINLD#1§ @
 EEEEEEE e SR o 0

0002

Teann I=lrn ool A I5IunT el

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press again the Normal cursor button, so as to restore the original shape

of the cursor.

Once the first variable is dropped into a graphic trace, the Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

8.6.2.7 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN ST MODULE

Let us assume that you have an ST module, also containing the following instructions.

I

oood

aooz a = b = h;

aoos c = c + SHE({ a. 16#04)
ooo4

ooos d =2 % g;

000e f :=f + SHE({ d. 1le#04):
aooz

Let us also assume that you want to know the value of e, d, and £, just before the in-
struction

f := f+ SHR(d, 16#04)

is executed. To do so, move the cursor to line 6.
Then click the Graphic trace button in the Debug toolbar.

|

A green arrowhead appears next to the line number, and the Graphic trigger window
pops up.

user manual 141

X1

T
FIEIEIEIEIE . Y= s = = B T Stop

=

S

(= Uprdown logic on analog output 3 =)

2

aoutd = aoutd + incr;

= 2047 THEN

IF acu

incr := TO_INT(vall) x -1;
EISIF aoutd <= —2046 THEW
incr .= TO_INT(vall);

inc
END_IF,

e
o

(% Analog cutput 0 = analog inp 0 + analog inp 1 %)

(* SEC state logic x)

fbStati(enab := inpl0. run := inpll. stop := inpl2):

Lirack ——————— Tum [mnvale [maxvale | vidiv [Redarsor | Bue arser
1

Al

Not all the ST instructions support triggers. For example, it is not possible to place a trig-
ger on a line containing a terminator such as END IF, END FOR, END WHILE, etc.

8.6.2.8 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN ST
MODULE

In order to get the diagram of a variable plotted, you need to add it to the Graphic trig-
ger window. To this purpose, select a variable, by double clicking it, and then drag it into
the Variables window, that is the lower white box in the pop-up window. The variable
now appears in the Track column.

4 |d UINT Auto No 0 "
5 |e UINT Auto MAINST#6 =]
6§ |

UINT Auto 7ﬁ||ﬂE@Bﬂ|d{.{B\s§z§m|lﬁ'\§u Cnt: 0/100
4

HR(a. 16404):

=b*b
=c+ 5
exe
£+ S

=
@
-

HR{ d. 16%#04);

™

m 5
= TIFIRDD T=TED TeETTOG TSI

The same procedure applies to all the variables you wish to inspect.

Once the first variable is dropped into a graphic trace, the Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

8.6.2.9 REMOVING A VARIABLE FROM THE GRAPHIC TRIGGER WINDOW

If you want to remove a variable from the Graphic trigger window, select it by clicking its
name once, then press the Del key.

8.6.2.10 USING CONTROLS

This paragraph deals with graphic trigger window controls, which allow you to better
supervise the working of this debugging tool, so as to get more information on the code
under scope.

Enabling controls

When you set a trigger, all the elements in the Control bar are enabled. You can start
data acquisition by clicking the Start graphic trace acquisition button.

142 user manual

If you defined a user condition, which is currently false, data acquisition does not start,
even though you press the apposite button.

L]

On the contrary, once the condition becomes true, data acquisition starts and continues
until the Start graphic trace acquisition button is released, regardless for the con-
dition being or not still true.

if you release the Start graphic trace acquisition button before all the required
samples have been acquired, the acquisition process stops and all the collected data get
lost.

Defining a condition

This control enables users to set a condition on when to start acquisition. By default, this
condition is set to true, and acquisition begins as soon as you press the £Enable/Disable
acquisition button. From that moment on, the value of the variables in the Debug win-
dow is sampled every time the trigger occurs.

In order to specify a condition, open the Condition tab of the Options dialog box, then
press the relevant button.

A text window pops up, where you can write the IL code that sets the condition.

Trigger condition @

LD & -
GT 100

Once you have finished writing the condition code, click the 0K button to install it, or press
the Esc button to cancel. The collection of samples will not start until the Start graphic
trace acquisition button is pressed and the user-defined condition is true. A simplified
expression of the condition now appears in the control.

‘ ‘ Condition & GT 100 D ‘ ‘

To modify it, press again the relevant button.

The text window appears, containing the text you originally wrote, which you can now
edit.

To completely remove a user-defined condition, press again on the above mentioned but-
ton, delete the whole IL code in the text window, then click OK.

After the execution of the condition code, the accumulator must be of type Boolean (TRUE
or FALSE), otherwise a compiler error occurs.

user manual 143

p

Only global variables and dragged-in variables can be used in the condition code. Namely,
all variables local to the module where the trigger was originally inserted are out of scope,
if they have not been dragged into the Debug window. Also, no new variables can be de-
clared in the condition window.

Setting the scale of axes

- x-axis

When acquisition is completed, Application plots the curve of the dragged-in variables ad-
justing the x-axis so that all the data fit in the the Chart window. If you want to apply a

different scale, open the General tab of the Graph properties dialog box, type a number
in the horizontal scale edit box, then confirm by clicking Apply.

- y-axis
You can change the scale of the plot of each variable through the Tracks T1ist tab of the

Graph properties dialog box. Otherwise, if you do not need to specify exactly a scale,
you can use the Zoom In and Zoom Out controls.

8.6.2.11 CLOSING THE GRAPHIC TRIGGER WINDOW AND REMOVING THE TRIGGER

At the end of a debug session with the graphic trigger window you can choose between
the following options:

- Closing the Graphic trigger window.
- Removing the trigger.
- Removing all the triggers.

Closing the graphic trigger window

If you have finished plotting the diagram of a set of variables by means of the Graphic
trigger window, you may want to close the Debug window without removing the trigger.
If you click the button in the top right-hand corner, you just hide the Interface window,
while the window manager and the relative trigger keep working.

As a matter of fact, if later you want to restore the Graphic trigger window that you
previously hid:

- open the Trigger Tist window;

- select the record (having type G);

- click the Open button.

The Interface window appears with the trigger counter properly updated, as if it had
never been closed.

Removing the trigger

If you choose this option, you completely remove the code both of the window manager
and of its trigger. To this purpose:

- open the Trigger Tist window;
- select the record (having type G);
- click the Remove button.

Alternatively, you can move the cursor to the line (if the module is in IL), or click the block
(if the module is in FBD) where you placed the trigger. Now press the Graphic trace
button in the Debug toolbar.

Removing all the triggers

Alternatively, you can remove all the existing triggers at once, regardless for which re-
cords are selected, by clicking on the Remove all triggers button.

144

user manual

9. APPLICATION REFERENCE
9.1 MENUS REFERENCE
In the following tables you can see the list of all Application’s commands. However, since
Application has a multi-document interface (MDI), you may find some disabled commands
or even some unavailable menus, depending on what kind of document is currently active.
9.1.1 FILE MENU
Command Description

New project

Lets you create a new Application project.

Open project

Lets you open an existing Application project.

View project

Opens an existing Application project in read-only mode.

Save project

Same as Save all, but it saves also the ppj file. Note that,
since all modifications to a Application project are first applied
in memory only, you need to release the Save project
command to make them permanent.

Save project As

Asks you to specify a new project name and a new location,
and saves there a copy of all the files of the project.

Close project

Asks you whether you want to keep unsaved changes, then
closes the active project.

New text file

Opens a blank new generic text file.

Opens an existing file, whatever its extension. The file is

Open file displayed in the text editor. Anyway, if you open a project file,
you actually open the Application project it refers to.
Save Lets you save the document in the currently active window.
Close Closes the document in the currently active window.
Options Opens the Programming environment options dialog box.
print Displays a dialog box, which lets you set printing options and

print the document in the currently active window.

Print preview

Shows a picture on your video, that reproduces faithfully
what you get if you print the document in the currently active
window.

Print project

Prints all the documents making up the project.

Printer setup

Opens the Printer setup dialog box.

..recent..

Lists a set of ppj file of recently opened Application projects.
Click one of them, if you want to open the relevant project.

Exit

Closes Application.

user manual 145

9.1.3

EDIT MENU
Command Description
Undo Cancels last change made in the document.
Redo Restores the last change canceled by Undo.
Removes the selected items from the active document and
Cut .
stores them in a system buffer.
Copy Copies the selected items to a system buffer.
Pastes in the active document the contents of the system
Paste
buffer.
Delete Deletes the selected item.

Delete Tine

Deletes the whole source code line.

Find in project

Opens the Find in project dialog box.

Bookmarks Lets you set, remove, and move between bookmarks.
Go to line Allows you to quickly move to a specific line in the source
code editor.
Asks you to type a string and searches for its first instance
Find within the active document from the current location of the
cursor.
Find next Iterates the search previously performed by the Find
command.
R Allows you to automatically replace one or all the instances of
eplace

a string with another string.

Insert/Move mode

Editing mode which allows you to insert and move blocks.

Connection mode

Editing mode which allows you to draw logical wires to
connect pins.

Watch mode

Editing mode which allows you to add variables to any
debugging tool.

VIEW MENU

Command

Description

Main Toolbar

If checked, displays the Main toolbar, otherwise hides it.

Status bar If checked, displays the Status bar, otherwise hides it.
Debug bar If checked, displays the Debug bar, otherwise hides it.
FBD bar If checked, displays the FBD toolbar, otherwise hides it.
LD bar If checked, displays the LD toolbar, otherwise hides it.
SFC bar If checked, displays the SFC bar, otherwise hides it.
Project bar If checked, displays the Project bar, otherwise hides it.
Network If checked, displays the Network toolbar, otherwise hides it.

Document bar

If checked, displays the Document bar, otherwise hides it.

Force I/0 bar

If checked, displays the Force I/0 bar, otherwise hides it.

Workspace

If checked, displays the Workspace (also called Project
window), otherwise hides it.

Library

If checked, displays the Libraries window, otherwise hides
it.

146

user manual

Command Description
Output If checked, displays the Output window, otherwise hides it.
Async Graphic If checked, displays the 0scilloscope window, otherwise
window hides it.

Watch window

If checked, displays the Watch window, otherwise hides it.

Full screen

Expands the currently active document window to full screen.
Press Esc to restore the normal appearance of the Application
interface.

Grid

If checked, displays a dotted grid in a graphical source code
editor background.

9.1.4 PROJECT MENU

Command

Description

New object

Opens another menu which lets you create a new POU or
declare a new global variable.

Copy object

Copies the object currently selected in the Workspace.

Paste object

Pastes the previously copied object.

Duplicate object

Duplicates the object currently selected in the Workspace, and
asks you to type the name of the copy.

Delete object

Deletes the currently selected object. As explained above, you
need to release the Save project command to definitively
erase a document from your project.

PLC object
properties

Shows properties and description of the object currently
selected in the Workspace.

Object browser

Opens the O0ject browser, which lets you navigate between
objects.

Compile

Asks you whether to save unsaved changes, then launches
the Application compiler.

Recompile all

Recompiles the project.

Generate
redistributable
source module

Generates an RSM file.

Import object
from Tibrary

Lets you import a Application object from a library.

Export object to
library

Lets you export a Application object to a library.

Library manager

Opens the Library manager.

Macros Opens another menu which lets you create/delete macros.
Select target Lets you change the target.
Options... Lets you specify the project options.

user manual 147

9.1.5 DEBUG MENU
Command Description
Add symboT to Adds a symbol to the Watch window.
watch

Insert new item
into watch

Inserts a new item into the Watch window.

