
Application
User Manual

Revision 1.3 - May 2011

II	 user manual

Application User Manual

Revision 1.3 - 2011-05-20

Published by Eliwell Controls S.r.l.

Via dell’Industria, 15 Z.I. Paludi

32010 Pieve d’Alpago (BL)

© Eliwell Controls S.r.l. 2010.

All Rights Reserved.

	 user manual	 III

Contents

1.	 Overview	 1

1.1	 The workspace	 1

1.1.1	 The output window	 2

1.1.2	 The status bar	 2

1.1.3	 The document bar	 2

1.1.4	 The watch window	 3

1.1.5	 The library window	 3

1.1.6	 The workspace window	 5

1.1.7	 The source code editors	 6

2.	 Using the environment	 7

2.1	 Layout customization	 7

2.2	 Toolbars	 7

2.2.1	 Showing/hiding toolbars	 7

2.2.2	 Moving toolbars	 7

2.3	 Docking windows	 9

2.3.1	 Showing/hiding tool windows	 9

2.3.2	 Moving tool windows	 10

2.4	 Working with windows	 11

2.4.1	 The document bar	 11

2.4.2	 The window menu	 12

2.5	 Full screen mode	 12

2.6	 Environment options	 13

3.	 Managing projects	 15

3.1	 Creating a new project	 15

3.2	 Uploading the project from the target device	 15

3.3	 Saving the project	 17

3.3.1	 Persisting changes to the project	 17

3.3.2	 Saving to an alternative location	 17

3.4	 Managing existing projects	 18

3.4.1	 Opening an existing Application project	 18

3.4.2	 Editing the project	 18

3.4.3	 Closing the project	 18

3.5	 Distributing projects	 18

3.6	 Project options	 19

3.7	 Selecting the target device	 20

3.8	 Working with libraries	 20

IV	 user manual

3.8.1	 The library manager	 20

3.8.2	 Exporting to a library	 22

3.8.3	 Importing from a library or another source	 23

4.	 Managing project elements	 25

4.1	 Program Organization Units	 25

4.1.1	 Creating a new Program Organization Unit	 25

4.1.2	 Editing POUs	 26

4.1.3	 Deleting POUs	 27

4.1.4	 Source code encryption	 28

4.2	 Variables	 29

4.2.1	 Global variables	 29

4.2.2	 Local variables	 35

4.3	 Tasks	 36

4.3.1	 Assigning a program to a task	 36

4.3.2	 Task configuration	 37

4.4	 Derived data types	 37

4.4.1	 Typedefs	 37

4.4.2	 Structures	 39

4.4.3	 Enumerations	 41

4.4.4	 Subranges	 42

4.5	 Browsing the project	 44

4.5.1	 object browser	 44

4.5.2	 Searching with the Find in project command	 53

4.6	 Working with Application extensions	 55

5.	 Editing the source code	 57

5.1	 Instruction List (IL) editor	 57

5.1.1	 Editing functions	 57

5.1.2	 Reference to PLC objects	 57

5.1.3	 Automatic error location	 57

5.1.4	 Bookmarks	 58

5.2	 Structured Text (ST) Editor	 58

5.2.1	 Creating and editing ST objects	 58

5.2.2	 Editing functions	 58

5.2.3	 Reference to PLC objects	 59

5.2.4	 Automatic error location	 59

5.2.5	 Bookmarks	 59

5.3	 Ladder Diagram (LD) editor	 59

5.3.1	 Creating a new LD document	 60

5.3.2	 Adding/Removing networks	 60

5.3.3	 Labeling networks	 60

	 user manual	 V

5.3.4	 Inserting contacts	 61

5.3.5	 Inserting coils	 62

5.3.6	 Inserting blocks	 62

5.3.7	 Editing coils and contacts properties	 62

5.3.8	 Editing networks	 63

5.3.9	 Modifying properties of blocks	 63

5.3.10	 Getting information on a block	 63

5.3.11	 Automatic error retrieval	 63

5.4	 Function Block Diagram (FBD) editor	 64

5.4.1	 Creating a new FBD document	 64

5.4.2	 Adding/Removing networks	 64

5.4.3	 Labeling networks	 64

5.4.4	 Inserting and connecting blocks	 65

5.4.5	 Editing networks	 66

5.4.6	 Modifying properties of blocks	 66

5.4.7	 Getting information on a block	 66

5.4.8	 Automatic error retrieval	 66

5.5	 Sequential Function Chart (SFC) Editor	 67

5.5.1	 Creating a new SFC document	 67

5.5.2	 Inserting a new SFC element	 67

5.5.3	 Connecting SFC elements	 67

5.5.4	 Assigning an action to a step	 67

5.5.5	 Specifying a constant/a variable as the condition of a transition	 69

5.5.6	 Assigning conditional code to a transition	 69

5.5.7	 Specifying the destination of a jump	 71

5.5.8	 Editing SFC networks	 71

5.6	 Variables editor	 71

5.6.1	 Opening a variables editor	 72

5.6.2	 Creating a new variable	 73

5.6.3	 Editing variables	 73

5.6.4	 Deleting variables	 75

5.6.5	 Sorting variables	 76

5.6.6	 Copying variables	 77

6.	 Compiling	 79

6.1	 Compiling the project	 79

6.1.1	 Image file loading	 79

6.2	 Compiler output	 80

6.2.1	 Compiler errors	 80

6.3	 Command-line compiler	 82

7.	 Launching the application	 83

7.1	 Setting up the communication	 83

VI	 user manual

7.1.1	 Saving the last used communication port	 85

7.2	 On-line status	 85

7.2.1	 Connection status	 85

7.2.2	 Application status	 85

7.3	 Downloading the application	 86

7.3.1	 Controlling source code download	 86

7.4	 Simulation	 88

8.	 Debugging	 89

8.1	 Watch window	 89

8.1.1	 Opening and closing the watch window	 89

8.1.2	 Adding items to the watch window	 90

8.1.3	 Removing a variable	 93

8.1.4	 Refreshment of values	 93

8.1.5	 Changing the format of data	 94

8.1.6	 Working with watch lists	 95

8.2	 Oscilloscope	 96

8.2.1	 Opening and closing the oscilloscope	 97

8.2.2	 Adding items to the oscilloscope	 98

8.2.3	 Removing a variable	 100

8.2.4	 Variables sampling	 100

8.2.5	 Controlling data acquisition and display	 101

8.2.6	 Changing the polling rate	 107

8.2.7	 Saving and printing the graph	 108

8.3	 Edit and debug mode	 109

8.4	 Live debug	 110

8.4.1	 SFC animation	 111

8.4.2	 LD animation	 111

8.4.3	 FBD animation	 112

8.4.4	 IL and ST animation	 112

8.5	 Triggers	 112

8.5.1	 Trigger window	 112

8.5.2	 Debugging with trigger windows	 118

8.6	 Graphic triggers	 129

8.6.1	 Graphic trigger window	 129

8.6.2	 Debugging with the graphic trigger window	 135

9.	 Application reference	 145

9.1	 Menus reference	 145

9.1.1	 File menu	 145

9.1.2	 Edit menu	 146

9.1.3	 View menu	 146

	 user manual	 VII

9.1.4	 Project menu	 147

9.1.5	 Debug menu	 148

9.1.6	 Communication menu	 148

9.1.7	 Scheme menu	 149

9.1.8	 Variables menu	 150

9.1.9	 Definitions menu	 150

9.1.10	 Window menu	 150

9.1.11	 Help menu	 150

9.2	 Toolbars reference	 151

9.2.1	 Main toolbar	 151

9.2.2	 FBD toolbar	 152

9.2.3	 LD toolbar	 153

9.2.4	 SFC toolbar	 154

9.2.5	 Project toolbar	 155

9.2.6	 Network toolbar	 156

9.2.7	 Debug toolbar	 156

10.	 Language reference	 157

10.1	 Common elements	 157

10.1.1	 Basic elements	 157

10.1.2	 Elementary data types	 157

10.1.3	 Derived data types	 158

10.1.4	 Literals	 160

10.1.5	 Variables	 161

10.1.6	 Program Organization Units	 164

10.2	 Instruction List (IL)	 170

10.2.1	 Syntax and semantics	 170

10.2.2	 Standard operators	 171

10.2.3	 Calling Functions and Function blocks	 172

10.3	 Function Block Diagram (FBD)	 173

10.3.1	 Representation of lines and blocks	 173

10.3.2	 Direction of flow in networks	 174

10.3.3	 Evaluation of networks	 174

10.3.4	 Execution control elements	 175

10.4	 Ladder Diagram (LD)	 177

10.4.1	 Power rails	 177

10.4.2	 Link elements and states	 177

10.4.3	 Contacts	 178

10.4.4	 Coils	 179

10.4.5	 Operators, functions and function blocks	 179

10.5	 Structured Text (ST)	 180

10.5.1	 Expressions	 180

VIII	 user manual

10.5.2	 Statements in ST	 181

10.6	 Sequential Function Chart (SFC)	 186

10.6.1	 Steps	 186

10.6.2	 Transitions	 188

10.6.3	 Rules of evolution	 189

10.7	 Application Language Extensions	 191

10.7.1	 Macros	 191

10.7.2	 Pointers	 192

	 user manual	 1

1.	 OVERVIEW

Application is an IEC61131-3 Integrated Development Environment supporting the whole
range of languages defined in the standard.

In order to support the user in all the activities involved in the development of an applica-
tion, Application includes:

-- textual source code editors for the Instruction List (briefly, IL) and Structured Text
(briefly, ST) programming languages (see Chapter 6.);

-- graphical source code editors for the Ladder Diagram (briefly, LD), Function Block Dia-
gram (briefly, FBD), and Sequential Function Chart (briefly, SFC) programming lan-
guages (see Chapter 6.);

-- a compiler, which translates applications written according to the IEC standard directly
into machine code, avoiding the need for a run-time interpreter, thus making the pro-
gram execution as fast as possible (see Chapter 7.);

-- a communication system which allows the download of the application to the target
environment (see Chapter 8.);

-- a rich set of debugging tools, ranging from an easy-to-use watch window to more pow-
erful tools, which allows the sampling of fast changing data directly on the target envi-
ronment, ensuring the information is accurate and reliable (see Chapter 9.).

1.1	 THE WORKSPACE

The figure below shows a view of Application’s workspace, including many of its more
commonly used components.

2	 user manual

The following paragraphs give an overview of these elements.

1.1.1	 THE OUTPUT WINDOW

The Output window is the place where Application prints its output messages. This win-
dow contains four tabs: Build, Find in project, Debug, and Resources.

Build

The Build panel displays the output of the following activities:

-- opening a project;
-- compiling a project;
-- downloading code to a target.

Find in project

This panel shows the result of the Find in project activity.

Debug

The Debug panel displays information about advanced debugging activities (for example,
breakpoints).

Resources

The Resources panel displays messages related to the specific target device Application
is interfacing with.

1.1.2	 THE STATUS BAR

The Status bar displays the state of the application at its left border, and an animated
control reporting the state of communication at its right border.

1.1.3	 THE DOCUMENT BAR

The Document bar lists all the documents currently open for editing in Application.

	 user manual	 3

1.1.4	 THE WATCH WINDOW

The Watch window is one of the many debugging tools supplied by Application. Among
the other debugging tools, it is worth mentioning the Oscilloscope (see Paragraph 9.2),
triggers, and the live debug mode (see Paragraph 9.4).

1.1.5	 THE LIBRARY WINDOW

The Library window contains a set of different panels, which fall into the categories ex-
plained in the following paragraphs.

You can choose the display mode by clicking the right button of your mouse. In the View
list mode, each element is represented by its name and icon. Instead, a table appears
in the View details mode, each row of which is associated with one of the embedded
elements. The latter mode also displays the Type (Operator/Function) and the description
of each element.

If you right-click one of the elements of this panel, and you click Object properties from
the dialog box, then a window appears with further details on the element you selected
(input and output supported types, name of input and output pins, etc.).

1.1.5.1	 OPERATORS AND STANDARD BLOCKS

This panel lists basic language elements, such as operators and functions defined by the
IEC 61131-3 standard.

4	 user manual

1.1.5.2	 TARGET VARIABLES

This panel lists all the system variables, also called target variables, which are the inter-
face between firmware and PLC application code.

1.1.5.3	 TARGET BLOCKS

This panel lists all the system functions and function blocks available on the specific target
device.

1.1.5.4	 INCLUDED LIBRARY PANELS

The panels described in the preceding paragraphs are usually always available in the Li-
brary window. However, other panels may be added to this window, one for each library
included in the current Application project. For example, the picture above was taken from
a Application project having two included libraries, basic.pll and thermmodel.pll (see
also Paragraph 4.7).

	 user manual	 5

1.1.6	 THE WORKSPACE WINDOW

The Workspace window consists of three distinct panels, as shown in the following picture.