Add symbol to a
debug window

Adds a symbol to a debug window.

Insert new item
into a debug
window

Inserts a new item into a debug window.

Quick watch

Opens a dialog with the actual value of the variable.

Run Restarts program after a breakpoint is hit.
Add/ Remove .
breakpoint Adds/removes a breakpoint.
Remove 5377 Removes all the active breakpoints.
breakpoints

Breakpoint Tist

Lists all the active breakpoints.

Add/ remove text

Adds/removes a text trigger.

trigger
Add/ remove o
graphic trigger Adds/removes a graphic trigger.
Remqve arl Removes all the active triggers.
triggers

Trigger 1ist

Lists all the active triggers.

Debug mode

Switches the debug mode on.

Live debug mode

Switches the live debug mode on.

9.1.6 COMMUNICATION MENU

Command

Description

Download code

Application checks if any changes have been applied since last
compilation, and compiles the project if this is the case. Then,

it sends the target the compiled code.

Connect Application tries to establish a connection to the target.
Settings Lets you set the properties of the connection to the target.
Upload IMG file |If the target device is connected, lets you upload the img file.

Start/Stop

Freezes/resumes refreshment of the Watch window.

watch value

148 user manual z

9.1.7 SCHEME MENU

Command

Description

Network> New> Top

Adds a blank network at the top of the active LD/FBD
document.

Network> New>

Adds a blank network at the bottom of the active LD/FBD

Bottom document.

Network> New> Adds a blank network before the selected network in the
Before active LD/FBD document.

Network >New > |Adds a blank network after the selected network in the active
After LD/FBD document.

Network >Label

Assigns a label to the selected network, so that it can be
indicated as the target of a jump instruction.

Object >New

Lets you insert a new object into the selected network.

Object >
Instance name

Lets you assign a name to an instance of a function block,
that you have previously selected by clicking it once.

Object >
Open source

Opens the editor by which the selected object was created,
and displays the relevant source code:

- if the object is a program, or a function, or a function block,
this command opens its source code;

- if the object is a variable or a parameter, this command
opens the corresponding variable editor;

- if the object is a standard function or an operator, this
command opens nothing.

Auto connect

If checked, enables autoconnection, that is automatic creation
of a logical wire linking the pins of two blocks, when they are
brought close.

Delete invalid
connection

Removes all invalid connections, represented by a red line in
the active scheme.

Increment pins

By default some operators like ADD, MUL, etc. have two input
pins, however you may occasionally need to perform such
operations on more than two operands. This command allows
you to add as many input pins as to reach the required
number of operands.

Decrement pins

Undoes the Increment pins command.

Enable EN/ENO
pins

Adds the enable in/enable out pins to the selected block.
The code implementing the selected block will be executed
only when the enable in signalis true. The enable out
signal simply repeats the value of enable 1in, allowing you
either to enable or to disable a set of blocks in cascade.

Object properties

Shows some properties of the selected block:

- if the object is a function or a function block, displays a
table with the input and output variables;

- if the object is a variable or a parameter, opens a dialog box
which lets you change the name and the logical direction
(input/output).

user manual 149

9.1.8 VARIABLES MENU
Command Description
Adds a new row to the table in the currently active editor (if
Insert PLC editor, to the table of local variables; if parameters editor,
to the table of parameters, etc.).
Deletes the variable in the selected row of the currently active
Delete
table.
G Opens a dialog box which lets you create and delete groups of
roup ;
variables.
9.1.9 DEFINITIONS MENU

Command

Description

Insert> Enum

Creates a new enumerated data type.

Insert> Structure

Creates a new structured data type.

Insert> Subrange

Creates a new subrange data type.

Insert> Typedef

Creates a new typedef data type.

9.1.10 WINDOW MENU

Command Description
Displaces all open documents in cascade, so that they
Cascade -
completely overlap except for the caption.
The PLC editors area is split into frames having the same
Tile dimensions, depending on the number of currently open

documents. Each frame is automatically assigned to one of
such documents.

Arrange Icons

Displaces the icons of the minimized documents in the bottom
left-hand corner of the PLC editors area.

Close all

Closes all open documents.

9.1.11 HELP MENU

Command Description
Index Lists all the Help keywords and opens the related topic.
Context-sensitive help. Opens the topic related to the
Context . .
currently active window.
About. .. Information on producers and version.

150

user manual

9.2 TOOLBARS REFERENCE

In the following tables you can see the list of all Application’s toolbars. The buttons making
up each toolbar are always the same, whatever the currently active document. However,
some of them may produce no effect, if there is no logical relation to the active document.

9.2.1

malg <o~ & B

MAIN TOOLBAR

B #Ham S0 DREESRE

Button Command Description
) New project Creates a new project.
= Open project Opens an existing project.

Save project

Saves all documents in the currently open
windows, including the project file. Note that,
since all modifications to a Application project are
first applied in memory only, you need to release
the Save project command to make them
permanent.

Undo Cancels last change made in the document.

Redo Restores the last change canceled by Undo.

Cut Removes the selected items from the active
document and stores them in a system buffer.

Copy Copies the selected items to a system buffer.
Pastes in the active document the contents of the

Paste
system buffer.
Asks you to type a string and searches for its first

Find instance within the active document from the
current location of the cursor.

Find next Iterates the search previously performed by the

Find command.

Find in project

Opens the Find in project dialog box.

Print

Displays a dialog box, which lets you set printing
options and print the document in the currently
active window.

Print preview

Shows a picture on your video, that reproduces
faithfully what you get if you print the document
in the currently active window.

If pressed, displays the Workspace (also called

a®)a @ W= (B 8F =25

Workspace Project window), otherwise hides it.
Output If_ pres_sed, displays the Output window, otherwise
hides it.
Library If pressed, displays the Libraries window,

otherwise hides it.

user manual 151

Button Command Description

72 Watch If chegked, displays the Watch window, otherwise
hides it.

@| Asvne If checked, displays the Oscilloscope window,

Y otherwise hides it.

If pressed, displays the Force I/0 window,

o Force I/0 otherwise hides it.

) PLC run-time If checked, displays the PLC run-time window,

monitor

otherwise hides it.

Full screen

Expands the currently active document window to
full screen. Press Esc or release the Full screen
button to restore the normal appearance of the
Application interface.

9.2.2 FBD TOOLBAR

% 0O+ - £ ¥
Button Command Description

Move/ Insert

Editing mode which allows you to insert and move
blocks.

Editing mode which allows you to draw logical

i Connection wires to connect pins.

Q:: Watch Editing mode which allows you to add variables to
any debugging tool.

I New block Lets you insert a new block into the selected
network.

Constant Adds a constant to the selected network.

o Return Adds a conditional return block to the selected
network.
Adds a conditional jump block to the selected

i Jump network.

[3:] Comment Adds a comment to the selected network.
By default some operators like ADD, MUL, etc. have
two input pins, however you may occasionally

+! | Inc pins need to perform such operations on more than

P two operands. This command allows you to add as

many input pins as to reach the required number
of operands.

'I | Dec pins Undoes the Inc pins command.

152

user manual

Button Command Description
Adds the enable in/enable out pins to the
selected block. The code implementing the
. selected block will be executed only when the
%}; EN/ENO enable in signalis true. The enable out signal

simply repeats the value of enable 1in, allowing
you either to enable or to disable a cascade of
blocks.

FBD properties

Shows some properties of the selected block:

- if the object is a function or a function block,
displays a table with the input and output
variables;

- if the object is a variable or a parameter, opens
a dialog box which lets you change the name
and the logical direction (input/output).

View source

Opens the editor by which the selected object was
created, and displays the relevant source code:

- if the object is a program, or a function, or a
function block, this command opens the relevant
source code editor;

- if the object is a variable or a parameter, then
this command opens the corresponding variable
editor;

- if the object is a standard function or an
operator, this command opens nothing.

9.2.3 LD TOOLBAR

o aHe o FA ek vk {4 6 © 6

Button

Command

Description

|

Insert parallel

Activates the parallel insertion mode. All contacts
inserted in this mode will be inserted in parallel
with the actually selected contacts.

4|—|+|

Insert series

Activates the series insertion mode. All contacts
inserted in this mode will be inserted on the
right of the currently selected contact/block. If
a connection is selected, the new contact will be
placed in the middle of the connection segment.

1t

Insert contact

Insertion of a new contact according to the
selected mode (series or parallel).

W

Insert negated
contact

Insertion of a new negative contact according to
the selected mode (series or parallel).

1°k

Insert rising
edge contact

Insertion of a new rising edge contact according to
the selected mode (serial or parallel).

s

Insert falling
edge contact

Insertion of a new falling edge contact according
to the selected mode (serial or parallel).

0

Insert coil

Insertion of a new coil attached to the right power
rail.

user manual 153

Button

Command

Description

0

Insert negated
coil

Insertion of a new negative coil attached to the
right power rail.

9

Insert set
contact

Insertion of a new set coil attached to the right
power rail.

©

Insert reset coil

Insertion of a new reset coil attached to the right
power rail.

©

Insert rising
edge contact

Insert positive transition-sensing coil to the right
power rail.

03

Insert falling
edge contact

Insert negative transition-sensing coil to the right
power rail.

9.2.4 SFCTOOLBAR

O haHEYE BEREE % 3%

Button

Command

Description

|

New step

Inserts a new step into the currently open SFC
document.

.

Add transition

Adds a new transition to the currently open SFC
document.

g |

Add jump

Adds a new jump block to the currently open SFC
document.

Add divergent pin

Adds a new pin to the selected divergent
transition.

Remove divergent

Removes the rightmost pin from the selected

8 |[an ||

pin divergent transition.
Add convergent |Adds a new pin to the selected convergent
pin transition.
Remove convergent [Removes the rightmost pin from the selected
pin convergent transition.

Add simultaneous
divergent pin

Adds a new pin to the selected simultaneous
divergent transition.

Remove
simultaneous
divergent pin

Removes the rightmost pin from the selected
simultaneous divergent transition.

| |Ts (|72 |[E

Add simultaneous
convergent pin

Adds a new pin to the selected simultaneous
convergent transition.

T

Remove
simultaneous
convergent pin

Removes the rightmost pin from the selected
simultaneous divergent transition.

1%

Shift pin right

Increases the distance between the two rightmost
pins of the currently selected transition, in order
to let the SFC subnet linked to the pin on the left
contain divergent branches.

154

user manual

9.2.5

Button

Command

Description

.‘_
11

Shift pin Teft

Decreases the distance between the two rightmost
pins of the currently selected transition.

New action code

Allows the user to create a new action to be
associated with one of the steps. When you press
this button, Application asks you which language
you want to use to implement the new action,
then opens the corresponding editor.

E

New transition
code

Allows the user to write the code to be associated
with one of the transitions. When you press this
button, Application asks you which language you
want to use to implement the new transition, then
opens the corresponding editor.

PROJECT TOOLBAR

Y sl 20 L0

GAF HdE P

Button Command Description
A Library manager |Opens the library manager.
oy . Asks you whether to save unsaved changes, then
ey '
[CompiTe launches the Application compiler.
I Asks you whether to save unsaved changes, then
Recompile all launches the Application compiler to recompile the

whole project.

Connect to the
target

Application tries to establish a connection to the
target.

Code download

Application checks if any changes have been
applied since last compilation, and compiles the
project if this is the case. Then, it sends the target
the compiled code.