1.1.6.1	 PROJECT

The Project panel contains a set of folders:

-- Program, Function blocks, Functions: each folder contains Program Organization
Units (briefly, POUs - see Paragraph 5.1) of the type specified by the folder name.

-- Global variables: it is further divided in Variables, I/O Variables, Constants and
Retain variables. Each folder contains global variables of the type specified by the
folder name (see Paragraph 5.2).

-- Tasks: this item lists the system tasks and the programs assigned to each task (see
Paragraph 5.3).

1.1.6.2	 DEFINITIONS

The Definitions panel contains the definitions of all user-defined data types, such as
structures or enumerated types.

1.1.6.3	 RESOURCES

The contents of the Resources panel depends on the target device Application is interfac-
ing with: it may include configuration elements, schemas, wizards, and so on.

6	 user manual

1.1.7	 THE SOURCE CODE EDITORS

The Application programming environment includes a set of editors to manage, edit,
and print source files written in any of the 5 programming languages defined by the IEC
61131-3 standard (see Chapter 6.).

The definition of both global and local variables is supported by specific spreadsheet-like
editors.

	 user manual	 7

2.	 USING THE ENVIRONMENT

This chapter shows you how to deal with the many UI elements Application is composed
of, in order to let you set up the IDE in the way which best suits to your specific develop-
ment process.

2.1	 LAYOUT CUSTOMIZATION

The layout of Application’s workspace can be freely customized in order to suit your needs.

Application takes care to save the layout configuration on application exit, in order to per-
sist your preferences between different working sessions.

2.2	 TOOLBARS

2.2.1	 SHOWING/HIDING TOOLBARS

In details, in order to show (or hide) a toolbar, open the View>Toolbars menu and select
the desired toolbar (for example, the Function Block Diagram bar).

The toolbar is then shown (hidden).

2.2.2	 MOVING TOOLBARS

You can move a toolbar by clicking on its left border and then dragging and dropping it to
the destination.

The toolbar shows up in the new position.

8	 user manual

You can change the shape of the toolbar, from horizontal to vertical, either by pressing the
Shift key or by moving the toolbar next to the vertical border of any window.

You can also make the toolbar float, either by pressing the CTRL key or by moving the
toolbar away from any window border.

	 user manual	 9

2.3	 DOCKING WINDOWS

2.3.1	 SHOWING/HIDING TOOL WINDOWS

The View>Tool windows menu allows you to show (or hide) a tool window (for example,
the Output window).

The tool window is then shown (hidden).

10	 user manual

2.3.2	 MOVING TOOL WINDOWS

In order to move a tool window, click on its name (at the top of the window) and then drag
and drop it to the destination.

You can make the tool window float, by double-clicking on its name, or by pressing the
CTRL key, or by moving the tool window away from the main window borders.

A tool window can be resized by clicking-and-dragging on its border until the desired size
is reached.

	 user manual	 11

2.4	 WORKING WITH WINDOWS

Application allows to open many source code editors so that the workspace could get
rather messy.

You can easily navigate between these windows through the Document bar and the Win-
dow menu.

2.4.1	 THE DOCUMENT BAR

The Document bar allows to switch between all the currently open editors, simply by click-
ing on the corresponding name.

You can show or hide the Document bar with the menu option of the same name in the
menu View>Toolbars.

12	 user manual

2.4.2	 THE WINDOW MENU

The Window menu is an alternative to the Document bar: it lists all the currently open
editors and allows to switch between them.

Moreover, this menu supplies a few commands to automate some basic tasks, such as
closing all windows.

2.5	 FULL SCREEN MODE

In order to ease the coding of your application, you may want to switch on the full screen
mode. In full screen mode, the source code editor extends to the whole working area,
making easier the job of editing the code, notably when graphical programming languag-
es (that is, LD. FBD, and SFC) are involved.

You can switch on and off the full screen mode with the Full screen option of the menu
View or with the corresponding command of the Main toolbar.

	 user manual	 13

2.6	 ENVIRONMENT OPTIONS

If you click Options... in the File menu, a multi-tab dialog box appears and lets you
customize some options of Application.

General

Autosave: if the Enable Autosave box is checked, Application periodically saves the
whole project. You can specify the period of execution of this task by entering the number
of minutes between two automatic savings in the Autosave interval text box.

Graphic Editor

This panel lets you edit the properties of the LD, FBD, and SFC source code editors.

Text Editors

Language

You can change the language of the environment by selecting a new one from the list
shown in this panel.

After selecting the new language, press the Select button and confirm by clicking OK.
This change will be effective only the next time you start Application.

Tools

You can add up to 16 commands to the Tools menu. These commands can be associated
with any program that will run on your operating system. You can also specify arguments
for any command that you add to the Tools menu. The following procedure shows you
how to add a tool to the Tools menu.

14	 user manual

1)	 Type the full path of the executable file of the tool in the Command text box. Other-
wise, you can specify the filename by selecting it from Windows Explorer, which you
open by clicking the Browse button.

2)	 In the Arguments text box, type the arguments - if any - to be passed to the execut-
able command mentioned at step 1. They must be separated by a space.

3)	 Enter in Menu string the name you want to give to the tool you are adding. This is the
string that will be displayed in the Tools menu.

4)	 Press Add to effectively insert the new command into the suitable menu.

5)	 Press OK to confirm, or Cancel to quit.

For example, let us assume that you want to add Windows calculator to the Tools
menu:

-- Fill the fields of the dialog box as displayed.

-- Press Add. The name you gave to the new tool is now displayed in the list box at the
top of the panel.

And in the Tools menu as well.

	 user manual	 15

3.	 MANAGING PROJECTS

This chapter focuses on Application projects.

A project corresponds to a PLC application and includes all the required elements to run
that application on the target device, including its source code, links to libraries, informa-
tion about the target device and so on.

The following paragraphs explain how to properly work with projects and their elements.

3.1	 CREATING A NEW PROJECT

To start a new project, click New project in the File menu of the Application main win-
dow. The same command is available in the Main toolbar and, if no project is open, in
Application’s Welcome page. This causes the following dialog box to appear.

You are required to enter the name of the new project in the Name control. The string you
enter will also be the name of the folder which will contain all the files making up the Ap-
plication project. The pathname in the Directory control indicates the default location
of this folder.

Target selection allows you to specify the target device which will run the project.

Finally, you can make the project case-sensitive by activating the related option. Note
that, by default, this option is not active, in compliance with IEC 61131-3 standard: when
you choose to create a case-sensitive project, it will not be standard-compliant.

When you confirm your decision to create a new project and the whole required informa-
tion has been provided, Application completes the operation, creating the project direc-
tory and all project files; then, the project is opened.

The list of devices from which you can select the target for the project you are creating
depends on the contents of the catalog of target devices available to Application.

When the desired target is missing, either you have run the wrong setup executable or
you have to run a separate setup which is responsible to update the catalog to include
the target device. In both cases, you should contact your hardware supplier for support.

3.2	 UPLOADING THE PROJECT FROM THE TARGET DEVICE

Depending on the target device you are interfacing with, you may be able to upload a
working Application project from the target itself.

16	 user manual

In order to upload the project from the target device, follow the procedure below:

1) Select the item Import project from target in the menu File.

2) Select the target device you are connecting to, from the list shown in the Target list
window.

3) Set up the communication (refer to Setting up the communication section for details).

4) You may optionally test the connection with the target device.

Application tries to open the connection and reports the test result.

	 user manual	 17

5) Confirm the operation.

When the application upload completes successfully, the project is open for editing.

3.3	 SAVING THE PROJECT

3.3.1	 PERSISTING CHANGES TO THE PROJECT

When you make any change to the project (for example, you add a new Program Organi-
zation Unit) you are required to save the project in order to persist that change.

To save the project, you can select the corresponding item of the menu File or the Main
toolbar.

3.3.2	 SAVING TO AN ALTERNATIVE LOCATION

When you do not want to (or cannot - for example, because the file is read-only) overwrite
the project file, you may save the modified version of the project to an alternative loca-
tion, by selecting Save project as... from the File menu.

Application asks you to select the new destination (which must be an empty directory),
then saves a copy of the project to that location and opens this new project file for editing.

18	 user manual

3.4	 MANAGING EXISTING PROJECTS

3.4.1	 OPENING AN EXISTING APPLICATION PROJECT

To open an existing project, click Open project in the File menu of Application’s main
window, or in the Main toolbar, or in the Welcome page (when no project is open). This
causes a dialog box to appear, which lets you load the directory containing the project and
select the relative project file.

3.4.2	 EDITING THE PROJECT

In order to modify an element of a project, you need first to open that element by double-
clicking its name, which you can find by browsing the tree structure of the project tab of
the Workspace bar.

By double-clicking the name of the object you want to modify, you open an editor consist-
ent with the object type: for example, when you double-click the name of a project POU,
the appropriate source code editor is shown; if you double-click the name of a global vari-
able, the variable editor is shown.

Note that Application prevents you from applying changes to elements of a project, when
at least one of the following conditions holds:

-- You cannot modify any object of the project if you are in debug mode.

-- You cannot edit an object of an included library, whereas you can modify an object that
you imported from a library.

-- The project is opened in read-only mode (view project).

3.4.3	 CLOSING THE PROJECT

You can terminate the working session either by explicitly closing the project or by exiting
Application. In both cases, when there are changes not yet persisted to file, Application
asks you to choose between saving and discarding them.

To close the project, select the item Close project from the File menu; Application
shows the Welcome page, so that you can rapidly start a new working session.

3.5	 DISTRIBUTING PROJECTS

When you need to share a project with another developer you can send him/her either
a copy of the project file(s) or a redistributable source module (RSM) generated by Ap-
plication.

In the former case, the number of files you have to share depends on the format of the
project file:

-- PLC single project file (.ppjs file extension): the project file itself contains the whole
information needed to run the application (assuming the receiving developer has an ap-
propriate target device available) including all source code modules, so that you need
to share only the .ppjs file.

-- PLC multiple project file (.ppjx or .ppj file extension): the project file contains only
the links to the source code modules composing the project, which are stored as single
files in the project directory. You need to share the whole directory.

	 user manual	 19

Alternatively, you can generate a redistributable source module (RSM) with the corre-
sponding item of the Project menu or toolbar.

Application notifies you of the name of the RSM file and lets you choose whether to protect
the file with a password or not. If you choose to protect the file, Application asks you to
insert the password.

The advantages of the RSM file format are:

-- the source code is encoded in binary format, thus it cannot be read by third parties
which do not use Application, making a transfer over the Internet more secure;

-- it can be protected with a password, which will be required by Application on file open-
ing;

-- being a binary file, its size is reduced.

3.6	 PROJECT OPTIONS

You can edit some basic properties of the project, such as application name and version,
in the window which pops up after you select the item Options... in the Project menu.

The information you enter here is shown in any printed document and may also be down-
loaded to the target device.

20	 user manual

3.7	 SELECTING THE TARGET DEVICE

You may need to port a PLC application on a target device which differs from that you
originally wrote the code for. Follow the instructions below to adapt your Application pro-
ject to a new target device.

1)	 Click Select target in the Project menu of the Application main window. This
causes the following dialog box to appear.

2)	 Select one of the target devices listed in the combo box.

3)	 Click Change to confirm your choice, Cancel to abort.

4)	 If you confirm, Application displays the following dialog box.

Press Yes to complete the conversion, No to quit.

If you press Yes, Application updates the project to work with the new target.

It also makes a backup copy of the project file(s) in a sub-directory inside the project
directory, so that you can roll-back the operation by manually (i.e., using Windows
Explorer) replacing the project file(s) with the backup copy.

3.8	 WORKING WITH LIBRARIES

Libraries are a powerful tool for sharing objects between Application projects. Libraries
are usually stored in dedicated source file, whose extension is .pll.

3.8.1	 THE LIBRARY MANAGER

The library manager lists all the libraries currently included in a Application project. It also
allows you to include or remove libraries.

	 user manual	 21

To access the library manager, click Library manager in the Project menu.

3.8.1.1	 INCLUDING A LIBRARY

The following procedure shows you how to include a library in a Application project, which
results in all the library’s objects becoming available to the current project.

Including a library means that a reference to the library’s .pll file is added to the cur-
rent project, and that a local copy of the library is made. Note that you cannot edit the
elements of an included library, unlike imported objects.

If you want to copy or move a project which includes one or more libraries, make sure
that references to those libraries are still valid in the new location.

1)	 Click Library manager in the Project menu, which opens the Library manager
dialog box.

2)	 Press the Add button, which causes an explorer dialog box to appear, to let you select
the .pll file of the library you want to open.

3)	 When you have found the .pll file, open it either by double-clicking it or by press-
ing the Open button. The name of the library and its absolute pathname are now
displayed in a new row at the bottom of the list in the white box.

4)	 Repeat step 1, 2, and 3 for all the libraries you wish to include.

5)	 When you have finished including libraries, press either OK to confirm, or Cancel to
quit.

3.8.1.2	 REMOVING A LIBRARY

The following procedure shows you how to remove an included library from the current
project. Remember that removing a library does not mean erasing the library itself, but
the project’s reference to it.

1)	 Click Library manager in the Project menu of the Application main window, which
opens the Library manager dialog box.

22	 user manual

2)	 Select the library you wish to remove by clicking its name once. The Remove button
is now enabled.

3)	 Click the Remove button, which causes the reference to the selected library to disap-
pear from the Project library list.

4)	 Repeat for all the libraries you wish to include. Alternatively, if you want to remove all
the libraries, you can press the Remove all button.

5)	 When you have finished removing libraries, press either OK to confirm, or Cancel not
to apply changes.

3.8.2	 EXPORTING TO A LIBRARY

You may export an object from the currently open project to a library, in order to make
that object available to other projects. The following procedure shows you how to export
objects to a library.

1)	 Look for the object you want to export by browsing the tree structure of the project
tab of the Workspace bar, then click once the name of the object.

2)	 Click Export object to library in the Project menu. This causes the following
dialog box to appear.

3)	 Enter the destination library by specifying the location of its .pll file. You can do
this by:

-- typing the full pathname in the white text box;

-- clicking the Browse button , in order to open an explorer dialog box which allows
you to browse your disk and the network.

4)	 You may optionally choose to encrypt the source code of the POU you are exporting,
in order to protect your intellectual property.

5)	 Click OK to confirm the operation, otherwise press Cancel to quit.

If at Step 3 of this procedure you enter the name of a non-existing .pll file, Application
creates the file, thus establishing a new library.

3.8.2.1	 UNDOING EXPORT TO A LIBRARY

So far, it is not possible to undo export to a library. The only possibility to remove an ob-
ject is to create another library containing all the objects of the current one, except the
one you wish to delete.

	 user manual	 23

3.8.3	 IMPORTING FROM A LIBRARY OR ANOTHER SOURCE

You can import an object from a library in order to use it in the current project. When
you import an object from a library, the local copy of the object loses its reference to the
original library and it belongs exclusively to the current project. Therefore, you can edit
imported objects, unlike objects of included libraries.

There are two ways of getting a POU from a library. The following procedure shows you
how to import objects from a library.

1)	 Click Import object from library in the Project menu. This causes an explorer
dialog box to appear, which lets you select the .pll file of the library you want to
open.

2)	 When you have found the .pll file, open it either by double-clicking it or by pressing
the Open button. The dialog box of the library explorer appears in foreground. Each
tab in the dialog box contains a list of objects of a type consistent with the tab’s title.

3)	 Select the tab of the type of the object(s) you want to import. You can also make
simple queries on the objects in each tab by using Filters. However, note that only
the Name filter actually applies to libraries. To use it, select a tab, then enter the name
of the desired object(s), even using the * wildcard, if necessary.

4)	 Select the object(s) you want to import, then press the Import object button.

5)	 When you have finished importing objects, press indifferently OK or Cancel to close
the Library browser.

3.8.3.1	 UNDOING IMPORT FROM A LIBRARY

When you import an object in a Application project, you actually make a local copy of that
object. Therefore, you just need to delete the local object in order to undo import.

24	 user manual

	 user manual	 25

4.	 MANAGING PROJECT ELEMENTS

This chapter shows you how to deal with the elements which compose a project, namely:
Program Organization Units (briefly, POUs), tasks, derived data types, and variables.

4.1	 PROGRAM ORGANIZATION UNITS

This paragraph shows you how to add new POUs to the project, how to edit and eventu-
ally remove them.

4.1.1	 CREATING A NEW PROGRAM ORGANIZATION UNIT

1)	 Select the New object item in the Project menu.

2)	 Specify what kind of POU you want to create by clicking one of the items in the sub-
menu which pops up.

3)	 Select the language you will use to implement the POU.

Enter the name of the new module.

4)	 Confirm the operation by clicking on the OK button.

Alternatively, you can create a new POU of a specific type (program, function block, or
function) by right-clicking on the correspondent item of the project tree.

26	 user manual

4.1.1.1	 ASSIGNING A PROGRAM TO A TASK AT CREATION TIME

When creating a new program, Application gives you the chance to assign that program
to a task at the same time: select the task you want the program to be assigned to from
the list shown in the Task section of the New program window.

4.1.2	 EDITING POUS

All the POUs of the project are listed in the Programs, Function blocks, and Functions
folders in the Project tab of the Workspace bar.

The following procedure shows you how to edit the source code of an existing POU.

1)	 Open the folder in the Project tab of the workspace that contains the object you
want to edit by double-clicking the folder name.

2)	 Double-click the name of the object you want to edit. The relative editor opens and
lets you modify the source code of the POU.

You may want to change the name of the POU:

1)	 Open the Object properties editor from the contextual menu which pops up when
right-clicking the POU name in the project tree (alternatively, select the correspond-
ent item in the Project menu).

	 user manual	 27

2)	 Change the object name and confirm.

Finally, you can create a duplicate of the POU in this way:

1)	 Select Duplicate from the contextual menu (or the Project menu).

2)	 Enter the name of the new POU and confirm.

4.1.3	 DELETING POUS

Follow this procedure to remove a POU from your project:

1)	 Open the folder in the Project tab of the workspace that contains the object you
want to delete by double-clicking the folder name.

28	 user manual

2)	 Right-click the name of the object you want to delete. A context menu appears re-
ferred to the selected object.

3)	 Click Delete object in the context menu, then press Yes to confirm your choice.

4.1.4	 SOURCE CODE ENCRYPTION

You may want to hide the source code of one or more POUs.

Application lets you encrypt POUs and protect them with a password.

To encrypt a POU, perform the following steps:

1)	 Right-click the POU name in the project tree and choose Crypt from the contextual
menu.

2)	 Enter the password twice (to avoid any problem which may arise from typos) and
confirm the operation.

	 user manual	 29

To decrypt a POU, right-click the POU name in the project tree and choose Decrypt from
the contextual menu.

Application prompt you to enter the password.

You can choose to encrypt all the unencrypted POUs at once:

the same password applies to all objects.

4.2	 VARIABLES

There are two classes of variables in Application: global variables and local variables.

This paragraph shows you how to add to the project, edit, and eventually remove both
global and local variables.

4.2.1	 GLOBAL VARIABLES

Global variables can be seen and referenced by any module of the project.

4.2.1.1	 CLASSES OF GLOBAL VARIABLES

Global variables are listed in the project tree, in the Global variables folder, where they
are further classified according to their properties as Automatic variables, Mapped vari-
ables, Constants, and Retain variables.

-- Automatic variables include all the variables that the compiler automatically allocates to
an appropriate location in the target device memory.

-- Mapped variables, on the other way, do have an assigned address in the target device
logical addressing system, which shall be specified by the developer.

-- Constants list all the variables which the developer declared as having the CONSTANT
attribute, so that they cannot be written.

-- Retain variables list all the variables which the developer declared as having the RE-
TAIN attribute, so that their values are stored in a persistent memory area of the target
device.

4.2.1.2	 GROUPS OF GLOBAL VARIABLES

You can further categorize the set of all global variables by grouping them according to
application-specific criteria. In order to define a new group, follow this procedure:

30	 user manual

1)	 Select Group from the Variables menu (note that this menu is available only if the
Global variables editor is open).

2)	 Enter the name of the new variable group, then click Add.

3)	 You can now use the variable group in the declaration of new global variables.

4.2.1.3	 CREATING A NEW GLOBAL VARIABLE

Apply the following procedure to declare a new global variable:

1)	 Select New object in the Project menu.

2)	 Select New variable from the menu that shows up.

3)	 Choose the class of the variable you want to declare (Automatic variables, Mapped
variables, Constants, or Retain variables).

4)	 Enter the name of the variable (remember that some characters, such as ‘?’, ‘.’, ‘/’,
and so on, cannot be used: the variable name must be a valid IEC 61131-3 identifier).

	 user manual	 31

5)	 Specify the type of the variable either by typing it

or by selecting it from the list that Application displays when you click on the Browse
button.

6)	 If you want to declare an array, you can specify its size.

7)	 You may optionally assign the initial value to the variable.

32	 user manual

8)	 Finally, you can add a brief description and then confirm the operation.

If you create a new mapped variable, you are required to specify the address of the vari-
able during its definition. In order to do so, you may do one of the following actions:

-- Click on the button to open the editor of the address, then enter the desired value.

	 user manual	 33

-- Select from the list that Application shows you the memory area you want to use: the
tool automatically chooses the address of the first free memory location of that area.

4.2.1.4	 EDITING A GLOBAL VARIABLE

To edit the definition of an existing global variable:

1)	 Open the folder in the Project tab of the workspace that contains the variable you
want to edit.

2)	 Double-click the name of the variable you want to edit: the global variables editor
opens and lets you modify its definition.

If you just want to change the name of the variable:

34	 user manual

1)	 Open the Variable properties editor from the contextual menu which pops up
when right-clicking the variable name in the project tree (alternatively, select the
correspondent item in the Project menu).

2)	 Change the variable name and confirm.

Finally, you can create a duplicate of the variable in this way:

1)	 Select Duplicate variable from the contextual menu (or the Project menu).

2)	 Enter the name of the new variable and confirm.

	 user manual	 35

4.2.1.5	 DELETING A GLOBAL VARIABLE

Follow this procedure to remove a global variable from you project:

1)	 Open the folder in the Project tab of the workspace that contains the variable you
want to delete.

2)	 Right-click the name of the variable you want to delete. A context menu appears re-
ferred to the selected variable.

3)	 Click Delete variable in the context menu, then press Yes to confirm you choice.

4.2.2	 LOCAL VARIABLES

Local variables are declared within a POU (either program, or function, or function block),
the module itself being the only project element which can refer to and access them.

Local variables are listed in the project tree under the POU which declares them (only
when that POU is open for editing), where they are further classified according to their
class (e.g., as input or inout variables).

36	 user manual

In order to create, edit, and delete local variables, you have to open the Program Organi-
zation Unit for editing and use the local variables editor.

Refer to the corresponding section in this manual for details (see Paragraph 6.6.1.2).

4.3	 TASKS

4.3.1	 ASSIGNING A PROGRAM TO A TASK

Read the instructions below to know how to make a task execute a program.

1)	 The tasks running on the target device are listed in the Project tab of the Work-
space window. Right-click the name of the task you want to execute the program and
choose Add program from the contextual menu.

2)	 Select the program you want the task to execute from the list which shows up and
confirm your choice.

	 user manual	 37

3)	 The program has been assigned to the task, as you can see in the project tree.

Note that you can assign more than a program to a task. From the contextual menu you
can sort and, eventually, remove program assignments to tasks.

4.3.2	 TASK CONFIGURATION

Depending on the target device you are interfacing with, you may have the chance to
configure some of the PLC tasks’ settings.

1)	 Select the Task configuration item in the contextual menu which pops up, if you
right-click on the name of the task you want to configure.

2)	 In the Task configuration window you can edit the task execution period.

4.4	 DERIVED DATA TYPES

The Definitions section of the Workspace window lets you define derived data types.

4.4.1	 TYPEDEFS

The following paragraphs show you how to manage typedefs.

38	 user manual

4.4.1.1	 CREATING A NEW TYPEDEF

In order to define a new typedef follow this procedure:

1)	 Right-click the TypeDefs folder and choose New TypeDef from the contextual menu.

2)	 Type the name of the typedef.

3)	 Select the type you are defining an alias for

(if you want to define an alias for an array type, you shall choose the array size).

	 user manual	 39

4)	 Enter a meaningful description (optional) and confirm the operation.

4.4.1.2	 EDITING A TYPEDEF

The typedefs of the project are listed under the TypeDefs folder. In order to edit a typedef
you just have to double-click on its name.

4.4.1.3	 DELETING A TYPEDEF

To delete a typedef, follow this procedure:

1)	 Right-click the typedef name and choose Delete from the contextual menu.

2)	 Confirm your choice.

4.4.2	 STRUCTURES

The following paragraphs show you how to manage structures.