New macro

Defines a new macro.

Object browser

Opens the object browser, which lets you navigate
between objects.

PLC 0bj
properties

Shows properties and description of the object
currently selected in the Workspace.

Adds a new row to the table in the currently active
editor (if PLC editor, to the table of local variables;

* . .
’ Insert record if parameters editor, to the table of parameters,
etc.).
KL Delete record Deletes the variable in the selected row of the
currently active table.
Generate
e redistributable |Creates an RSM file of the project.

source module

user manual 155

9.2.6 NETWORK TOOLBAR
=l = s i k
Button Command Description
: Adds a blank network at the top of the active LD/
E Insert Top FBD document.
= Adds a blank network at the bottom of the active
' Insert Bottom LD/FBD document.
= Insert After Adds a blank network after the selected network
— in the active LD/FBD document.
— Insert Before Adds a blank network before the selected network
— in the active LD/FBD document.
View grid If ghecked, displays a dotted grid in the LD/FBD
== editor background.
n If checked, enables auto connection, that is
ﬁﬂ Auto connect automatic creation of a logical wire linking the pins
- of two blocks, when they are brought close.
9.2.7 DEBUG TOOLBAR
S s ExED M) E R
Button Command Description
i Debug mode Switch on/off the Debug mode.
e Live debug mode |Switch on/off the Live debug mode.
B Set/Remove Sets/removes a trigger at the current source code
trigger line.
. . Sets/removes a graphic trigger at the current
E‘ Graphic trigger source code line.
Remove all .
C : Removes all triggers.
| triggers
E Trigger 1ist Lists all triggers.
< Set breakpoints |Sets a breakpoint at the current source code line.
Remove all .
i breakpoints Removes all breakpoints.
Restarts program execution after a breakpoint is
» Run hit
Breakpoint Tist |[Lists all breakpoints.
& Change current |Changes the current function block instance (live
b instance debug mode).
156 user manual

10. LANGUAGE REFERENCE

All Application languages are IEC 61131-3 standard-compliant.
- Common elements

Instruction list (IL)

Function block diagram (FBD)

Ladder diagram (LD)

Structured text (ST)

Sequential Function Chart (SFC).

Moreover, Application implements some extensions:

- Pointers

- Macros.

10.1 COMMON ELEMENTS

By common elements textual and graphic elements are means which are common to all
the programmable controller programming languages specified by IEC 61131-3 standard.

Note: the definition and editing of the most part of the common elements (variables, structured
elements, function blocks definitions etc.) are managed by Application through specific
editors, forms and tables.

Application does not allow to edit directly the source code related to the above mentioned
common elements.

The following paragraphs are meant as a language specification. To correctly manage
common elements refer to the Application user guide.

10.1.1 BASIC ELEMENTS
10.1.1.1 CHARACTER SET

Textual documents and textual elements of graphic languages are written by using the
standard ASCII character set.

10.1.1.2 COMMENTS

User comments are delimited at the beginning and end by the special character combina-
tions “ (*” and “*)”, respectively. Comments are permitted anywhere in the program,
and they have no syntactic or semantic significance in any of the languages defined in
this standard.

The use of nested comments, e.g., (* (* NESTED *) *), is treated as an error.

10.1.2 ELEMENTARY DATA TYPES

A number of elementary (i.e. pre-defined) data types are made available by Application,
all compliant with IEC 61131-3 standard.

The elementary data types, keyword for each data type, number of bits per data element,
and range of values for each elementary data type are described in the following table.

Keyword Data type Bits Range
BOOL Boolean See note Oto1
SINT Short integer 8 -128 to 127
USINT Unsigned short integer 8 0 to 255

INT Integer 16 -32768 to 32767

user manual 157

\
:
Keyword Data type Bits Range
UINT Unsigned integer 16 0 to 65536
DINT Double integer 32 -231 to 231-1
UDINT Unsigned long integer 32 0 to 232
BYTE Bit string of length 8 8 —
WORD Bit string of length 16 16 —
DWORD Bit string of length 32 32 —
REAL Real number 32 -3.40E+38 to +3.40E+38
STRING String of characters - -

Note: the actual implementation of the BOOL data type depends on the processor of the target
device, e.g. it is 1 bit long for devices that have a bit-addressable area.

10.1.3 DERIVED DATA TYPES

Derived data types can be declared using the TYPE...END TYPE construct. These derived
data types can then be used in variable declarations, in addition to the elementary data
types.

Both single-element variables and elements of a multi-element variable, which are de-
clared to be of derived data types, can be used anywhere that a variable of its parent type
can be used.

10.1.3.1 TYPEDEFS

The purpose of typedefs is to assign alternative names to existing types. No difference
between a typedef and its parent type exists, apart from the name.

Typedefs can be declared using the following syntax:
TYPE
<enumerated data type name> : <parent type name>;
END TYPE

For example, consider the following declaration, mapping the name LONGWORD to the IEC
61131-3 standard type DWORD:

TYPE
longword : DWORD;
END TYPE

10.1.3.2 ENUMERATED DATA TYPES

An enumerated data type declaration specifies that the value of any data element of that
type can only be one of the values given in the associated list of identifiers. The enumera-
tion list defines an ordered set of enumerated values, starting with the first identifier of
the list, and ending with the last.

Enumerated data types can be declared using the following syntax:
TYPE
<enumerated data type name> : (<enumeration list>);
END_ TYPE

For example, consider the following declaration of two enumerated data types. Note that,
when no explicit value is given to an identifier in the enumeration list, its value equals the
value assigned to the previous identifier augmented by one.

158

user manual

TYPE

enuml: (
vall, (* the value of vall is 0 *)
val2, (* the value of wvall is 1 *)
val3 (* the value of wvall is 2 *)
)
enum?2: (
k := -11,
i := 0,
I (* the value of j is (1 + 1) =1 *)
1l :=5
)
END TYPE

Different enumerated data types may use the same identifiers for enumerated values. In
order to be uniquely identified when used in a particular context, enumerated literals may
be qualified by a prefix consisting of their associated data type name and the # sign.

10.1.3.3 SUBRANGES

A subrange declaration specifies that the value of any data element of that type is re-
stricted between and including the specified upper and lower limits.

Subranges can be declared using the following syntax:
TYPE

<subrange name> : <parent type name> (<lower limit>..<upper limit>
) ;
END TYPE
For a concrete example consider the following declaration:
TYPE
int 0 to 100 : INT (0..100);
END TYPE

10.1.3.4 STRUCTURES

A sTRUCT declaration specifies that data elements of that type shall contain sub-elements
of specified types which can be accessed by the specified names.

Structures can be declared using the following syntax:
TYPE
<structured type name> : STRUCT
<declaration of stucture elements>
END STRUCT;
END TYPE
For example, consider the following declaration:
TYPE
structurel : STRUCT
eleml : USINT;
elem2 : USINT;
elem3 : INT;

z user manual 159

elem3 : REAL;
END_ STRUCT;
END TYPE

10.1.4 LITERALS

10.1.4.1 NUMERIC LITERALS

External representation of data in the various programmable controller programming lan-
guages consists of numeric literals.

There are two classes of numeric literals: integer literals and real literals. A numeric literal
is defined as a decimal number or a based number.

Decimal literals are represented in conventional decimal notation. Real literals are dis-
tinguished by the presence of a decimal point. An exponent indicates the integer power
of ten by which the preceding number needs to be multiplied to obtain the represented
value. Decimal literals and their exponents can contain a preceding sign (+ or -).

Integer literals can also be represented in base 2, 8 or 16. The base is in decimal notation.
For base 16, an extended set of digits consisting of letters A through F is used, with the
conventional significance of decimal 10 through 15, respectively. Based numbers do not
contain any leading sign (+ or -).

Boolean data are represented by the keywords FALSE or TRUE.
Numerical literal features and examples are shown in the table below.

Feature description Examples
Integer literals -12 0123 +986
Real literals -12.0 0.0 0.4560
-1.34E-12 or -1.34e-12
Real literals with exponents 1.0E+6 or 1.0e+6

1.234E6 or 1.234e6

2#11111111 (256 decimal)
2#11100000 (240 decimal)

8#377 (256 decimal)
8#340 (240 decimal)

16#FF or 16#ff (256 decimal)
16#EO0 or 16#e0 (240 decimal)

Boolean FALSE and TRUE FALSE TRUE

Base 2 literals

Base 8 literals

Base 16 literals

10.1.4.2 CHARACTER STRING LITERALS

A character string literal is a sequence of zero or more characters prefixed and terminated
by the single quote character (‘).

The three-character combination of the dollar sign ($) followed by two hexadecimal digits
shall be interpreted as the hexadecimal representation of the eight-bit character code.

Example Explanation
v Empty string (length zero)
A String of length one containing the single character A
' String of length one containing the space character
R String of length one containing the single quote character

160

user manual

Example Explanation
v String of length one containing the doubile quote character
'SRSL! String of length two containing CR and LF characters
'SO0A" String of length one containing the LF character

Two-character combinations beginning with the dollar sign shall be interpreted as shown
in the following table when they occur in character strings.

Combination Interpretation when printed

$S Dollar sign
s Single quote

SLor $1 Line feed

SN or $n Newline

$Por $p Form feed (page)

SR OF Sr Carriage return

$T or $t Tab

10.1.5 VARIABLES
10.1.5.1 FOREWORD

Variables provide a means of identifying data objects whose contents may change, e.g.,
data associated with the inputs, outputs, or memory of the programmable controller. A
variable must be declared to be one of the elementary types. Variables can be represent-
ed symbolically, or alternatively in a manner which directly represents the association of
the data element with physical or logical locations in the programmable controller’s input,
output, or memory structure.

Each program organization unit (POU) (i.e., each program, function, or function block)
contains at its beginning at least one declaration part, consisting of one or more structur-
ing elements, which specify the types (and, if necessary, the physical or logical location)
of the variables used in the organization unit. This declaration part has the textual form of
one of the keywords VAR, VAR INPUT, or VAR OUTPUT as defined in the keywords section,
followed in the case of VAR by zero or one occurrence of the qualifiers RETAIN, NON RE-
TAIN or the qualifier CONSTANT, and in the case of VAR INPUT or VAR OUTPUT by zero or
one occurrence of the qualifier RETAIN or NON RETAIN, followed by one or more decla-
rations separated by semicolons and terminated by the keyword END VAR. A declaration
may also specify an initialization for the declared variable, when a programmable control-
ler supports the declaration by the user of initial values for variables.

10.1.5.2 STRUCTURING ELEMENT

The declaration of a variable must be performed within the following program structuring
element:

KEYWORD [RETAIN] [CONSTANT]
Declaration 1

Declaration 2

Declaration N

END VAR

user manual 161

A

p

10.1.5.3 KEYWORDS AND SCOPE

Keyword Variable usage
VAR Internal to organization unit.
VAR _INPUT Externally supplied.

Supplied by organization unit to external
entities.

Supplied by external entities, can be
modified within organization unit.

Supplied by configuration via VAR GLOBAL,
can be modified within organization unit.

VAR GLOBAL [Global variable declaration.

VAR OUTPUT

VAR _IN OUT

VAR EXTERNAL

The scope (range of validity) of the declarations contained in structuring elements is local
to the program organization unit (POU) in which the declaration part is contained. That
is, the declared variables are accessible to other program organization units except by
explicit argument passing via variables which have been declared as inputs or outputs
of those units. The one exception to this rule is the case of variables which have been
declared to be global. Such variables are only accessible to a program organization unit
via a VAR _EXTERNAL declaration. The type of a variable declared in a VAR EXTERNAL must
agree with the type declared in the vAR GLOBAL block.