4.4.2.1	 CREATING A NEW STRUCTURE

Follow this procedure to create a new structure:

1)	 Right-click the Structures folder and choose New structure from the contextual
menu.

40	 user manual

2)	 Type the name of the structure.

3)	 Enter a meaningful description and confirm the operation.

4.4.2.2	 EDITING A STRUCTURE

The structures of the project are listed under the Structures folder. In order to edit a
structure (for example, to define its fields) you have to double-click on its name.

4.4.2.3	 DELETING A STRUCTURE

Follow this procedure to delete a structure:

1)	 Right-click the structure name and choose Delete from the contextual menu.

2)	 Confirm your choice.

	 user manual	 41

4.4.3	 ENUMERATIONS

The following paragraphs show you how to manage enumerations.

4.4.3.1	 CREATING A NEW ENUMERATION

Follow this procedure to create a new enumeration:

1)	 Right-click the Enumerations folder and choose New enumeration from the contex-
tual menu.

2)	 Type the name of the enumeration.

3)	 Enter a meaningful description and confirm the operation.

4.4.3.2	 EDITING AN ENUMERATION

The enumerations of the project are listed under the Enumerations folder. In order to edit
an enumeration (for example, to define its values) you have to double-click on its name.

42	 user manual

4.4.3.3	 DELETING AN ENUMERATION

Follow this procedure to delete an enumeration:

1)	 Right-click the enumeration name and choose Delete from the contextual menu.

2)	 Confirm your choice.

4.4.4	 SUBRANGES

The following paragraphs show you how to manage subranges.

4.4.4.1	 CREATING A NEW SUBRANGE

Follow this procedure to create a new subrange:

1)	 Right-click the Subranges folder and choose New Subrange from the contextual
menu.

2)	 Type the name of the subrange.

	 user manual	 43

3)	 Select the basic type for the subrange.

4)	 Enter minimum and maximum values of the subrange.

5)	 Enter a meaningful description (optional) and confirm the operation.

44	 user manual

4.4.4.2	 EDITING A SUBRANGE

The subranges of the project are listed under the Subranges folder. In order to edit a
subrange you just have to double-click on its name.

4.4.4.3	 DELETING A SUBRANGE

Follow this procedure to delete a subrange:

1)	 Right-click the subrange name and choose Delete from the contextual menu.

2)	 Confirm your choice.

4.5	 BROWSING THE PROJECT

Projects may grow huge, hence Application provides two tools to search for an object
within a project: the Object browser and the Find in project feature.

4.5.1	 OBJECT BROWSER

Application provides a useful tool for browsing the objects of your project: the Object
browser.

	 user manual	 45

This tool is context dependent, this implies that the kind of objects that can be selected
and that the available operations on the objects in the different context are not the same.

Object browser can be opened in these three main ways:

-- Browser mode.

-- Import object mode.

-- Select object mode.

User interaction with Object browser is mainly the same for all the three modes and is
described in the next paragraph.

4.5.1.1	 COMMON CHARACTERISTICS AND USAGE OF OBJECT BROWSER

This section describes the features and the usage of the Object browser that are com-
mon to every mode in which Object browser can be used.

Objects filter

This is the main filter of the Object browser. User can check one of the available (ena-
bled) object items.

In this example, Programs, Function Blocks, Functions are selected, so objects of this
type are shown in the object list. Variables and User types objects can be selected
by user but objects of that type are not currently shown in the object list. Operators,
Standard functions, Local variables, and Basic types cannot be checked by user
(because of the context) so cannot be browsed.

46	 user manual

User can also click Check all button to select all available objects at one time or can click
Check none button to deselect all objects at one time.

Other filters

Selected objects can be also filtered by name, symbol location, specific library and var
type.

Filters are all additive and are immediately applied after setting.

Name

Function Filters objects on the base of their name.

Set of legal values All the strings of characters.

Use

Type a string to display the specific object whose name
matches the string. Use the * wildcard if you want to
display all the objects whose name contains the string in
the Name text box. Type * if you want to disable this filter.

Press Enter when edit box is focused or click on the OK
button near the edit box to apply the filter.

Applies to All object types.

	 user manual	 47

Symbol location

Function Filters objects on the base of their location.

Set of legal values All, Project, Target, Library, Aux. Sources.

Use

All= Disables this filter.

Project= Objects declared in the Application project.

Target= Firmware objects.

Library= Objects contained in a library. In this case, use
simultaneously also the Library filter, described below.

Aux sources= Shows aux sources only.

Applies to All objects types.

Library

Function
Completes the specification of a query on objects contained
in libraries. The value of this control is relevant only if the
Symbol location filter is set to Library.

Set of legal values All, libraryname1, libraryname2, ...

Use
All= Shows objects contained in whatever library.

LibrarynameN= Shows only the objects contained in the
library named librarynameN.

Applies to All objects types.

48	 user manual

Vars Type

Function Filters global variables and system variables (also known
as firmware variables) according to their type.

Set of legal values All, Normal, Constant, Retain

Use

All= Shows all the global and system variables.

Normal= Shows normal global variables only.

Constant= Shows constants only.

Retain= Shows retain variables only.

Applies to Variables.

	 user manual	 49

Object list

Object list shows all the filtered objects. List can be ordered in ascending or discend-
ing way by clicking on the header of the column. So it is possible to order items by Name,
Type, or Description.

Double-clicking on an item allows the user to perform the default associated operation
(the action is the same of the OK, Import object, or Open source button actions).

When item multiselection is allowed, Select all and Select none buttons are visible.

It is possible to select all objects by clicking on Select all button. Select none dese-
lects all objects.

If at least an item is selected on the list operation, buttons are enabled.

50	 user manual

Resize

Window can be resized, the cursor changes along the border of the dialog and allows the
user to resize window. When reopened, Object browser dialog takes the same size and
position of the previous usage.

Close dialog

You have two options for closing the Object browser:

-- Press the button near the right-end border of the caption bar.

-- Press the Cancel/OK button below the filter box.

4.5.1.2	 USING OBJECT BROWSER AS A BROWSER

To use Object browser in this way click on Object browser in the Project menu. This
causes the Object browser dialog box to appear, which lets you navigate between the
objects of the currently open project.

Available objects

In this mode you can list objects of these types:

-- Programs.

-- Function Blocks.

-- Functions.

-- Variables.

-- User types.

These items can be checked or unchecked in Objects filter section to show or to hide
the objects of the chosen type in the list.

Other types of objects (Operators, Standard functions, Local variables, Basic types) can-
not be browsed in this context so they are unchecked and disabled).

Available operations

	 user manual	 51

Allowed operations in this mode are:

Open source, default operation for double-click on an item

Function Opens the editor by which the selected object was created
and displays the relevant source code.

Use

If the object is a program, or a function, or a function
block, this button opens the relevant source code editor.

If the object is a variable, then this button opens the
variable editor.

Select the object whose editor you want to open, then click
on the Open source button.

Export to library

Function To export an object to a library.

Use Select the objects you want to export, then press the
Export to library button.

Delete objects

Function Allows you to delete an object.

Use Select the object you want to delete, then press the
Delete object button.

Multi selection

Multi selection is allowed for this mode, Select all and Select none buttons are visible.

4.5.1.3	 USING OBJECT BROWSER FOR IMPORT

Object browser is also used to support objects importation in the project from a desired
external library. Select Import object from library in the Project menu, then choose
the desired library.

52	 user manual

Available objects

In this mode you can list objects of these types:

-- Programs.

-- Function blocks.

-- Functions.

-- Variables.

-- User types.

These items can be checked or unchecked in Objects filter section to show or to hide
the objects of the chosen type in the list.

Other types of objects (Operators, Standard functions, Local variables, Basic types) can-
not be imported so they are unchecked and disabled.

Available operations

Import objects is the only operation supported in this mode. It is possible to import
selected objects by clicking on Import objects button or by double-clicking on one of
the objects in the list.

Multi selection

Multi selection is allowed for this mode, Select all and Select none buttons are visible.

4.5.1.4	 USING OBJECT BROWSER FOR OBJECT SELECTION

Object browser dialog is useful for many operations that requires the selection of a single
PLC object. So Object browser can be used to select the program to add to a task, to se-
lect the type of a variable, to select an item to find in the project, etc..

Available objects

Available objects are strictly dependent on the context, for example in the program as-
signment to a task operation the only available objects are programs objects.

It is possible that not all available objects are selected by default.

Available operations

In this mode it is possible to select a single object by double-clicking on the list or by click-
ing on the OK button, then the dialog is automatically closed.

Multi selection

Multi selection is not allowed for this mode, Select all and Select none buttons are
not visible.

	 user manual	 53

4.5.2	 SEARCHING WITH THE FIND IN PROJECT COMMAND

The Find in project command retrieves all the instances of a specified character string
in the project. Follow the procedure to use it correctly.

1)	 Click Find in project... in the Edit menu or in the Main toolbar.

This causes the following dialog box to appear.

2)	 In the Find what text box, type the name of the object you want to look for.

54	 user manual

Otherwise, click the Browse button to the right of the text box, and select the name
of the object from the list of all the existing items.

3)	 Select one of the values listed in the Location combo box, so as to specify a con-
straint on the location of the objects to be inspected.

4)	 The frame named Filters contains 7 checkboxes, each of which, if ticked, enables
research of the string among the object it refers to.

5)	 Tick Match whole word only if you want to compare your string to entire word only.

6)	 Tick Match case if you want your search to be case-sensitive.

7)	 Press Find to start the search, otherwise click Cancel to abandon.

	 user manual	 55

The results will be printed in the Find in project tab of the Output window.

4.6	 WORKING WITH APPLICATION EXTENSIONS

Application’s Workspace window may include a section whose contents completely depend
on the target device the IDE is interfacing with: the Resources panel.

If the Resources panel is visible, you can access some additional features related to the
target device (configuration elements, schemas, wizards, and so on).

Information about these features may be found in a separate document: refer to your
hardware supplier for details.

56	 user manual

	 user manual	 57

5.	 EDITING THE SOURCE CODE

PLC editors

Application includes five source code editors, which support the whole range of IEC 61131-
3 programming languages: Instruction List (IL), Structured Text (ST), Ladder Diagram
(LD), Function Block Diagram (FBD), and Sequential Function Chart (SFC).

Moreover, Application includes a grid-like editor to support the user in the definition of
variables.

This chapter focuses on all these editors.

5.1	 INSTRUCTION LIST (IL) EDITOR

The IL editor allows you to code and modify POUs using IL (i.e., Instruction List), one of
the IEC-compliant languages.

5.1.1	 EDITING FUNCTIONS

The IL editor is endowed with functions common to most editors running on a Windows
platform, namely:

-- Text selection.

-- Cut, Copy, and Paste operations.

-- Find and Replace functions.

-- Drag-and-drop of selected text.

Many of these functions are accessible through the Edit menu or through the Main tool-
bar.

5.1.2	 REFERENCE TO PLC OBJECTS

If you need to add to your IL code a reference to an existing PLC object, you have two
options:

-- You can type directly the name of the PLC object.

-- You can drag it to a suitable location. For example, global variables can be taken from
the Workspace window, whereas standard operators and embedded functions can be
dragged from the Libraries window, whereas local variables can be selected from the
local variables editor.

5.1.3	 AUTOMATIC ERROR LOCATION

The IL editor also automatically displays the location of compiler errors. To know where
a compiler error occurred, double-click the corresponding error line in the Output bar.

58	 user manual

5.1.4	 BOOKMARKS

You can set bookmarks to mark frequently accessed lines in your source file. Once a book-
mark is set, you can use a keyboard command to move to it. You can remove a bookmark
when you no longer need it.

5.1.4.1	 SETTING A BOOKMARK

Move the insertion point to the line where you want to set a bookmark, then press
Ctrl+F2. The line is marked in the margin by a light-blue circle.

5.1.4.2	 JUMPING TO A BOOKMARK

Press F2 repeatedly, until you reach the desired line

5.1.4.3	 REMOVING A BOOKMARK

Move the cursor to anywhere on the line containing the bookmark, then press Ctrl+ F2.

5.2	 STRUCTURED TEXT (ST) EDITOR

The ST editor allows you to code and modify POUs using ST (i.e. Structured Text), one of
the IEC-compliant languages.

5.2.1	 CREATING AND EDITING ST OBJECTS

See the Creating and Editing POUs section (Paragraphs 5.1.1 and 5.1.2).

5.2.2	 EDITING FUNCTIONS

The ST editor is endowed with functions common to most editors running on a Windows
platform, namely:

-- Text selection.

-- Cut, Copy, and Paste operations.

-- Find and Replace functions.

-- Drag-and-drop of selected text.

Many of these functions are accessible through the Edit menu or through the Main tool-
bar.

	 user manual	 59

5.2.3	 REFERENCE TO PLC OBJECTS

If you need to add to your ST code a reference to an existing PLC object, you
have two options:

-- You can type directly the name of the PLC object.

-- You can drag it to a suitable location. For example, global variables can be taken from
the Workspace window, whereas embedded functions can be dragged from the Librar-
ies window, whereas local variables can be selected from the local variables editor.

5.2.4	 AUTOMATIC ERROR LOCATION

The ST editor also automatically displays the location of compiler errors. To know where a
compiler error has occurred, double-click the corresponding error line in the Output bar.

5.2.5	 BOOKMARKS

You can set bookmarks to mark frequently accessed lines in your source file. Once a book-
mark is set, you can use a keyboard command to move to it. You can remove a bookmark
when you no longer need it.

5.2.5.1	 SETTING A BOOKMARK

Move the insertion point to the line where you want to set a bookmark, then press
Ctrl+F2. The line is marked in the margin by a light-blue circle.

5.2.5.2	 JUMPING TO A BOOKMARK

Press F2 repeatedly, until you reach the desired line.

5.2.5.3	 REMOVING A BOOKMARK

Move the cursor to anywhere on the line containing the bookmark, then press Ctrl+F2.

5.3	 LADDER DIAGRAM (LD) EDITOR

60	 user manual

The LD editor allows you to code and modify POUs using LD (i.e. Ladder Diagram), one of
the IEC-compliant languages.

5.3.1	 CREATING A NEW LD DOCUMENT

See the Creating and Editing POUs section (Paragraphs 5.1.1 and 5.1.2).

5.3.2	 ADDING/REMOVING NETWORKS

Every POU coded in LD consists of a sequence of networks. A network is defined as a
maximal set of interconnected graphic elements. The upper and lower bounds of every
network are fixed by two straight lines, while each network is delimited on the left by a
grey raised button containing the network number.

On each LD network the right and the left power rail are represented, according to the LD
language indication.

On the new LD network a horizontal line links the two power rails. It is called the “power
link”. On this link, all the LD elements (contacts, coils and blocks) are to be placed.

You can perform the following operations on networks:

-- To add a new blank network, click Network>New in the Scheme menu, or press one of
the equivalent buttons in the Network toolbar.

-- To assign a label to a selected network, give the Network>Label command from the
Scheme menu. This enables jumping to the labeled network.

-- To display a background grid which helps you to align objects, press View grid in the
Network toolbar.

-- To add a comment, press the Comment button in the FBD toolbar.

5.3.3	 LABELING NETWORKS

You can modify the usual order of execution of networks through a jump statement, which
transfers the program control to a labeled network. To assign a label to a network, double-
click the raised grey button on the left, which bears the network number.

This causes a dialog box to appear, where you can type the label you want to associate
with the selected network.

If you press OK, the label is printed in the top left-hand corner of the selected network.

	 user manual	 61

5.3.4	 INSERTING CONTACTS

To insert new contacts on the network apply one of the following options:

-- Select a contact, a block or a connection. Select the insertion mode between serial or
parallel (using the button on the LD toolbar or the Scheme menu). Insert the appropriate
contact (using the button on the LD toolbar, the Scheme>Object>New or the pop-up
menu option). For serial insertion, the new contact will be inserted on the right side of
the selected contact/block or in the middle of the selected connection depending on the
element selected before the insertion. For parallel insertions, several contacts/blocks
can be selected before performing the insertion. The new contact will be inserted at the
endpoints of the selection block.

-- Drag a boolean variable to the desired place over a connection. For example, global
variables can be taken from the Workspace window, whereas local variables can be se-
lected from the local variables editor. The dialog box shown below will appear, request-
ing to define whether the variable should be inserted as a contact, coil or variable (like
FBD schemes). Choose the appropriate contact type. Contacts inserted with drag and
drop will always be inserted in series.

62	 user manual

5.3.5	 INSERTING COILS

To insert new coils on the network apply one of the following options:

-- Press one of the coil buttons in the LD toolbar. The new coil will be inserted and linked
to the right power rail. If other coils are already present in the network, the new coil will
be added in parallel with the previous ones.

-- Drag a boolean variable on the network. For example, global variables can be taken
from the Workspace window, whereas local variables can be selected from the local vari-
ables editor. A dialog box will appear, requesting to indicate whether the variable should
be inserted as a contact, coil or variable. Choose the appropriate coil type.

5.3.6	 INSERTING BLOCKS

Operators, functions and function blocks can be inserted into an LD network in the follow-
ing modes:

-- On the power link, as contacts and coils.

-- Outside the power link (to do so, follow the indications as for the FBD blocks).

To insert blocks on the network apply one of the following options:

-- Select a contact, connection or block then click Object>New in the Scheme menu.

-- Select a contact, connection or block, then press the New block button in the FBD
toolbar, which causes a dialog box to appear listing all the objects of the project, then
choose one item from the list. If the block is a constant, a return statement, or a jump
statement, you can directly press the relevant buttons in the FBD toolbar.

-- Drag the selected object (from the Workspace window, the Libraries window or the
local variables editor) over the desired connection.

The two upper pins will be connected to the power link. The EN/ENO pins should be acti-
vated before the insertion.

5.3.7	 EDITING COILS AND CONTACTS PROPERTIES

The type of a contact (normal, negated) or a coil (normal, negated, set, reset) can be
changed by one of the following operations:

-- Double-click on the element (contact or coil).

-- Select the element and then press the Enter key.

-- Select the element, activate the pop-up menu with the right mouse button, then select
Properties.

An apposite dialog box will appear. Select the desired element type from the list presented
and then press OK.

	 user manual	 63

5.3.8	 EDITING NETWORKS

The LD editor is endowed with functions common to most graphic applications running on
a Windows platform, namely:

-- Selection of a block.

-- Selection of a set of blocks by pressing Shift+Right button and by drawing a frame
including the blocks to select.

-- Cut, Copy, and Paste operations of a single block as well as of a set of blocks.

-- Drag-and-drop.

All the mentioned functions are accessible through the Edit menu or through the Main
toolbar.

5.3.9	 MODIFYING PROPERTIES OF BLOCKS

-- Click Increment pins + in the Scheme menu, or press the Inc pins button in the FBD
toolbar, to increment the number of input pins of some operators and embedded func-
tions.

-- Click Enable EN/ENO pins in the Scheme menu, or press the EN/ENO button in the FBD
toolbar, to display the enable input and output pins.

-- Click Object . Instance name in the Scheme menu, or press the FBD properties but-
ton in the FBD toolbar, to change the name of an instance of a function block.

5.3.10	 GETTING INFORMATION ON A BLOCK

You can always get information on a block that you added to an LD document, by selecting
it and then performing one of the following operations:

-- Click Object>Open source in the Scheme menu, or press the View source button in the
FBD toolbar, to open the source code of a block.

-- Click Object properties in the Scheme menu, or press the FBD properties button in
the FBD toolbar, to see properties and input/output pins of the selected block.

5.3.11	 AUTOMATIC ERROR RETRIEVAL

The LD editor also automatically displays the location of compiler errors. To reach the
block where a compiler error occurred, double-click the corresponding error line in the
Output bar.

64	 user manual

5.4	 FUNCTION BLOCK DIAGRAM (FBD) EDITOR

The FBD editor allows you to code and modify POUs using FBD (i.e. Function Block Dia-
gram), one of the IEC-compliant languages.

5.4.1	 CREATING A NEW FBD DOCUMENT

See the Creating and editing POUs section (Paragraphs 5.1.1 and 5.1.2).

5.4.2	 ADDING/REMOVING NETWORKS

Every POU coded in FBD consists of a sequence of networks. A network is defined as a
maximal set of interconnected graphic elements. The upper and lower bounds of every
network are fixed by two straight lines, while each network is delimited on the left by a
grey raised button containing the network number.

You can perform the following operations on networks:

-- To add a new blank network, click Network>New in the Scheme menu, or press one of
the equivalent buttons in the Network toolbar.

-- To assign a label to a selected network, give the Network>Label command from the
Scheme menu. This enables jumping to the labeled network.

-- To display a background grid which helps you to align objects, press View grid in the
Network toolbar.

-- To add a comment, press the Comment button in the FBD toolbar.

5.4.3	 LABELING NETWORKS

You can modify the usual order of execution of networks through a jump statement, which
transfers the program control to a labeled network. To assign a label to a network, double-
click the raised grey button on the left, that bears the network number.

	 user manual	 65

This causes a dialog box to appear, which lets you type the label you want to associate
with the selected network.

If you press OK, the label is printed in the top left-hand corner of the selected network.

5.4.4	 INSERTING AND CONNECTING BLOCKS

This paragraph shows you how to build a network.

Add a block to the blank network, by applying one of the following options:

-- Click Object>New in the Scheme menu.

-- Press the New block button in the FBD toolbar, which causes a dialog box to appear
listing all the objects of the project, then choose one item from the list. If the block is a
constant, a return statement, or a jump statement, you can directly press the relevant
buttons in the FBD toolbar.

-- Drag the selected object to the suitable location. For example, global variables can be
taken from the Workspace window, whereas standard operators and embedded func-
tions can be dragged from the Libraries window, whereas local variables can be se-
lected from the local variables editor.

Repeat until you have added all the blocks that will make up the network.

Then connect blocks:

-- Click Connection mode in the Edit menu, or press the Connection button in the FBD
toolbar, or simply press the space bar of your keyboard. Click once the source pin, then
move the mouse pointer to the destination pin: the FBD editor draws a logical wire from
the former to the latter.

-- If you want to connect two blocks having a one-to-one correspondence of pins, you can
enable the autoconnection mode by clicking Autoconnect in the Scheme menu, or by
pressing the Autoconnect button in the Network toolbar. Then take the two blocks,
drag them close to each other so as to let the corresponding pins coincide. The FBD edi-
tor automatically draws the logical wires.

If you delete a block, its connections are not removed automatically, but they become in-
valid and they are redrawn red. Click Delete invalid connection in the Scheme menu,
or type Ctrl+B on your keyboard.

66	 user manual

5.4.5	 EDITING NETWORKS

The FBD editor is endowed with functions common to most graphic applications running
on a Windows platform, namely:

-- Selection of a block.

-- Selection of a set of blocks by pressing Shift + left button and by drawing a frame
including the blocks to select.

-- Cut, Copy and Paste operations of a single block as well as of a set of blocks.

-- Drag-and-drop.

All the mentioned functions are accessible through the Edit menu or through the Main
toolbar.

5.4.6	 MODIFYING PROPERTIES OF BLOCKS

-- Click Increment pins + in the Scheme menu, or press the Inc pins button in the FBD
toolbar, to increment the number of input pins of some operators and embedded func-
tions.

-- Click Enable EN/ENO pins in the Scheme menu, or press the EN/ENO button in the FBD
toolbar, to display the enable input and output pins.

-- Click Object>Instance name in the Scheme menu, or press the FBD properties button
in the FBD toolbar, to change the name of an instance of a function block.

5.4.7	 GETTING INFORMATION ON A BLOCK

You can always get information on a block that you added to an FBD document, by select-
ing it and then performing one of the following operations:

-- Click Object> Open source in the Scheme menu, or press the View source button in
the FBD toolbar, to open the source code of a block.

-- Click Object properties in the Scheme menu, or press the FBD properties button in
the FBD toolbar, to see properties and input/output pins of the selected block.

5.4.8	 AUTOMATIC ERROR RETRIEVAL

The FBD editor also automatically displays the location of compiler errors. To reach the
block where a compiler error occurred, double-click the corresponding error line in the
Output bar.

	 user manual	 67

5.5	 SEQUENTIAL FUNCTION CHART (SFC) EDITOR

The SFC editor allows you to code and modify POUs using SFC (i.e. Sequential Function
Chart), one of the IEC-compliant languages.

5.5.1	 CREATING A NEW SFC DOCUMENT

See the creating and editing POUs section (Paragraphs 5.1.1 and 5.1.2).

5.5.2	 INSERTING A NEW SFC ELEMENT

You can apply indifferently one of the following procedures:

-- Click Object>New in the Scheme menu, then select the type of the new element (action,
transition, or jump).

-- Press the New step, Add Transition or Add Jump button in the SFC toolbar.

In either case, the mouse pointer changes to:

 for steps;

 for transitions;

 for jumps.