There is an error if:

- any program organization unit attempts to modify the value of a variable that has been
declared with the consTanT qualifier;

- a variable declared as VAR _GLOBAL CONSTANT in a configuration element or program or-
ganization unit (the “containing element”) is used in a VAR EXTERNAL declaration (with-
out the consTANT qualifier) of any element contained within the containing element.

10.1.5.4 QUALIFIERS

Qualifier Description

The attribute consT indicates that the variables within
the structuring elements are constants, i.e. they have

CONST a constant value, which cannot be modified once the
PLC project has been compiled.
The attribute RETAIN indicates that the variables
RETATN within the structuring elements are retentive, i.e. they

keep their value even after the target device is reset
or switched off.

10.1.5.5 SINGLE-ELEMENT VARIABLES AND ARRAYS

A single-element variable represents a single data element of either one of the elemen-
tary types or one of the derived data types.

An array is a collection of data elements of the same data type; in order to access a single
element of the array, a subscript (or index) enclosed in square brackets has to be used.
Subscripts can be either integer literals or single-element variables.

To easily represent data matrices, arrays can be multi-dimensional; in this case, a com-
posite subscript is required, one index per dimension, separated by commas. The maxi-
mum number of dimensions allowed in the definition of an array is three.

162

user manual

Variables must be declared within structuring elements, using the following syntax:

10.1.5.6 DECLARATION SYNTAX

VarNamel

VarName?2 AT Location2

: Typenamel

[:= Initialvall];

: Typename2 [:= Initialval2];

VarName3 : ARRAY [0..N] OF Typename3;
where:

Keyword Description
Variable identifier, consisting of a string of

VarNameX alphanumeric characters, of length 1 or more. It is
used for symbolic representation of variables.

T Data type of the variable, selected from elementary

ypenameX
data types.
TnitialvalX The value the variable assumes after reset of the

target.

LocationX See the next paragraph.

N Index of the last element, the array having length

N + 1.

10.1.5.7 LOCATION

Variables can be represented symbolically, i.e. accessed through their identifier, or alter-
natively in a manner which directly represents the association of the data element with
physical or logical locations in the programmable controller’s input, output, or memory
structure.

Direct representation of a single-element variable is provided by a special symbol formed
by the concatenation of the percent sign “%” , a location prefix and a size prefix, and one
or two unsigned integers, separated by periods (.).

%location.size.index.index
1) location
The location prefix may be one of the following:

Location prefix Description
I Input location
Q Output location
M Memory location

2) size
The size prefix may be one of the following:

Size prefix Description
X Single bit size
B Byte (8 bits) size
W Word (16 bits) size
D Double word (32 bits) size

user manual 163

Ap

3) index.index

This sequence of unsigned integers, separated by dots, specifies the actual position
of the variable in the area specified by the location prefix.

Example:
Direct representation Description
M4 . 6 Word starting from the first byte of the 7t
T element of memory datablock 4.
S TX0. 4 First bit of the first byte of the 5™ element

of input set 0.

Note that the absolute position depends on the size of the datablock elements, not on the
size prefix. As a matter of fact, eMwW4.6 and sMD4.6 begin from the same byte in memory,
but the former points to an area which is 16 bits shorter than the latter.

For advanced users only: if the index consists of one integer only (no dots), then it loses
any reference to datablocks, and it points directly to the byte in memory having the index
value as its absolute address.

Direct representation Description
Word starting from the first byte of the 7t

SMW4 . 6 .
element of datablock 4 in memory.
SMW4 Word starting from byte 4 of memory.
Example
VAR [RETAIN] [CONSTANT]
XQuote : DINT; Enabling : BOOL := FALSE;
TorqueCurrent AT $MW4.32 : INT;
Counters : ARRAY [O .. 9] OF UINT;
Limits: ARRAY [0..3, 0..9]
END_ VAR
- Variable xQuote is 32 bits long, and it is automatically allocated by the Application com-
piler.

Variable Enabling is initialized to FALSE after target reset.

Variable TorqueCurrent is allocated in the memory area of the target device, and it
takes 16 bits starting from the first byte of the 33 element of datablock 4.

Variable counters is an array of 10 independent variables of type unsigned integer.

10.1.5.8 DECLARING VARIABLES IN APPLICATION

Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies the Local variables editor, the Global variables editor, and the Param-
eters editor, which provide a friendly interface to declare all kinds of variables.

10.1.6 PROGRAM ORGANIZATION UNITS

Program organization units are functions, function blocks, and programs. These program
organization units can be delivered by the manufacturer, or programmed by the user
through the means defined in this part of the standard

Program organization units are not recursive; that is, the invocation of a program organi-
zation unit cannot cause the invocation of another program organization unit of the same

type.

164 user manual

10.1.6.1 FUNCTIONS

Introduction

For the purposes of programmable controller programming languages, a function is de-
fined as a program organization unit (POU) which, when executed, yields exactly one data
element, which is considered to be the function result.

Functions contain no internal state information, i.e., invocation of a function with the
same arguments (input variables VAR INPUT and in-out variables vAR IN oUT) always
yields the same values (output variables VAR OUTPUT, in-out variables vAR IN oUT and
function result).
Declaration syntax
The declaration of a function must be performed as follows:
FUNCTION FunctionName : RetDataType
VAR INPUT
declaration of input variables (see the relevant section)
END VAR
VAR
declaration of local variables (see the relevant section)
END VAR
Function body
END_FUNCTION

Keyword Description

FunctionName Name of the function being declared.
RetDataType Data type of the value to be returned by the function.

Specifies the operations to be performed upon the
input variables in order to assign values dependent on
the function’s semantics to a variable with the same
name as the function, which represents the function
result. It can be written in any of the languages
supported by Application.

Function body

Declaring functions in Application

Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies a friendly interface for using functions.

10.1.6.2 FUNCTION BLOCKS

Introduction

For the purposes of programmable controller programming languages, a function block is
a program organization unit which, when executed, yields one or more values. Multiple,
named instances (copies) of a function block can be created. Each instance has an associ-
ated identifier (the instance name), and a data structure containing its input, output and
internal variables. All the values of the output variables and the necessary internal vari-
ables of this data structure persist from one execution of the function block to the next;
therefore, invocation of a function block with the same arguments (input variables) does
not always yield the same output values.

Only the input and output variables are accessible outside of an instance of a function
block, i.e., the function block’s internal variables are hidden from the user of the function
block.

In order to execute its operations, a function block needs to be invoked by another POU.

user manual 165

p

Invocation depends on the specific language of the module calling the function block.
The scope of an instance of a function block is local to the program organization unit in

which it is instantiated.

Declaration syntax

The declaration of a function must be performed as follows:

FUNCTION BLOCK FunctionBlockName

VAR INPUT

declaration of input variables (see the relevant section)

END VAR
VAR _OUTPUT

declaration of output variables

END VAR
VAR _EXTERNAL

declaration of external variables

END VAR
VAR

declaration of local variables

END VAR
Function block body
END FUNCTION BLOCK

Keyword

Description

FunctionBlockName

Name of the function block being declared (note:
name of the template, not of its instances).

VAR EXTERNAL .. END VAR

A function block can access global variables only

if they are listed in @ VAR_EXTERNAL structuring
element. Variables passed to the FB via a VAR
EXTERNAL construct can be modified from within the
FB.

Function block body

Specifies the operations to be performed upon the
input variables in order to assign values to the
output variables - dependent on the function block’s
semantics and on the value of the internal variables.
It can be written in any of the languages supported
by Application.

Declaring functions in Application

Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies a friendly interface for using function blocks.

10.1.6.3 PROGRAMS

Introduction

A program is defined in IEC 61131-1 as a “logical assembly of all the programming lan-
guage elements and constructs necessary for the intended signal processing required for
the control of a machine or process by a programmable controller system.

Declaration syntax

166

user manual

The declaration of a program must be performed as follows:
PROGRAM < program name>
Declaration of variables (see the relevant section)
Program body
END PROGRAM

Keyword Description
Program Name Name of the program being declared.
Specifies the operations to be performed to get the
Program body intended signal processing. It can be written in any of
the languages supported by Application.

Writing programs in Application

Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies a friendly interface for writing programs.

Standard functions

Definitions of functions common to all programmable controller programming languages
are given in this paragraph.

A standard function specified in this paragraph to be extensible (Ext.) is allowed to have a
variable number of inputs, and applies the indicated operation to each input in turn, e.g.,
extensible addition gives as its output the sum of all its inputs.

Type conversion functions
Numerical functions
Bit string functions
Selection functions

Comparison functions

Type conversion functions

Type conversion functions have the form * To ** or To **, where “**" is the type of the
input variable, and “**" the type of the output variable, e.g., DINT TO INT or TO REAL.

Nr Input | Output
Name o era.nds Ext. | data data Function
P types | types

Converts a double integer (32
DINT TO INT 1 No DINT INT bits, signed) into a long integer
(16 bits, signed).

Converts an integer (16 bits,

INT TO DINT 1 No INT DINT |signed) into a long integer (32
bits, signed).
70 BOOL 1 No Any so01, | Converts any data type into a
~ boolean.

Converts any data type into a

TO_SINT 1 No Any SINT short integer (8 bits, signed).
Converts any data type into an
TO_USINT 1 No Any USINT |unsigned short integer (8 bits,

unsigned).

user manual 167

Ap

Nr Input | Output
Name i Ext. | data data Function
operands types | types
Converts any data type into an
TO_INT 1 No Any T integer (16 bits, signed).
Converts any data type into
TO_ UINT 1 No Any UINT |an unsigned integer (16 bits,
unsigned).
Converts any data type into a
TO_DINT 1 No Any DINT long integer (32 bits, signed).
Converts any data type into an
TO_UDINT 1 No Any UDINT |unsigned long integer (32 bits,
unsigned).
Converts any data type into a
TO_REAL 1 No Any REAL floating point (32 bits, signed).

Numerical functions

Type conversion functions have the form * To ** or To **, where “*” is the type of the
input variable, and “**" the type of the output variable, e.g., DINT TO INT oOr TO REAL.

Input
Name opel:;ln ds Ext. daﬂa Outg;.llate:ata Function
types
ABS 1 No Any Same as Input Absolute value
SQRT 1 No REAL REAL Square root
LN 1 No REAL REAL Natural logarithm
LOG 1 No REAL REAL Base-10 logarithm
EXP 1 No REAL REAL Natural exponential
SIN 1 No REAL REAL Sine of input in radians
cos 1 No REAL REAL Cosine of input in radians
TAN 1 No REAL REAL Tangent of input in radians
ASIN 1 No REAL REAL Principal arc sine
ACOS 1 No REAL REAL Principal arc cosine
ATAN 1 No REAL REAL Principal arc tangent
ADD 2 Yes Any Same as Input Addition
MUL 2 Yes Any Same as Input Multiplication
SUB 2 No Any Same as Input Subtraction
DIV 2 No Any Same as Input Division
MOD 2 No Any Same as Input Inputl modulo Input2

Bit string functions

Type conversion functions have the form * To ** or To **, where “+” is the type of the
input variable, and “**” is the type of the output variable, e.g., DINT TO INT or TO REAL.