5.5.3	 CONNECTING SFC ELEMENTS

Follow this procedure to connect SFC blocks:

-- Click Connection mode in the Edit menu, or press the Connection button in the FBD
toolbar, or simply press the space bar on your keyboard. Click once the source pin, then
move the mouse pointer to the destination pin: the SFC editor draws a logical wire from
the former to the latter.

-- Alternatively, you can enable the autoconnection mode by clicking Autoconnect in the
Scheme menu, or by pressing the Autoconnect button in the Network toolbar. Then take
the two blocks, and drag them close to each other so as to let the respective pins coin-
cide, which makes the SFC editor draw automatically the logical wire.

5.5.4	 ASSIGNING AN ACTION TO A STEP

This paragraph explains how to implement an action and how to assign it to a step.

5.5.4.1	 WRITING THE CODE OF AN ACTION

To start implementing an action, you need to open an editor. Do it by applying one of the
following procedures:

-- Click Code object>New action in the Scheme menu.

-- Right-click on the name of the SFC POU in the Workspace window. A context menu ap-
pears, from which you can select the New Action command.

68	 user manual

In either case, Application displays a dialog box like the one shown below.

Select one of the languages and type the name of the new action in the text box at the
bottom of the dialog box. Then either confirm by pressing OK, or quit by clicking Cancel.

If you press OK, Application opens automatically the editor associated with the language
you selected in the previous dialog box and you are ready to type the code of the new
action.

Note that you are not allowed to declare new local variables, as the module you are now
editing is a component of the original SFC module, which is the POU where local variables
can be declared. The scope of local variables extends to all the actions and transitions
making up the SFC diagram.

5.5.4.2	 ASSIGNING AN ACTION TO A STEP

When you have finished writing the code, double-click the step you want to assign the
new action to. This causes the following dialog box to appear.

From the list shown in the Code N box, select the name of the action you want to execute
if the step is active. You may also choose, from the list shown in the Code P (Pulse) box,
the name of the action you want to execute each time the step becomes active (that is,
the action is executed only once per step activation, regardless of the number of cycles
the step remains active). Confirm the assignments by pressing OK.

In the SFC schema, action to step assignments are represented by letters on the step
block:

-- action N by letter N in the top right corner;

-- action P by letter P in the bottom right corner.

	 user manual	 69

If later you need to edit the source code of the action, you can just double-click these
letters. Alternatively, you can double-click the name of the action in the Actions folder of
the Workspace window.

5.5.5	 SPECIFYING A CONSTANT/A VARIABLE AS THE CONDITION OF
A TRANSITION

As stated in the relevant section of the language reference, a transition condition can be
assigned through a constant, a variable, or a piece of code. This paragraph explains how
to use the first two means, while conditional code is discussed in the next paragraph.

First of all double-click the transition you want to assign a condition to. This causes the
following dialog box to appear.

Select True if you want this transition to be constantly cleared, False if you want the PLC
program to keep executing the preceding block.

Instead, if you select Variable the transition will depend on the value of a Boolean vari-
able. Click the corresponding bullet, to make the text box to its right available, and to
specify the name of the variable.

To this purpose, you can also make use of the objects browser, that you can invoke by
pressing the Browse button shown here below.

Click OK to confirm, or Cancel to quit without applying changes.

5.5.6	 ASSIGNING CONDITIONAL CODE TO A TRANSITION

This paragraph explains how to specify a condition through a piece of code, and how to
assign it to a transition.

70	 user manual

5.5.6.1	 WRITING THE CODE OF A CONDITION

Start by opening an editor, following one of these procedures:

-- Click Code object>New transition in the Scheme menu.

-- Right-click on the name of the SFC POU in the Workspace window, then select the New
transition command from the context menu that appears.

In either case, Application displays a dialog box similar the one shown in the following
picture.

Note that you can use any language except SFC to code a condition. Select one of the
languages and type the name of the new condition in the text box at the bottom of the
dialog box. Then either confirm by pressing OK, or quit by clicking Cancel.

If you press OK, Application opens automatically the editor associated with the language
you selected in the previous dialog box and you can type the code of the new condition.

Note that you are not allowed to declare new local variables, as the module you are now
editing is a component of the original SFC module, which is the POU where local variables
can be declared. The scope of local variables extends to all the actions and transitions
making up the SFC diagram.

5.5.6.2	 ASSIGNING A CONDITION TO A TRANSITION

When you have finished writing the code, double-click the transition you want to assign
the new condition to. This causes the following dialog box to appear.

Select the name of the condition you want to assign to this step. Then confirm by press-
ing OK.

If later you need to edit the source code of the condition, you can double-click the name

	 user manual	 71

of the transition in the Transitions folder of the Workspace window.

5.5.7	 SPECIFYING THE DESTINATION OF A JUMP

To specify the destination step of a jump, double-click the jump block in the Chart area.
This causes the dialog box shown below to appear, listing the name of all the existing
steps. Select the destination step, then either press OK to confirm or Cancel to quit.

5.5.8	 EDITING SFC NETWORKS

The SFC editor is endowed with functions common to most graphic applications running
on a Windows platform, namely:

-- Selection of a block.

-- Selection of a set of blocks by pressing Ctrl + left button.

-- Cut, Copy, and Paste operations of a single block as well as of a set of blocks.

-- Drag-and-drop.

Some of these functions are accessible through the Edit menu or through the Main tool-
bar.

5.6	 VARIABLES EDITOR

Application includes a graphical editor for both global and local variables that supplies a
user-friendly interface for declaring and editing variables: the tool takes care of the trans-
lation of the contents of these editors into syntactically correct IEC 61131-3 source code.

As an example, consider the contents of the Global variables editor represented in the
following figure.

72	 user manual

The corresponding source code will look like this:

VAR_GLOBAL

		 gA : BOOL := TRUE;

		 gB : ARRAY[0..4] OF REAL;

		 gC AT %MD60.20 : REAL := 1.0;

	 END_VAR

	 VAR_GLOBAL CONSTANT

		 gD : INT := -74;

	 END_VAR

5.6.1	 OPENING A VARIABLES EDITOR

5.6.1.1	 OPENING THE GLOBAL VARIABLES EDITOR

In order to open the Global variables editor, double-click on Global variables in the
project tree.

5.6.1.2	 OPENING A LOCAL VARIABLES EDITOR

To open a local variables editor, just open the Program Organization Unit the variables you
want to edit are local to.

	 user manual	 73

5.6.2	 CREATING A NEW VARIABLE

In order to create a new variable, you may click on the Insert record item in the Pro-
ject toolbar.

Alternatively, you may access the Variables menu and choose Insert.

5.6.3	 EDITING VARIABLES

Follow this procedure to edit the declaration of a variable in a variables editor (all the fol-
lowing steps are optional and you will typically skip most of them when editing a variable):

1)	 Edit the name of the variable by entering the new name in the corresponding cell.

2)	 Change the variable type, either by editing the type name in the corresponding cell
or by clicking on the button in that cell and select the desired type from the list that
pops up.

74	 user manual

3)	 Edit the address of the variable by clicking on the button in the corresponding cell
and entering the required information in the window that shows up. Note that, in the
case of global variables, this operation may change the position of the variable in the
project tree.

4)	 In the case of global variables, you can assign the variable to a group, by selecting
it from the list which opens when you click on the corresponding cell. This operation
will change the position of the variable in the project tree.

5)	 Choose whether a variable is an array or not; if it is, edit the size of the variable.

	 user manual	 75

6)	 Edit the initial values of the variable: click on the button in the corresponding cell and
enter the values in the window that pops up.

7)	 Assign an attribute to the variable (for example, CONSTANT or RETAIN), by selecting it
from the list which opens when you click on the corresponding cell.

8)	 Type a description for the variable in the corresponding cell. Note that, in the case of
global variables, this operation may change the position of the variable in the project
tree.

9)	 Save the project to persist the changes you made to the declaration of the variable.

5.6.4	 DELETING VARIABLES

In order to delete one or more variables, select them in the editor: you may use the CTRL
or the SHIFT keys to select multiple elements.

76	 user manual

Then, click on the Delete record in the Project toolbar.

Alternatively, you may access the Variables menu and choose Delete.

Notice that you cannot delete the RESULT of an IEC61131-3 FUNCTION.

5.6.5	 SORTING VARIABLES

You can sort the variables in the editor by clicking on the column header of the field you
want to use as the sorting criterion.

	 user manual	 77

5.6.6	 COPYING VARIABLES

The variables editor allows you to quickly copy and paste elements. You can either use
keyboard shortcuts or the Edit menu to access these features.

78	 user manual

	 user manual	 79

6.	 COMPILING

Compilation consists of taking the PLC source code and automatically translating it into
binary code, which can be executed by the processor on the target device.

6.1	 COMPILING THE PROJECT

Before starting actual compilation, make sure that at least one program has been as-
signed to a task.

When this pre-condition does not hold, compilation aborts with a meaningful error mes-
sage.

In order to start compilation, click the Compile button in the Project toolbar.

Alternatively, you can choose Compile from the Project menu or press F7 on your key-
board.

Note that Application automatically saves all changes to the project before starting the
compilation.

6.1.1	 IMAGE FILE LOADING

Before performing the actual compilation, the compiler needs to load the image file (img
file), which contains the map of memory of the target device. If the target is connected
when compilation is started, the compiler seeks the image file directly on the target. Oth-
erwise, it loads the local copy of the image file from the working folder. If the target device
is disconnected and there is no local copy of the image file, compilation cannot be carried
out: you are then required to connect to a working target device.

80	 user manual

6.2	 COMPILER OUTPUT

If the previous step was accomplished, the compiler performs the actual compilation, then
prints a report in the Output bar. The last string of the report has the following format:

m warnings, n errors

It tells the user the outcome of compilation.

Condition Description

n>0 Compiler error(s). The PLC code contains one or more serious errors,
which cannot be worked around by the compiler.

n=0, m>0

Emission of warning(s). The PLC code contains one or more minor
errors, which the compiler automatically spotted and worked around.
However, you are informed that the PLC program may act in a
different way from what you expected: you are encouraged to get rid
of these warnings by editing and re-compiling the application until no
warning messages are emitted.

n=m=0 PLC code entirely correct, compilation accomplished. You should
always work with 0 warnings, 0 errors.

6.2.1	 COMPILER ERRORS

When your application contains one or more errors, some useful information is printed in
the Output window for each of those errors.

As you can see, the information includes:

-- the name of the Program Organization Unit affected by the error;

-- the number of the source code line which procured the error;

-- whether it is a fatal error (error) or one that the compiler could work around (warn-
ing);

-- the error code;

-- the error description.

	 user manual	 81

Refer to the appropriate section for the compiler error reference.

If you double-click the error message in the Output bar, Application opens the source
code and highlights the line containing the error.

You can then solve the problem and re-compile.

82	 user manual

6.3	 COMMAND-LINE COMPILER

Application’s compiler can be used independently from the IDE: in Application’s directory,
you can find an executable file, Command-line compiler, which can be invoked (for ex-
ample, in a batch file) with a number of options.

In order to get information about the syntax and the options of this command-line tool,
just launch the executable without parameters.

	 user manual	 83

7.	 LAUNCHING THE APPLICATION

In order to download and debug the application, you have to establish a connection with
the target device. This chapter focuses on the operations required to connect to the target
and to download the application, while the wide range of Application’s debugging tools
deserves a separate chapter (see Chapter 9.).

7.1	 SETTING UP THE COMMUNICATION

In order to establish the connection with the target device, make sure the physical link is
up (all the cables are plugged in, the network is properly configured, and so on).

Follow this procedure to set up and establish the connection to the target device:

1)	 Click Settings in the Communication menu of the Application main window. This
causes the following dialog box to appear.

The elements in the list of communication protocols you can select from depend on
the setup executable(s) you have run on your PC (refer to your hardware provider if
a protocol you expect to appear in the list is missing).

2)	 Choose the appropriate protocol and make it the active protocol.

84	 user manual

3)	 Fill in all the protocol-specific settings (e.g., the address or the communication
timeout - that is how long Application must wait for an answer from the target before
displaying a communication error message).

4)	 Apply the changes you made to the communication settings.

Now you can establish communication by clicking Connect in the Communication menu,
or by pressing the Connect button in the Project toolbar.

	 user manual	 85

7.1.1	 SAVING THE LAST USED COMMUNICATION PORT

When you connect to target devices using a serial port (COM port), you usually use the
same port for all devices (many modern PCs have only one COM port). You may save the
last used COM port and let Application use that port to override the project settings: this
feature proves especially useful when you share projects with other developers, which
may use a different COM port to connect to the target device.

In order to save your COM port settings, enable the Use last port option in File > Op-
tions... menu.

7.2	 ON-LINE STATUS

7.2.1	 CONNECTION STATUS

The state of communication is shown in a small box next to the right border of the Status
bar.

If you have not yet attempted to connect to the target, the state of communication is set
to Not connected.

When you try to connect to the target device, the state of communication becomes one
of the following:

-- Error: the communication cannot be established. You should check both the physical
link and the communication settings.

-- Connected: the communication has been established.

7.2.2	 APPLICATION STATUS

Next to the communication status there is another small box which gives information
about the status of the application currently executing on the target device.

When the connection status is Connected, the application status takes on one of the fol-
lowing values.

-- No code: no application is executing on the target device.

86	 user manual

-- Diff. code: the application currently executing on the target device is not the same as
the one currently open in the IDE; moreover, no debug information consistent with the
running application is available: thus, the values shown in the watch window or in the
oscilloscope are not reliable and the debug mode cannot be activated.

-- Diff. code, Symbols OK: the application currently executing on the target device is
not the same as the one currently open in the IDE; however, some debug information
consistent with the running application is available (for example, because that applica-
tion has been previously downloaded to the target device from the same PC): the values
shown in the watch window or in the oscilloscope are reliable, but the debug mode still
cannot be activated.

-- Source OK: the application currently executing on the target device is the same as the
one currently open in the IDE: the debug mode can be activated.

7.3	 DOWNLOADING THE APPLICATION

A compiled PLC application must be downloaded to the target device in order to have
the processor execute it. This paragraph shows you how to send a PLC code to a target
device. Note that Application can download the code to the target device only if the latter
is connected to the PC where Application is running. See the related section for details.

To download the application, click on the related button in the Project toolbar.

Alternatively, you can choose Download code from the Project menu or press the F5 key.

Application checks whether the project has unsaved changes. If this is the case, it auto-
matically starts the compilation of the application. The binary code is eventually sent to
the target device, which then undergoes automatic reset at the end of transmission. Now
the code you sent is actually executed by the processor on the target device.

7.3.1	 CONTROLLING SOURCE CODE DOWNLOAD

Whether the source code of the application is downloaded along with the binary code or
not, depends on the target device you are interfacing with: some devices host the appli-
cation source code in their storage, in order to allow the developer to upload the project
in a later moment.

If this is the case, you can control some aspects of the source code download process, as
explained in the following paragraphs.

	 user manual	 87

7.3.1.1	 SUSPENDING SOURCE CODE DOWNLOAD

In order to speed up the development cycle, you may want to disable source code down-
load: uncheck the Source code download item in the Communication menu.

When you stop developing the application, you can enable source code download again by
checking the same menu item.

When you disconnect from the target device, Application checks if the application cur-
rently executing on the target and the source code available on-board match, alerting you
if they do not.

7.3.1.2	 PROTECTING THE SOURCE CODE WITH A PASSWORD

You may want to protect the source code downloaded to the target device with a pass-
word, so that Application will not open the uploaded project unless the correct password
is entered.

Open the Project options window (Project > Options ... menu) and set the pass-
word.

88	 user manual

You may opt to disable the password, instead.

7.4	 SIMULATION

Depending on the target device you are interfacing with, you may be able to simulate the
execution of the PLC application with Application’s integrated simulation environment:
Simulation.

In order to start the simulation, just click on the appropriate item on the Project toolbar.

Refer to Simulation’s manual to gain information on how to control the simulation.

	 user manual	 89

8.	 DEBUGGING

Application provides several debugging tools, which help the developer to check whether
the application behaves as expected or not.

All these debugging tools basically allow the developer to watch the value of selected vari-
ables while the PLC application is running.

Application debugging tools can be gathered in two classes:

-- Asynchronous debuggers. They read the values of the variables selected by the devel-
oper with successive queries issued to the target device. Both the manager of the de-
bugging tool (that runs on the PC) and, potentially, the task which is responsible to an-
swer those queries (on the target device) run independently from the PLC application.
Thus, there is no guarantee about the values of two distinct variables being sampled in
the same moment, with respect to the PLC application execution (one or more cycles
may have occurred); for the same reason, the evolution of the value of a single variable
is not reliable, especially when it changes fast.

-- Synchronous debuggers. They require the definition of a trigger in the PLC code. They
refresh simultaneously all the variables they have been assigned every time the proces-
sor reaches the trigger, as no further instruction can be executed until the value of all
the variables is refreshed. As a result, synchronous debuggers obviate the limitations
affecting asynchronous ones.

This chapter shows you how to debug your application using both asynchronous and syn-
chronous tools.

8.1	 WATCH WINDOW

The Watch window allows you to monitor the current values of a set of variables. Being
an asynchronous tool, the Watch window does not guarantee synchronization of values.
Therefore, when reading the values of the variables in the Watch window, be aware of
the possibility that they may refer to different execution cycles of the corresponding task.

The Watch window contains an item for each variable that you added to it. The informa-
tion shown in the Watch window includes the name of the variable, its value, its type, and
its location in the PLC application.

8.1.1	 OPENING AND CLOSING THE WATCH WINDOW

To open the Watch window, click on the Watch button of the Main toolbar.

To close the Watch window, click on the Watch button again.

90	 user manual

Alternatively, you can click on the Close button in the top right corner of the Watch win-
dow.

In both cases, closing the Watch window means simply hiding it, not resetting it. As a
matter of fact, if you close the Watch window and then open it again, you will see that it
still contains all the variables you added to it.

8.1.2	 ADDING ITEMS TO THE WATCH WINDOW

To watch a variable, you need to add it to the watch list.

Note that, unlike trigger windows and the Graphic trigger window, you can add to the
Watch window all the variables of the project, regardless of where they were declared.

8.1.2.1	 ADDING A VARIABLE FROM A TEXTUAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Watch window from a textual (that is, IL or
ST) source code editor: select a variable, by double-clicking on it, and then drag it into
the watch window.

The same procedure applies to all the variables you wish to inspect.

8.1.2.2	 ADDING A VARIABLE FROM A GRAPHICAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Watch window from a graphical (that is, LD,
FBD, or SFC) source code editor:

1)	 Press the Watch button in the FBD bar.

2)	 Click on the block representing the variable you wish to be shown in the Watch win-
dow.

	 user manual	 91

3)	 A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked on.

In order to display the variable in the Watch window, select Watch, then press OK.

The variable name, value, and location are now displayed in a new row of the Watch win-
dow.

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Watch window all the variables you want to observe, you
should click on the Select/Move button in the FBD bar: the mouse cursor turns to its
original shape.

92	 user manual

8.1.2.3	 ADDING A VARIABLE FROM A VARIABLES EDITOR

In order to add a variable to the Watch window, you can select the corresponding record
in the variables editor and then either drag-and-drop it in the Watch window

or press the F8 key.

8.1.2.4	 ADDING A VARIABLE FROM THE PROJECT TREE

In order to add a variable to the Watch window, you can select it in the project tree and
then either drag-and-drop it in the Watch window

or press the F8 key.

	 user manual	 93

8.1.2.5	 ADDING A VARIABLE FROM THE WATCH WINDOW TOOLBAR

You can also click on the appropriate item of the Watch window inner toolbar, in order to
add a variable to it.

You shall type (or select by browsing the project symbols) the name of the variable and
its location (where it has been declared).

8.1.3	 REMOVING A VARIABLE

If you want a variable not to be displayed any more in the Watch window, select it by
clicking on its name once, then press the Del key.

8.1.4	 REFRESHMENT OF VALUES

8.1.4.1	 NORMAL OPERATION

Let us consider the following example.

94	 user manual

The watch window manager reads periodically from memory the value of the variables.

However, this action is carried out asynchronously , that is it may happen that a higher-
priority task modifies the value of some of the variables while they are being read. Thus,
at the end of a refreshment process, the values displayed in the window may refer to dif-
ferent execution states of the PLC code.

8.1.4.2	 TARGET DISCONNECTED

If the target device is disconnected, the Value column contains three dots.

8.1.4.3	 OBJECT NOT FOUND

If the PLC code changes and Application cannot retrieve the memory location of an object
in the Watch window, then the Value column contains three dots.

If you try to add to the Watch window a symbol which has not been allocated, Application
gives the following error message.

8.1.5	 CHANGING THE FORMAT OF DATA

When you add a variable to the Watch window, Application automatically recognizes its
type (unsigned integer, signed integer, floating point, hexadecimal), and displays its value
consistently. Also, if the variable is floating point, Application assigns it a default number
of decimal figures.

However, you may need the variable to be printed in a different format.

	 user manual	 95

To impose another format than the one assigned by Application, press the Format value
button in the toolbar.

Choose the format and confirm your choice.

8.1.6	 WORKING WITH WATCH LISTS

You can store to file the set of all the items in the Watch window, in order to easily restore
the status of this debugging tools in a successive working session.

Follow this procedure to save a watch list:

1)	 Click on the corresponding item in the Watch window toolbar.

2)	 Enter the file name and choose its destination in the file system.

96	 user manual

In order to load a watch list, follow this procedure:

1)	 Click on the corresponding item in the Watch window toolbar.

2)	 Browse the file system and select the watch list file.

The set of symbols in the watch list is added to the Watch window.

8.2	 OSCILLOSCOPE

The Oscilloscope allows you to plot the evolution of the values of a set of variables. Be-
ing an asynchronous tool, the Oscilloscope cannot guarantee synchronization of samples.

Opening the Oscilloscope causes a new window to appear next to the right-hand border
of the Application frame. This is the interface for accessing the debugging functions that
the Oscilloscope makes available. The Oscilloscope consists of three elements, as shown
in the following picture.

	 user manual	 97

The toolbar allows you to better control the Oscilloscope. A detailed description of the
function of each control is given later in this chapter.

The Chart area includes several items:

-- Plot: area containing the curve of the variables.

-- Vertical cursors: cursors identifying two distinct vertical lines. The values of each vari-
able at the intersection with these lines are reported in the corresponding columns.

-- Scroll bar: if the scale of the x-axis is too large to display all the samples in the Plot
area, the scroll bar allows you to slide back and forth along the horizontal axis.

The lower section of the Oscilloscope is a table consisting of a row for each variable.

8.2.1	 OPENING AND CLOSING THE OSCILLOSCOPE

To open the Oscilloscope, click on the Async button of the Main toolbar.

To close the Oscilloscope, click on the Async button again.

Alternatively, you can click on the Close button in the top right corner of the Oscillo-
scope window.

98	 user manual

In both cases, closing the Oscilloscope means simply hiding it, not resetting it. As a mat-
ter of fact, if you open again the Oscilloscope after closing it, you will see that plotting of
the curve of all the variables you added to it starts again.

8.2.2	 ADDING ITEMS TO THE OSCILLOSCOPE

In order to plot the evolution of the value of a variable, you need to add it to the Oscil-
loscope.

Note that unlike trigger windows and the Graphic trigger window, you can add to the
Oscilloscope all the variables of the project, regardless of where they were declared.

8.2.2.1	 ADDING A VARIABLE FROM A TEXTUAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Oscilloscope from a textual (that is, IL or
ST) source code editor: select a variable by double-clicking on it, and then drag it into the
Oscilloscope window.

The same procedure applies to all the variables you wish to inspect.

8.2.2.2	 ADDING A VARIABLE FROM A GRAPHICAL SOURCE CODE EDITOR

Follow this procedure to add a variable to the Oscilloscope from a graphical (that is, LD,
FBD, or SFC) source code editor:

1)	 Press the Watch button in the FBD bar.

2)	 Click on the block representing the variable you wish to be shown in the Oscilloscope.

	 user manual	 99

3)	 A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked on.

Select Oscilloscope, the press OK. The name of the variable is now displayed in the
Track column.

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Oscilloscope all the variables you want to observe, you should
click on the Select/Move button in the FBD bar: the mouse cursor turns to its original
shape.

8.2.2.3	 ADDING A VARIABLE FROM A VARIABLES EDITOR

In order to add a variable to the Oscilloscope, you can select the corresponding record in
the variables editor and then either drag-and-drop it in the Oscilloscope

or press the F10 key and choose Oscilloscope from the list of debug windows which pops
up.

100	 user manual

8.2.2.4	 ADDING A VARIABLE FROM THE PROJECT TREE

In order to add a variable to the Oscilloscope, you can select it in the project tree and then
either drag-and-drop it in the Oscilloscope

or press the F10 key and choose Oscilloscope from the list of debug windows which
pops up.

8.2.3	 REMOVING A VARIABLE

If you want to remove a variable from the Oscilloscope, select it by clicking on its name
once, then press the Del key.

8.2.4	 VARIABLES SAMPLING

8.2.4.1	 NORMAL OPERATION

Let us consider the following example.

	 user manual	 101

The Oscilloscope manager periodically reads from memory the value of the variables.