168

user manual

Input
Nr. Output data .
Name Ext. | data Function
operands types types
Any Inputl left-shifted of Input2
SHL 2 No but Same as Inputl . i .
bits, zero filled on right.
BOOL
Any Inputl right-shifted of Input2
SHR 2 No but Same as Inputl .)
bits, zero filled on left.
BOOL
Any Inputl left-shifted of Input2
ROL 2 No but Same as Inputl . -
bits, circular.
BOOL
Any . .
ROR 2 No but REAL Ir_1put1_ right-shifted of Input2
bits, circular.
BOOL
Logical anD if both Inputl
AND 2 Yes Any | Same as Inputl,2 | and Input2 are BOOL,
otherwise bitwise AND.
Logical OR if both Inputl and
OR 2 Yes Any [Same as Inputl,2 | Input2 are BOOL, otherwise
bitwise OR.
Logical xor if both Inputl
XOR 2 Yes Any [Same as Inputl,2 | and Input2 are BOOL,
otherwise bitwise XOR.
Logical ~NoT if Input is BOOL,
NOT 1 No Any Same as Input otherwise bitwise NOT.

Selection functions

Type conversion functions have the form * TO ** or T0 **, where “*” is the type of the
input variable, and “**" the type of the output variable, e.g., DINT TO INT or TO REAL

Name)15 Ext. ML G AL Function
operands types data types
(BoOL, Any but| Same as | Select Input2 if Inputl is
SEL 3 No | BooL, Any but selected | FALSE, Input3 if Inputl is
BOOL) Input TRUE.
(Any but BoOL, .
Same as | Returns the maximum value
HAX 3 Yes -+ Any but max Input | among Inputl InputN
BOOL) p g Inputl, ..., InputiN.
(Any but Boor, Same as | Returns the minimum value
HIN 3 Yes -+, Any but min Input [among Inputl InputN
BOOL) p g Inputl, ..., InputiN.
(Any but BooL, Same as Limits Inputl to be equal or
LIMIT 3 No | Any but BooOL, Input1 2 |more than Input2, and equal
Any but BoOL) putt, or less than Input3.
Same as Selects one of Input2, ...,
(Any but BoOL, InputN depending on the
MUX 3 Yes selected .
Any, ..., Any) value of Inputl, which acts
Input .
as a zero-based index.

user manual

169

p

Comparison functions

Type conversion functions have the form * To ** or To **, where “*” is the type of the
input variable, and “**" the type of the output variable, e.g., DINT TO INT Or TO REAL.

Name i Ext. H[PLE G S Function
operands types data types

(Any but Returns TRUE if Inputl

GT 2 Yes | BOOL, ..., Any BOOL Input2 ... InputN,
but BOOL) otherwise FALSE.
(Any but Returns TRUE if Inputl

GE 2 Yes | BOOL, ..., Any BOOL = Input2 = ... = InputN,
but BOOL) otherwise FALSE.
(Any but Returns TRUE if Inputl

EQ 2 Yes | BOOL, ..., Any BOOL = Input2 = ... = InputN,
but BOOL) otherwise FALSE.
(Any but Returns TRUE if Inputl

LE 2 Yes | BOOL, ..., Any BOOL Input2 ... InputN, otherwise
but BOOL) FALSE.
(Any but Returns TRUE if Inputl

LT 2 Yes | BOOL, ..., Any BOOL Input2 ... InputN, otherwise
but BOOL) FALSE.
(Any but .

NE 2 No |BOOL, Any but| BOOL ?etums reo if Inputl

BOOL) nput2, otherwise FALSE.

10.2 INSTRUCTION LIST (IL)

This section defines the semantics of the IL (Instruction List) language.

10.2.1 SYNTAX AND SEMANTICS
10.2.1.1 SYNTAX OF IL INSTRUCTIONS

IL code is composed of a sequence of instructions. Each instruction begins on a new line
and contains an operator with optional modifiers, and, if necessary for the particular op-
eration, one or more operands separated by commas. Operands can be any of the data
representations for literals and for variables.

The instruction can be preceded by an identifying label followed by a colon (:). Empty
lines can be inserted between instructions.
Example
Let us parse a small piece of code:
START:
LD %IX1 (* Push button *)
ANDN $MX5.4 (* Not inhibited *)
ST %0X2 (* Fan out *)
The elements making up each instruction are classified as follows:

Operator
Label [+ modifier] Operand Comment
START: LD $IX1 (* Push button *)
ANDN SMX5 . 4 (* Not inhibited *)

170

user manual

Operator
Label [+ modifier] Operand Comment
ST QX2 (* Fan out *)

Semantics of IL instructions
- Accumulator

By accumulator a register is meant containing the value of the currently evaluated re-
sult.

- Operators
Unless otherwise specified, the semantics of the operators is
accumulator := accumulator OP operand

That is, the value of the accumulator is replaced by the result yielded by operation OP
applied to the current value of the accumulator itself, with respect to the operand. For
instance, the instruction "AND %1IX1” is interpreted as

accumulator := accumulator AND %IX1

and the instruction “cT $1W10” will have the Boolean result TRUE if the current value
of the accumulator is greater than the value of input word 10, and the Boolean result
FALSE otherwise:

accumulator := accumulator GT $IW10
- Modifiers
The modifier "N” indicates bitwise negation of the operand.

The left parenthesis modifier “(” indicates that evaluation of the operator must be de-
ferred until a right parenthesis operator)" is encountered. The form of a parenthesized
sequence of instructions is shown below, referred to the instruction

accumulator := accumulator AND (%$MX1.3 OR $MX1.4)

The modifier “c” indicates that the associated instruction can be performed only if the
value of the currently evaluated result is Boolean 1 (or Boolean 0 if the operator is com-
bined with the “"N” modifier).

10.2.2 STANDARD OPERATORS

Standard operators with their allowed modifiers and operands are as listed below.

Supported operand
Operator | Modifiers types: Acc_type, Semantics
Op_type

Sets the accumulator equal to

- - Any, Any operand.
ST N Any, Any Stores the accumulator into
operand location.
S BOOL, BOOL Sets operand to TRUE if
accumulator is TRUE.
R BOOL, BOOL Sets operand to FALSE if

accumulator is TRUE.

Any but REAL, Any but

AND N, (REAL Logical or bitwise AND
OR N, Any but FI;EEAAII‘_’ Any but Logical or bitwise OR

user manual 171

Supported operand
Operator | Modifiers | types: Acc_type, Semantics
Op_type
XOR N, (Any but FE{EIEEAAII‘_’ Any but Logical or bitwise x0OR
NOT Any but REAL Logical or bitwise NOT
ADD (Any but BOOL Addition
SUB (Any but BOOL Subtraction
MUL (Any but BOOL Multiplication
DIV (Any but BOOL Division
MOD (Any but BOOL Modulo-division
GT (Any but BOOL Comparison:
GE (Any but BOOL Comparison: =
EQ (Any but BOOL Comparison: =
NE (Any but BOOL Comparison:
LE (Any but BOOL Comparison:
LT (Any but BOOL Comparison:
JMP C, N Label Jumps to label
CAL C, N FB instance name Calls function block
Returns from called program,
RET ¢, X function, or functioﬁ blgcj)ck.
) Evaluates deferred operation.

10.2.3 CALLING FUNCTIONS AND FUNCTION BLOCKS
10.2.3.1 CALLING FUNCTIONS

Functions (as defined in the relevant section) are invoked by placing the function name in
the operator field. This invocation takes the following form:

ID 1

MUX 5, wvar(0, -6. 14

ST VvRES

Note that the first argument is not contained in the input list, but the accumulator is used
as the first argument of the function. Additional arguments (starting with the 2n), if re-
quired, are given in the operand field, separated by commas, in the order of their decla-
ration. For example, operator MUX in the table above takes 5 operands, the first of which
is loaded into the accumulator, whereas the remaining 4 arguments are orderly reported
after the function name.

5, 3.

The following rules apply to function invocation.
1) Assignments to VAR INPUT arguments may be empty, constants, or variables.

2) Execution of a function ends upon reaching a ReT instruction or the physical end of

the function. When this happens, the output variable of the function is copied into the
accumulator.
Calling Function Blocks

Function blocks (as defined in the relevant section) can be invoked conditionally and un-
conditionally via the cAL operator. This invocation takes the following form:

LD A

172 user manual

ADD 5

ST INSTS5.IN1
LD 3.141592
ST INSTS5.INZ2
CAL INSTS

LD INST5.0UT1
ST VvRES

LD INST5.0UT2
ST vVALID

This method of invocation is equivalent to a caAL with an argument list, which contains only
one variable with the name of the FB instance.

Input arguments are passed to / output arguments are read from the FB instance through
ST / LD operations performed on operands taking the following form:

FBInstanceName.IO var

where
Keyword Description
FBInstanceName | Name of the instance to be invoked.
I0 var Input or output variable to be written / read.

10.3 FUNCTION BLOCK DIAGRAM (FBD)

This section defines the semantics of the FBD (Function Block Diagram) language.

10.3.1 REPRESENTATION OF LINES AND BLOCKS

The graphic language elements are drawn using graphic or semi graphic elements, as
shown in the table below.

No storage of data or association with data elements can be associated with the use of
connectors; hence, to avoid ambiguity, connectors cannot be given any identifier.

Feature Example

Lines _L

Line crossing with connection

Blocks with connecting lines
and unconnected pins . -

user manual 173

A

P

10.3.2 DIRECTION OF FLOW IN NETWORKS

A network is defined as a maximal set of interconnected graphic elements. A network
label delimited on the right by a colon (:) can be associated with each network or group
of networks. The scope of a network and its label is local to the program organization unit
(POU) where the network is located.

Graphic languages are used to represent the flow of a conceptual quantity through one
or more networks representing a control plan. Namely, in the case of function block dia-
grams (FBD), the “Signal flow” is typically used, analogous to the flow of signals between
elements of a signal processing system. Signal flow in the FBD language is from the out-
put (right-hand) side of a function or function block to the input (left-hand) side of the
function or function block(s) so connected.

10.3.3 EVALUATION OF NETWORKS
10.3.3.1 ORDER OF EVALUATION OF NETWORKS

The order in which networks and their elements are evaluated is not necessarily the same
as the order in which they are labeled or displayed. When the body of a program organiza-
tion unit (POU) consists of one or more networks, the results of network evaluation within
said body are functionally equivalent to the observance of the following rules:

1) No element of a network is evaluated until the states of all of its inputs have been
evaluated.

2) The evaluation of a network element is not complete until the states of all of its out-
puts have been evaluated.

3) As stated when describing the FBD editor, a network number is automatically as-
signed to every network. Within a program organization unit (POU), networks are
evaluated according to the sequence of their number: network x is evaluated before
network N+1, unless otherwise specified by means of the execution control elements.

10.3.3.2 COMBINATION OF ELEMENTS

Elements of the FBD language must be interconnected by signal flow lines.

Outputs of blocks shall not be connected together. In particular, the “wired-0R" construct
of the LD language is not allowed, as an explicit Boolean “0rR” block is required.
Feedback

A feedback path is said to exist in a network when the output of a function or function
block is used as the input to a function or function block which precedes it in the network;
the associated variable is called a feedback variable.

Feedback paths can be utilized subject to the following rules:

1) Feedback variables must be initialized, and the initial value is used during the first
evaluation of the network. Look the Global variables editor, the Local variables editor,
or the Parameters editor to know how to initialize the respective item.

2) Once the element with a feedback variable as output has been evaluated, the new
value of the feedback variable is used until the next evaluation of the element.

For instance, the Boolean variable rRUN is the feedback variable in the example shown
below.

174

user manual

Explicit loop

ready —
| AND
OR run
startt_p———— ————
starz %—l —

Implicit loop

ready —
| AND
OR run
startt p———— -———
startd }—l —

an

10.3.4 EXECUTION CONTROL ELEMENTS
10.3.4.1 EN/ENO SIGNALS

Additional Boolean N (Enable) input and Exo (Enable Out) characterize Application blocks,
according to the declarations

EN ENO
VAR _INPUT VAR OUTPUT
EN: BOOL := 1; ENO: BOOL;
END VAR END VAR

See the Modifying properties of blocks section to know how to add these pins to a block.

When these variables are used, the execution of the operations defined by the block are
controlled according to the following rules:

1) If the value of EN is FALSE when the block is invoked, the operations defined by the
function body are not executed and the value of ENO is reset to FALSE by the program-
mable controller system.

user manual 175

Ap

2) Otherwise, the value of ENO is set to TRUE by the programmable controller system,
and the operations defined by the block body are executed.

10.3.4.2 JUMPS

Jumps are represented by a Boolean signal line terminated in a double arrowhead. The
signal line for a jump condition originates at a Boolean variable, or at a Boolean output of
a function or function block. A transfer of program control to the designated network label
occurs when the Boolean value of the signal line is TRUE; thus, the unconditional jump is

a special case of the conditional jump.

The target of a jump is a network label within the program organization unit within which

the jump occurs.

Symbol / Example

Explanation

TRUE | >Labeld 3 Unconditional Jump
X >Labeld 3 Conditional Jump

H o o

», [

ready

Example: Jump Condition
Network

10.3.4.3 CONDITIONAL RETURNS

- Conditional returns from functions and function blocks are implemented using a RETURN
construction as shown in the table below. Program execution is transferred back to the
invoking entity when the Boolean input is TRUE, and continues in the normal fashion

when the Boolean input is FALSE.

- Unconditional returns are provided by the physical end of the function or function block.

Symbol / Example

Explanation

w3 ¢ RET 3

Conditional Return

Example: Return Condition
Network

176 user manual

10.4 LADDER DIAGRAM (LD)

This section defines the semantics of the LD (Ladder Diagram) language.

10.4.1 POWER RAILS

The LD network is delimited on the left side by a vertical line known as the left power rail,
and on the right side by a vertical line known as the right power rail. The right power rail
may be explicit in the Application implementation and it is always shown.

The two power rails are always connected with an horizontal line named signal link. All LD
elements should be placed and connected to the signal link.

Description Symbol

Left power rail (with attached
horizontal link)

Right power rail (with attached
horizontal link)

Power rails connected by the | |
signal link ‘ ‘

10.4.2 LINK ELEMENTS AND STATES

Link elements may be horizontal or vertical. The state of the link elements shall be de-
noted “oN” or “OFF”, corresponding to the literal Boolean values 1 or 0, respectively. The
term link state shall be synonymous with the term power flow.

The following properties apply to the link elements:

The state of the left rail shall be considered on at all times. No state is defined for the
right rail.

A horizontal link element is indicated by a horizontal line. A horizontal link element
transmits the state of the element on its immediate left to the element on its immedi-
ate right.

The vertical link element consists of a vertical line intersecting with one or more hori-
zontal link elements on each side. The state of the vertical link represents the inclusive
OR of the oN states of the horizontal links on its left side, that is, the state of the verti-
cal link is:

OFF if the states of all the attached horizontal links to its left are OFF;
on if the state of one or more of the attached horizontal links to its left is on.
The state of the vertical link is copied to all of the attached horizontal links on its right.

The state of the vertical link is not copied to any of the attached horizontal links on its
left.

user manual 177

Description Symbol
Vertical link with attached L

horizontal links

10.4.3 CONTACTS

A contact is an element which imparts a state to the horizontal link on its right side which
is equal to the Boolean AND of the state of the horizontal link at its left side with an ap-
propriate function of an associated Boolean input, output, or memory variable.

A contact does not modify the value of the associated Boolean variable. Standard contact
symbols are given in the following table.

Name Description Symbol

The state of the left link is copied
to the right link if the state of the -| |-|

Normally open

associated Boolean variable is ON.
contact

Otherwise, the state of the right
link is OFF.

The state of the left link is copied

Normally closed to the_ right link if the s_tate qf the
contact associated Boolean variable is OFF. -|,.-"'|-

Otherwise, the state of the right

link is OFF.

The state of the right link is
ON from one evaluation of
this element to the next when
a transition of the associated
variable from OFF to ON is sensed -|F'|-
at the same time that the state of
the left link is ON. The state of the
right link shall be OFF at all other
times.

The state of the right link is
ON from one evaluation of
this element to the next when
a transition of the associated
variable from ON to OFF is sensed -|H|-
at the same time that the state of
the left link is ON. The state of the
right link shall be OFF at all other
times.

Positive transition-
sensing contact

Negative transition-
sensing contact

178 user manual

10.4.4 COILS

A coil copies the state of the link on its left side to the link on its right side without modi-
fication, and stores an appropriate function of the state or transition of the left link into
the associated Boolean variable.

Standard coil symbols are shown in the following table.

Name Description Symbol
The state of the left link is
Coil copied to the associated { }l

Boolean variable.
The inverse of the state of
the left link is copied to the
associated Boolean variable,

Negated coil that is, if the state of the left {.-"}l

link is OFF, then the state of the
associated variable is ON, and
vice versa.

SET (latch) coil

The associated Boolean variable
is set to the ON state when the
left link is in the ON state, and
remains set until reset by a
RESET coil.

RESET (unlatch) coil

The associated Boolean variable
is reset to the OFF state when
the left link is in the ON state,
and remains reset until set by a
SET coil.

Positive transition-
sensing coil

The state of the associated
Boolean variable is ON from
one evaluation of this element
to the next when a transition of
the left link from OFF to ON is
sensed.

Negative transition-
sensing coil

The state of the associated
Boolean variable is ON from
one evaluation of this element
to the next when a transition of
the left link from ON to OFF is
sensed.

10.4.5 OPERATORS, FUNCTIONS AND FUNCTION BLOCKS

The representation of functions and function blocks in the LD language is similar to the
one used for FBD. At least one Boolean input and one Boolean output shall be shown on
each block to allow for power flow through the block as shown in the following figure.

user manual

179

Ap

10.5 STRUCTURED TEXT (ST)

This section defines the semantics of the ST (Structured Text) language.

10.5.1 EXPRESSIONS

An expression is a construct which, when evaluated, yields a value corresponding to one
of the data types listed in the elementary data types table. Application does not set any
constraint on the maximum length of expressions.

Expressions are composed of operators and operands.

10.5.1.1 OPERANDS

An operand can be a literal, a variable, a function invocation, or another expression.

10.5.1.2 OPERATORS

Open the table of operators to see the list of all the operators supported by ST. The evalu-
ation of an expression consists of applying the operators to the operands in a sequence
defined by the operator precedence rules.

10.5.1.3 OPERATOR PRECEDENCE RULES

Operators have different levels of precedence, as specified in the table of operators. The
operator with highest precedence in an expression is applied first, followed by the opera-
tor of next lower precedence, etc., until evaluation is complete. Operators of equal prec-
edence are applied as written in the expression from left to right.

For example if A, B, C, and D are of type INT with values 1, 2, 3, and 4, respectively, then:
A+B-C*ABS (D)

yields -9, and:
(A+B-C) *ABS (D)
yields 0.

When an operator has two operands, the leftmost operand is evaluated first. For example,
in the expression

SIN (A) *COS (B)

the expression sIN(a) is evaluated first, followed by cos (B), followed by evaluation of
the product.

Functions are invoked as elements of expressions consisting of the function name fol-
lowed by a parenthesized list of arguments, as defined in the relevant section.

180 user manual

10.5.1.4 OPERATORS OF THE ST LANGUAGE

Operation Symbol Precedence
Parenthesization (<expression>) HIGHEST
Function evaluation <fname> (<arglist>)
Negation Complement)
NOT
Exponentiation *
*
Multiply Divide Modulo /
MOD
+
Add Subtract
Comparison <, >, <=, >=
Equality I li -
quality Inequality -
Boolean AND AND
Boolean Exclusive OR XOR
Boolean OR OR LOWEST

10.5.2 STATEMENTS IN ST

All statements comply with the following rules:

- they are terminated by semicolons;

- unlike IL, a carriage return or new line character is treated the same as a space char-

acter;

- Application does not set any constraint on the maximum length of statements.

ST statements can be divided into classes, according to their semantics.

10.5.2.1 ASSIGNMENTS

Semantics

The assignment statement replaces the current value of a single or multi-element variable
by the result of evaluating an expression.

The assignment statement is also used to assign the value to be returned by a function,
by placing the function name to the left of an assignment operator in the body of the
function declaration. The value returned by the function is the result of the most recent
evaluation of such an assignment.

Syntax

An assignment statement consists of a variable reference on the left-hand side, followed
by the assignment operator “:=", followed by the expression to be evaluated. For in-
stance, the statement

A :=B

’

would be used to replace the single data value of variable A by the current value of vari-
able B if both were of type INT.

user manual

181

Ap

Examples
a :=b ;
assignment
pCV := pCV + 1 ;
assignment
c := SIN(x);
assignment with function invocation
FUNCTION SIMPLE FUN : REAL

variables declaration
function body

SIMPLE FUN := a * b - ¢ ;
END FUNCTION
assigning the output value to a function

10.5.2.2 FUNCTION AND FUNCTION BLOCK STATEMENTS

Semantics

- Functions are invoked as elements of expressions consisting of the function name fol-
lowed by a parenthesized list of arguments. Each argument can be a literal, a variable,
or an arbitrarily complex expression.

- Function blocks are invoked by a statement consisting of the name of the function block
instance followed by a parenthesized list of arguments. Both invocation with formal ar-
gument list and with assignment of arguments are supported.

- RETURN: function and function block control statements consist of the mechanisms for
invoking function blocks and for returning control to the invoking entity before the phys-
ical end of a function or function block. The RETURN statement provides early exit from
a function or a function block (e.g., as the result of the evaluation of an IF statement).

Syntax

1) Function:

dst var := function name(argl, arg2 , ... , argN);

2) Function block with formal argument list:

instance name (var _inl := argl ,
var in2 := arg2 ,
14
var inN := argN);

3) Function block with assignment of arguments:
instance name.var inl := argl;
instance name.var inN := argN;
instance name () ;

4) Function and function block control statement:

RETURN;
Examples
CMD TMR(IN := $%IX5,

PT:= 300) ;

182 user manual

FB invocation with formal argument list:

IN := %IX5 ;
PT:= 300 ;
CMD_TMR () ;

FB invocation with assignment of arguments:

a := CMD_TMR.Q;

FB output usage:

RETURN ;

early exit from function or function block.

10.5.2.3 SELECTION STATEMENTS

Semantics

Selection statements include the 1F and caske statements. A selection statement selects
one (or a group) of its component statements for execution based on a specified condi-
tion.

IF: the 1F statement specifies that a group of statements is to be executed only if the
associated Boolean expression evaluates to the value TRUE. If the condition is false,
then either no statement is to be executed, or the statement group following the ELSE
keyword (or the ELsIF keyword if its associated Boolean condition is true) is executed.

CASE: the case statement consists of an expression which evaluates to a variable of
type DINT (the “selector”), and a list of statement groups, each group being labeled by
one or more integer or ranges of integer values, as applicable. It specifies that the first
group of statements, one of whose ranges contains the computed value of the selector,
is to be executed. If the value of the selector does not occur in a range of any case, the
statement sequence following the keyword ELSE (if it occurs in the CASE statement) is
executed. Otherwise, none of the statement sequences is executed.

Application does not set any constraint on the maximum allowed number of selections in
CASE statements.

Syntax
Note that square brackets include optional code, while braces include repeatable portions

of
1)

code.
IF:

IF expressionl THEN
stat list
[{ ELSIF expression?2 THEN
stat list }]
ELSE
stat list
END IF ;

2) CASE:

CASE expressionl OF
intv [{, intv }]
stat list

{ intv [{, intv }]
stat list }

[ELSE

stat list]

user manual 183

\
:

END CASE ;

intv being either a constant or an interval: a or a..b
Examples

IF statement:
IF d 0.0 THEN

nRoots := 0 ;
ELSIF d = 0.0 THEN
nRoots := 1 ;
xl = -b / (2.0 * a) ;
ELSE
nRoots := 2 ;
x1 := (b + SQRT(d)) / (2.0 * a) ;
x2 := (-b - SQRT(d)) / (2.0 * a) ;
END IF ;
CASE statement:
CASE tw OF
1, 5:
display := oven temp ;
2:
display := motor speed ;
3:
display := gross_tare;
4, 6..10:
display := status(tw - 4) ;
ELSE
display := 0;
tw_error := 1;
END CASE ;

10.5.2.4 ITERATION STATEMENTS

Semantics

Iteration statements specify that the group of associated statements are executed repeat-
edly. The FOR statement is used if the number of iterations can be determined in advance;
otherwise, the WHILE or REPEAT constructs are used.

- FOR: the ror statement indicates that a statement sequence is repeatedly executed,
up to the END FOR keyword, while a progression of values is assigned to the FORr loop
control variable. The control variable, initial value, and final value are expressions of
the same integer type (e.g., SINT, INT, or DINT) and cannot be altered by any of the
repeated statements. The FOR statement increments the control variable up or down
from an initial value to a final value in increments determined by the value of an ex-
pression; this value defaults to 1.The test for the termination condition is made at the
beginning of each iteration, so that the statement sequence is not executed if the initial
value exceeds the final value.

- WHILE: the wHILE statement causes the sequence of statements up to the END WHILE
keyword to be executed repeatedly until the associated Boolean expression is false. If
the expression is initially false, then the group of statements is not executed at all.

- REPEAT: the REPEAT statement causes the sequence of statements up to the UNTIL

184

user manual

keyword to be executed repeatedly (and at least once) until the associated Boolean
condition is true.

- EXIT: the ExIT statement is used to terminate iterations before the termination condi-
tion is satisfied. When the EXIT statement is located within nested iterative constructs,
exit is from the innermost loop in which the Ex1T is located, that is, control passes to
the next statement after the first loop terminator (END FOR, END WHILE, or END RE-
PEAT) following the EXIT statement.

Note: the wHILE and REPEAT statements cannot be used to achieve interprocess synchronization,
for example as a “wait loop” with an externally determined termination condition. The SFC
elements defined must be used for this purpose.

Syntax

Note that square brackets include optional code, while braces include repeatable portions
of code.

1) FOR:
FOR control var := init val TO end val [BY increm val] DO
stat list
END FOR ;

2) WHILE:

WHILE expression DO
stat list
END WHILE ;
3) REPEAT:
REPEAT
stat list
UNTIL expression

END REPEAT ;

Examples
FOR statement:
j = 101 ;
FOR 1 := 1 TO 100 BY 2 DO
IF arrvals[i] = 57 THEN
J o= 1 ;
EXIT ;
END IF ;
END_FOR ;
WHILE statement:
j =17
WHILE j <=100 AND arrvals[i] <> 57 DO
Joi=3 + 2 ;
END WHILE ;
REPEAT statement:
J o= -1
REPEAT
Jjo=3 + 2 ;
UNTIL j = 101 AND arrvals[i] = 57

user manual 185

A

p

END REPEAT ;

10.6 SEQUENTIAL FUNCTION CHART (SFC)

This section defines Sequential Function Chart (SFC) elements to structure the internal
organization of a PLC program organization unit (POU), written in one of the languages
defined in this standard, for the purpose of performing sequential control functions. The
definitions in this section are derived from IEC 848, with the changes necessary to convert
the representations from a documentation standard to a set of execution control elements
for a PLC program organization unit.

Since SFC elements require storage of state information, the only program organization
units which can be structured using these elements are function blocks and programs.

If any part of a program organization unit is partitioned into SFC elements, the entire
program organization unit is so partitioned. If no SFC partitioning is given for a program
organization unit, the entire program organization unit is considered to be a single action
which executes under the control of the invoking entity.

SFC elements

The SFC elements provide a means of partitioning a PLC program organization unit into a
set of steps and transitions interconnected by directed links. Associated with each step is
a set of actions, and with each transition is associated a transition condition.

10.6.1 STEPS
10.6.1.1 DEFINITION

A step represents a situation where the behavior of a program organization unit (POU)
with respect to its inputs and outputs follows a set of rules defined by the associated ac-
tions of the step. A step is either active or inactive. At any given moment, the state of
the program organization unit is defined by the set of active steps and the values of its
internal and output variables.

A step is represented graphically by a block containing a step name in the form of an iden-
tifier. The directed link(s) into the step can be represented graphically by a vertical line
attached to the top of the step. The directed link(s) out of the step can be represented by
a vertical line attached to the bottom of the step.

Representation Description
|
StepHame Step
(graphical representation with
direct links)

Application does not set any constraint on the maximum number of steps per SFC.

Step flag

The step flag (active or inactive state of a step) can be represented by the logic value of a
Boolean variable *** x, where *** is the step name. This Boolean variable has the value
TRUE when the corresponding step is active, and FALSE when it is inactive. The scope of
step names and step flags is local to the program organization unit where the steps ap-
pear.

186

user manual

Representation Description
Step flag
Step Name_x = TRUE when Step Name x is active
= FALSE otherwise

Users cannot assign a value directly to a step state.

10.6.1.2 INITIAL STEP

The initial state of the program organization unit is represented by the initial values of
its internal and output variables, and by its set of initial steps, i.e., the steps which are
initially active. Each SFC network, or its textual equivalent, has exactly one initial step.
An initial step can be drawn graphically with double lines for the borders, as shown below.
For system initialization, the default initial state is FALSE for ordinary steps and TRUE for
initial steps.

Application cannot compile an SFC network not containing exactly one initial step.

Representation Description

Init Initial step
(graphical representation with

direct links)

10.6.1.3 ACTIONS

An action can be:

a collection of instructions in the IL language;

a collection of networks in the FBD language;

a collection of rungs in the LD language;

a collection of statements in the ST language;

a sequential function chart (SFC) organized as defined in this section.

Zero or more actions can be associated with each step. Actions are declared via one of the
textual structuring elements listed in the following table.

Structuring element Description

STEP StepName :
(* Step body *) Step (textual form)
END STEP

INITIAL STEP StepName :
(* Step body *) Initial step (textual form)
END STEP

Such a structuring element exists in the Isc file for every step having at least one associ-
ate action.

user manual 187

Ap
3
10.6.1.4 ACTION QUALIFIERS

The time when an action associated to a step is executed depends on its action qualifier.
Application implements the following action qualifiers.

Qualifier Description Meaning
N Non-stored (null qualifier). The action is executed as long as
the step remains active.
The action is executed only once per
p Pulse step activation, regardless of the

number of cycles the step remains
active.

If a step has zero associated actions, then it is considered as having a WAIT function, that
is, waiting for a successor transition condition to become true.

10.6.1.5 JUMPS

Direct links flow only downwards. Therefore, if you want to return to a upper step from a
lower one, you cannot draw a logical wire from the latter to the former. A special type of
block exists, called Jump, which lets you implement such a transition.

A Jump block is logically equivalent to a step, as they have to always be separated by a
transition. The only effect of a Jump is to activate the step flag of the preceding step and
to activate the flag of the step it points to.

Representation Description
Jump
JhF (logical link to the destination step)

10.6.2 TRANSITIONS
10.6.2.1 DEFINITION

A transition represents the condition whereby control passes from one or more steps
preceding the transition to one or more successor steps along the corresponding directed
link. The transition is represented by a small grey square across the vertical directed link.

The direction of evolution following the directed links is from the bottom of the predeces-
sor step(s) to the top of the successor step(s).

10.6.2.2 TRANSITION CONDITION

Each transition has an associated transition condition which is the result of the evaluation
of a single Boolean expression. A transition condition which is always true is represented
by the keyword TRUE, whereas a transition condition always false is symbolized by the
keyword FALSE.

A transition condition can be associated with a transition by one of the following means:

Representation Description
| TRUE By placing the appropriate Boolean constant {TRUE,
f FALSE} adjacent to the vertical directed link.

188 user manual

Representation Description
| varlame By declaring a Boolean variable, whose value
TI determines whether or not the transition is cleared.

| By writing a piece of code, in any of the languages
FrogName supported by Application, except for SFC. The result
TI of the evaluation of such a code determines the
transition condition.

The scope of a transition name is local to the program organization unit (POU) in which
the transition is located.

10.6.3 RULES OF EVOLUTION

Introduction

The initial situation of a SFC network is characterized by the initial step which is in the
active state upon initialization of the program or function block containing the network.

Evolutions of the active states of steps take place along the directed links when caused by
the clearing of one or more transitions.

A transition is enabled when all the preceding steps, connected to the corresponding tran-
sition symbol by directed links, are active. The clearing of a transition occurs when the
transition is enabled and when the associated transition condition is true.

The clearing of a transition causes the deactivation (or “resetting”) of all the immediately
preceding steps connected to the corresponding transition symbol by directed links, fol-
lowed by the activation of all the immediately following steps.

The alternation Step/Transition and Transition/Step is always maintained in SFC element
connections, that is:

- two steps are never directly linked; they are always separated by a transition;
- two transitions are never directly linked; they are always separated by a step.

When the clearing of a transition leads to the activation of several steps at the same time,
the sequences to which these steps belong are called simultaneous sequences. After their
simultaneous activation, the evolution of each of these sequences becomes independent.
In order to emphasize the special nature of such constructs, the divergence and conver-
gence of simultaneous sequences is indicated by a double horizontal line.

The clearing time of a transition may theoretically be considered as short as one may
wish, but it can never be zero. In practice, the clearing time will be imposed by the PLC
implementation: several transitions which can be cleared simultaneously will be cleared
simultaneously, within the timing constraints of the particular PLC implementation and
the priority constraints defined in the sequence evolution table. For the same reason, the
duration of a step activity can never be considered to be zero. Testing of the successor
transition condition(s) of an active step shall not be performed until the effects of the step
activation have propagated throughout the program organization unit in which the step
is declared.

user manual 189

Ap,

Sequence evolution table

This table defines the syntax and semantics of the allowed combinations of steps and
transitions.

Example Rule

53

Normal transition
| An evolution from step s3 to step s4

TI : takes place if and only if step s3 is
in the active state and the transition
54 condition c is TRUE.

Divergent transition

| An evolution takes place from s5 to
e P s6 if and only if s5 is active and the
'ﬂ 'ﬁ transition condition e is TRUE, or from

- = s5 to s8 only if s5 is active and £ is
TRUE and e is FALSE.

| |

| |

57 =t
Convergent transition

‘ | An evolution takes place from s7
_'J h _|Jj to s10 only if s7 is active and the
| transition condition h is TRUE, or from

o s9 to s10 only if s9 is active and 5 is
TRUE.
|
|
511 Simultaneous divergent transition
An evolution takes place from s11 to

| S12, s14,... only if s11 is active and
b the transition condition b associated
i to the common transition is TRUE.
After the simultaneous activation of
S12, s14, etc., the evolution of each
sequence proceeds independently.

512 514

513 515 . i

Simultaneous convergent transition

An evolution takes place from s13,

| S15,... to s16 only if all steps above

_H d and connected to the double horizontal
line are active and the transition

516 condition d associated to the common

transition is TRUE.

190 user manual z

Examples

Invalid scheme Equivalent allowed scheme Note

530 530

— — .

Tla Il T| s Expected behavior: an
evolution takes place

- - from S30 to s33 if a is

| | FALSE and d is TRUE.

534

T'” le The scheme in the

g g leftmost column
is invalid because

| | conditions d and TRUE

-#° & TRue -# o TRe are directly linked.

533 533

Expected behavior: an
| | evolution takes place
1 T from 832 to 531 If c i
FALSE and d is TRUE.

The scheme in the
| | leftmost column
T + T is invalid because
o so2 direct links flow only
downwards. Upward
F— N transitions can be
'|'Ic puad 'I'I) performed via jump
520 533 = blocks.

10.7 APPLICATION LANGUAGE EXTENSIONS

Application features a few extensions to the IEC 61131-3 standard, in order to further
enrich the language and to adapt to different coding styles.

10.7.1 MACROS

Application implements macros in the same way a C programming language pre-proces-
sor does.

Macros can be defined using the following syntax:
MACRO <macro name>
PAR MACRO
<parameter list>
END PAR
<macro body>
END MACRO

Note that the parameter list may eventually be empty, thus distinguishing between ob-
ject-like macros, which do not take parameters, and function-like macros, which do take
parameters.

user manual 191

A

P

A concrete example of macro definition is the following, which takes two bytes and com-
poses a 16-bit word:

MACRO MAKEWORD

PAR_MACRO

lobyte;

hibyte;

END PAR

{ CODE:ST }

lobyte + SHL(TO UINT(hibyte), 8)
END MACRO

Whenever the macro name appears in the source code, it is replaced (along with the ac-
tual parameter list, in case of function-like macros) with the macro body. For example,
given the definition of the macro MAKEWORD and the following Structured Text code frag-
ment:

w := MAKEWORD(bl, b2);
the macro pre-processor expands it to
w := bl + SHL(TO UINT(b2), 8);

10.7.2 POINTERS

Pointers are a special kind of variables which act as a reference to another variable (the
1pointed variable). The value of a pointer is, in fact, the address of the pointed variable;
in order to access the data stored at the address pointed to, pointers can be dereferenced.

Pointer declaration requires the same syntax used in variable declaration, where the type
name is the type name of the pointed variable preceded by a @ sign:

VAR
<pointer name> : (@<pointed variable type name>;

END VAR

For example, the declaration of a pointer to a REAL variable shall be as follows:

VAR
px : @REAL;
END VAR

A pointer can be assigned with another pointer or with an address. A special operator, ADR,
is available to retrieve the address of a variable.

px = py; (* px and py are pointers to REAL (that is, wvari-
ables of type @REAL) *)

px := ADR(x) (* x is a variable of type REAL *)

px = ?x (* ? 1s an alternative notation for ADR *)

The @ operator is used to dereference a pointer, hence to access the pointed variable.

px := ADR(x);

@px := 3.141592; (* the approximate value of pi is assigned to x *)
pn := ADR(n);

n := @pn + 1; (* n is incremented by 1 *)

Beware that careless use of pointers is potentially dangerous: indeed, pointers can point
to any arbitrary location, which can cause undesirable effects.

192

user manual

	1.	Overview
	1.1	The workspace
	1.1.1	The output window
	1.1.2	The status bar
	1.1.3	The document bar
	1.1.4	The watch window
	1.1.5	The library window
	1.1.6	The workspace window
	1.1.7	The source code editors

	2.	Using the environment
	2.1	Layout customization
	2.2	Toolbars
	2.2.1	Showing/hiding toolbars
	2.2.2	Moving toolbars

	2.3	Docking windows
	2.3.1	Showing/hiding tool windows
	2.3.2	Moving tool windows

	2.4	Working with windows
	2.4.1	The document bar
	2.4.2	The window menu

	2.5	Full screen mode
	2.6	Environment options

	3.	Managing projects
	3.1	Creating a new project
	3.2	Uploading the project from the target device
	3.3	Saving the project
	3.3.1	Persisting changes to the project
	3.3.2	Saving to an alternative location

	3.4	Managing existing projects
	3.4.1	Opening an existing Application project
	3.4.2	Editing the project
	3.4.3	Closing the project

	3.5	Distributing projects
	3.6	Project options
	3.7	Selecting the target device
	3.8	Working with libraries
	3.8.1	The library manager
	3.8.2	Exporting to a library
	3.8.3	Importing from a library or another source

	4.	Managing project elements
	4.1	Program Organization Units
	4.1.1	Creating a new Program Organization Unit
	4.1.2	Editing POUs
	4.1.3	Deleting POUs
	4.1.4	Source code encryption

	4.2	Variables
	4.2.1	Global variables
	4.2.2	Local variables

	4.3	Tasks
	4.3.1	Assigning a program to a task
	4.3.2	Task configuration

	4.4	Derived data types
	4.4.1	Typedefs
	4.4.2	Structures
	4.4.3	Enumerations
	4.4.4	Subranges

	4.5	Browsing the project
	4.5.1	object browser
	4.5.2	Searching with the Find in project command

	4.6	Working with Application extensions

	5.	Editing the source code
	5.1	Instruction List (IL) editor
	5.1.1	Editing functions
	5.1.2	Reference to PLC objects
	5.1.3	Automatic error location
	5.1.4	Bookmarks

	5.2	Structured Text (ST) Editor
	5.2.1	Creating and editing ST objects
	5.2.2	Editing functions
	5.2.3	Reference to PLC objects
	5.2.4	Automatic error location
	5.2.5	Bookmarks

	5.3	Ladder Diagram (LD) editor
	5.3.1	Creating a new LD document
	5.3.2	Adding/Removing networks
	5.3.3	Labeling networks
	5.3.4	Inserting contacts
	5.3.5	Inserting coils
	5.3.6	Inserting blocks
	5.3.7	Editing coils and contacts properties
	5.3.8	Editing networks
	5.3.9	Modifying properties of blocks
	5.3.10	Getting information on a block
	5.3.11	Automatic error retrieval

	5.4	Function Block Diagram (FBD) editor
	5.4.1	Creating a new FBD document
	5.4.2	Adding/Removing networks
	5.4.3	Labeling networks
	5.4.4	Inserting and connecting blocks
	5.4.5	Editing networks
	5.4.6	Modifying properties of blocks
	5.4.7	Getting information on a block
	5.4.8	Automatic error retrieval

	5.5	Sequential Function Chart (SFC) Editor
	5.5.1	Creating a new SFC document
	5.5.2	Inserting a new SFC element
	5.5.3	Connecting SFC elements
	5.5.4	Assigning an action to a step
	5.5.5	Specifying a constant/a variable as the condition of a transition
	5.5.6	Assigning conditional code to a transition
	5.5.7	Specifying the destination of a jump
	5.5.8	Editing SFC networks

	5.6	Variables editor
	5.6.1	Opening a variables editor
	5.6.2	Creating a new variable
	5.6.3	Editing variables
	5.6.4	Deleting variables
	5.6.5	Sorting variables
	5.6.6	Copying variables

	6.	Compiling
	6.1	Compiling the project
	6.1.1	Image file loading

	6.2	Compiler output
	6.2.1	Compiler errors

	6.3	Command-line compiler

	7.	Launching the application
	7.1	Setting up the communication
	7.1.1	Saving the last used communication port

	7.2	On-line status
	7.2.1	Connection status
	7.2.2	Application status

	7.3	Downloading the application
	7.3.1	Controlling source code download

	7.4	Simulation

	8.	Debugging
	8.1	Watch window
	8.1.1	Opening and closing the watch window
	8.1.2	Adding items to the watch window
	8.1.3	Removing a variable
	8.1.4	Refreshment of values
	8.1.5	Changing the format of data
	8.1.6	Working with watch lists

	8.2	Oscilloscope
	8.2.1	Opening and closing the oscilloscope
	8.2.2	Adding items to the oscilloscope
	8.2.3	Removing a variable
	8.2.4	Variables sampling
	8.2.5	Controlling data acquisition and display
	8.2.6	Changing the polling rate
	8.2.7	Saving and printing the graph

	8.3	Edit and debug mode
	8.4	Live debug
	8.4.1	SFC animation
	8.4.2	LD animation
	8.4.3	FBD animation
	8.4.4	IL and ST animation

	8.5	Triggers
	8.5.1	Trigger window
	8.5.2	Debugging with trigger windows

	8.6	Graphic triggers
	8.6.1	Graphic trigger window
	8.6.2	Debugging with the graphic trigger window

	9.	Application reference
	9.1	Menus reference
	9.1.1	File menu
	9.1.2	Edit menu
	9.1.3	View menu
	9.1.4	Project menu
	9.1.5	Debug menu
	9.1.6	Communication menu
	9.1.7	Scheme menu
	9.1.8	Variables menu
	9.1.9	Definitions menu
	9.1.10	Window menu
	9.1.11	Help menu

	9.2	Toolbars reference
	9.2.1	Main toolbar
	9.2.2	FBD toolbar
	9.2.3	LD toolbar
	9.2.4	SFC toolbar
	9.2.5	Project toolbar
	9.2.6	Network toolbar
	9.2.7	Debug toolbar

	10.	Language reference
	10.1	Common elements
	10.1.1	Basic elements
	10.1.2	Elementary data types
	10.1.3	Derived data types
	10.1.4	Literals
	10.1.5	Variables
	10.1.6	Program Organization Units

	10.2	Instruction List (IL)
	10.2.1	Syntax and semantics
	10.2.2	Standard operators
	10.2.3	Calling Functions and Function blocks

	10.3	Function Block Diagram (FBD)
	10.3.1	Representation of lines and blocks
	10.3.2	Direction of flow in networks
	10.3.3	Evaluation of networks
	10.3.4	Execution control elements

	10.4	Ladder Diagram (LD)
	10.4.1	Power rails
	10.4.2	Link elements and states
	10.4.3	Contacts
	10.4.4	Coils
	10.4.5	Operators, functions and function blocks

	10.5	Structured Text (ST)
	10.5.1	Expressions
	10.5.2	Statements in ST

	10.6	Sequential Function Chart (SFC)
	10.6.1	Steps
	10.6.2	Transitions
	10.6.3	Rules of evolution

	10.7	Application Language Extensions
	10.7.1	Macros
	10.7.2	Pointers