However, this action is carried out asynchronously, that is it may happen that a higher-
priority task modifies the value of some of the variables while they are being read. Thus,
at the end of a sampling process, data associated with the same value of the x-axis may
actually refer to different execution states of the PLC code.

8.2.4.2	 TARGET DISCONNECTED

If the target device is disconnected, the curves of the dragged-in variables get frozen,
until communication is restored.

8.2.5	 CONTROLLING DATA ACQUISITION AND DISPLAY

The Oscilloscope includes a toolbar with several commands, which can be used to control
the acquisition process and the way data are displayed. This paragraph focuses on these
commands.

Note that all the commands in the toolbar are disabled if no variable has been added to
the Oscilloscope.

8.2.5.1	 STARTING AND STOPPING DATA ACQUISITION

When you add a variable to the Oscilloscope, data acquisition begins immediately.

However, you can suspend the acquisition by clicking on Pause acquisition.

102	 user manual

The curve freezes (while the process of data acquisition is still running in background),
until you click on Restart acquisition.

In order to stop the acquisition you may click on Stop acquisition.

In this case, when you click on Restart acquisition, the evolution of the value of the
variable is plotted from scratch.

8.2.5.2	 SETTING THE SCALE OF THE AXES

When you open the Oscilloscope, Application applies a default scale to the axes. However,
if you want to set a different scale, you may follow this procedure:

1)	 Open the graph properties by clicking on the corresponding item in the toolbar.

	 user manual	 103

2)	 Set the scale of the horizontal axis, which is common to all the tracks.

3)	 For each variable, you may specify a distinct scale for the vertical axis.

4)	 Confirm your settings. The graph adapts to reflect the new scale.

104	 user manual

You can also zoom in and out with respect to both the horizontal and the vertical axes.

Finally, you may also quickly adapt the scale of the horizontal axis, the vertical axis, or
both to include all the samples, by clicking on the corresponding item of the toolbar.

	 user manual	 105

8.2.5.3	 VERTICAL SPLIT

When you are watching the evolution of two or more variables, you may want to split the
respective tracks. For this purpose, click on the Vertical split item in the Oscillo-
scope toolbar.

8.2.5.4	 VIEWING SAMPLES

If you click on the Show samples item in the Oscilloscope toolbar, the tool highlights
the single values detected during data acquisition.

You can click on the same item again, in order to go back to the default view mode.

106	 user manual

8.2.5.5	 TAKING MEASURES

The Oscilloscope includes two measure bars, which can be exploited to take some meas-
ures on the chart; in order to show and hide them, click on the Show measure bars item
in the Oscilloscope toolbar.

If you want to measure a time interval between two events, you just have to move one
bar to the point in the graph that corresponds to the first event and the other to the point
that corresponds to the second one.

The time interval between the two bars is shown in the top left corner of the chart.

You can use a measure bar also to read the value of all the variables in the Oscilloscope
at a particular moment: move the bar to the point in the graph which corresponds to the
instant you want to observe.

	 user manual	 107

In the table below the chart, you can now read the values of all the variables at that par-
ticular moment.

8.2.5.6	 OSCILLOSCOPE SETTINGS

You can further customize the appearance of the Oscilloscope by clicking on the Graph
properties item in the toolbar.

In the window that pops up you can choose whether to display or not the Background
grid, the Time slide bar, and the Track list.

8.2.6	 CHANGING THE POLLING RATE

Application periodically sends queries to the target device, in order to read the data to be
plotted in the Oscilloscope.

The polling rate can be configured by following this procedure:

1)	 Click on the Graph properties item in the toolbar.

108	 user manual

2)	 In the window that pops up edit the Sampling polling rate.

3)	 Confirm your decision.

Note that the actual rate depends on the performance of the target device (in particular,
on the performance of its communication task). You can read the actual rate in the Oscil-
loscope settings window.

8.2.7	 SAVING AND PRINTING THE GRAPH

Application allows you to persist the acquisition either by saving the data to a file or by
printing a view of the data plotted in the Oscilloscope.

8.2.7.1	 SAVING DATA TO A FILE

You can save the samples acquired by the Oscilloscope to a file, in order to further analyze
the data with other tools.

1)	 You may want to stop acquisition before saving data to a file.

2)	 Click on the Save tracks data into file in the Oscilloscope toolbar.

3)	 Choose between the available output file format: OSC is a simple plain-text file, con-
taining time and value of each sample; OSCX is an XML file, that includes more
complete information, which can be further analyzed with another tool, provided
separately from Application.

4)	 Choose a file name and a destination directory, then confirm the operation.

	 user manual	 109

8.2.7.2	 PRINTING THE GRAPH

Follow this procedure to print a view of the data plotted in the Oscilloscope:

1)	 Either suspend or stop the acquisition.

2)	 Move the time slide bar and adjust the zoom, in order to include in the view the ele-
ments you want to print.

3)	 Click on the Print graph item.

8.3	 EDIT AND DEBUG MODE

While both the Watch window and the Oscilloscope do not make use of the source code,
all the other debuggers do: thus, Application requires the developer to switch on the de-
bug mode, where changes to the source code are inhibited, before (s)he can access those
debugging tools.

To switch on and off the debug mode, you can click on the corresponding item in the De-
bug toolbar.

110	 user manual

Alternatively, you can choose Debug mode from the Project menu.

The status bar shows whether the debug mode is active or not.

Note that you cannot enter the debug mode if the connection status differs from Con-
nected.

8.4	 LIVE DEBUG

Application can display meaningful animation of the current and changing state of execu-
tion over time of a Program Organization Unit (POU) coded in any IEC 61131-3 program-
ming language.

To switch on and off the live debug mode, you may click on the corresponding item in the
Debug toolbar

or choose Live debug mode from the Project menu.

	 user manual	 111

8.4.1	 SFC ANIMATION

As explained in the relevant section of the language reference, an SFC POU is structured
in a set of steps, each of which is either active or inactive at any given moment. Once
started up, this SFC-specific debugging tool animates the SFC documents by highlighting
the active steps.

Animation OFF Animation ON

In the left column, a portion of an SFC network is shown, diagram animation being off.

In the right column the same portion of network is displayed when the live debug mode
is active. The picture in the right column shows that steps S1 and S3 are currently active,
whereas Init, S2, and S4 are inactive.

Note that the SFC animation manager tests periodically the state of all steps, the user not
being allowed to edit the sampling period. Therefore, it may happen that a step remains
active for a slot of time too short to be displayed on the video.

The fact that a step is never highlighted does not imply that its action is not executed, it
may simply mean that the sampling rate is too slow to detect the execution.

8.4.1.1	 DEBUGGING ACTIONS AND CONDITIONS

As explained in the SFC language reference, a step can be assigned to an action, and a
transition can be associated with a condition code. Actions and conditions can be coded in
any of the IEC 61131-3 languages. General-purpose debugging tools can be used within
each action/condition, as if it was a stand-alone POU.

8.4.2	 LD ANIMATION

In live debug mode, Ladder Diagram schemes are animated by highlighting the contacts
and coils whose value is true (in the example, i1 and i2).

112	 user manual

Note that the LD animation manager tests periodically the state of all the elements. It
may happen that an element remains true for a slot of time too short to be displayed
on the video. The fact that an element is never highlighted does not imply that its value
never becomes true (the sampling rate may be too slow).

8.4.3	 FBD ANIMATION

In live debug mode, Application displays the values of all the visible variables directly in
the graphical source code editor.

This works for both FBD and LD programming language.

Note that, once again, this tool is asynchronous.

8.4.4	 IL AND ST ANIMATION

The live debug mode also applies to textual source code editors (the ones for IL and ST).
You can quickly watch the values of a variable by hovering with the mouse over it.

8.5	 TRIGGERS

8.5.1	 TRIGGER WINDOW

The Trigger window tool allows you to select a set of variables and to have them updated
synchronously in a special pop-up window.

	 user manual	 113

8.5.1.1	 PRE-CONDITIONS TO OPEN A TRIGGER WINDOW

No need for special compilation

Application debugging tools operate at run-time. Thus, unlike other programming lan-
guages such as C++, the compiler does not need to be told whether or not to support trig-
ger windows: given a PLC code, the compiler’s output is unique, and there is no distinction
between debug and release version.

Memory availability

A trigger window takes a segment in the application code sector, having a well-defined
length. Obviously, in order to start up a trigger window, it is necessary that a sufficient
amount of memory is available, otherwise an error message appears.

Incompatibility with graphic trigger windows

A graphic trigger window takes the whole free space of the application code sector. There-
fore, once such a debugging tool has been started, it is not possible to add any trigger
window, and an error message appears if you attempt to start a new window. Once the
graphic trigger window is eventually closed, trigger windows are enabled again.

Note that all the trigger windows existing before the starting of a graphic trigger window
keep working normally. You are simply not allowed to add new ones.

8.5.1.2	 TRIGGER WINDOW TOOLBAR

Trigger window icons are part of the Debug toolbar and are enabled only if Application is
in debug mode.

Button Command Description

Set/Remove trigger

In order to actually start a trigger window,
select the point of the PLC code where to insert
the relative trigger and then press this button.
The same procedure applies to trigger window
removal: in order to definitely close a debug
window, click once the instruction/block where the
trigger was inserted, then press this button again.

Graphic trace

This button operates exactly as the above Set/
Remove trigger, except for that it opens a
graphic trigger window. It can be used likewise
also to remove a graphic trigger window. Shortcut
key: pressing Shift + F9 is equivalent to clicking
on Set/Remove trigger button.

Remove all
triggers

Pressing this key causes all the existing trigger
windows and the graphic trigger window to be
removed simultaneously. Shortcut key: pressing
Ctrl+Shift+F9 is equivalent to clicking on this
button.

Trigger list
This key opens a dialog listing all the existing
trigger windows. Shortcut key: pressing Ctrl+I is
equivalent to clicking on this button.

114	 user manual

Each record refers to a trigger window, either graphic or textual. The following table ex-
plains the meaning of each field.

Field Description

Type
T: trigger window.

G: graphic trigger window.

Module

Name of the program, function, or function block where
the trigger is placed. If the module is a function block, this
field contains its name, not the name of its instance where
you actually put the trigger.

Line
For the textual languages (IL, ST) indicates the line in
which the trigger is placed. For the other languages the
value is always -1.

8.5.1.3	 TRIGGER WINDOW INTERFACE

Setting a trigger causes a pop-up window to appear, which is called Interface window:
this is the interface to access the debugging functions that the trigger window makes
available. It consists of three elements, as shown below.

Caption bar

The Caption bar of the pop-up window shows information on the location of the trigger
which causes the refresh of the Variables window, when reached by the processor.

The text in the Caption bar has the following format:

Trigger n° X at ModuleName#Location

	 user manual	 115

where

X Trigger identifier.

ModuleName Name of the program, function, or function block where
the trigger was placed.

Location

Exact location of the trigger, within module ModuleName.

If ModuleName is in IL, Location has the following format:

N1

Otherwise, if ModuleName is in FBD, it becomes:

N2$BT:BID

where:

N1 = instruction line number

N2 = network number

BT = block type (operand, function, function block, etc.)

BID = block identifier

Controls section

This dialog box allows the user to better control the refresh of the trigger window to get
more information on the code under scope. A detailed description of the function of each
control is given in the Trigger window controls section (see 9.5.2.11).

All controls except Ac, the Accumulator display button, are not accessible until at least
one variable is dragged into the debug window.

The Variables section

This lower section of the Debug window is a table consisting of a row for each variable that
you dragged in. Each row has four fields: the name of the variable, its value, its type, and
its location (@task:ModuleName) read from memory during the last refresh.

8.5.1.4	 TRIGGER WINDOW: DRAG AND DROP INFORMATION

To watch a variable, you need to copy it to the lower section of the Debug window.

This section is a table consisting of a row for each variable you dragged in. You can drag
into the trigger window only variables local to the module where you placed the relative
trigger, or global variables, or parameters. You cannot drag variables declared in another
program, or function, or function block.

116	 user manual

8.5.1.5	 REFRESH OF THE VALUES

Let us consider the following example.

The value of variables is refreshed every time the window manager is triggered, that is
every time the processor executes the instruction marked by the green arrowhead. How-
ever, you can set controls in order to have variables refreshed only when triggers satisfy
the more limiting conditions you define.

Note that the value of the variables in column Symbol is read from memory just before
the marked instruction (in this case: the instruction at line 5) and immediately after the
previous instruction (the one at line 4) has been performed.

Thus, in the above example the second ST statement has not been executed yet when the
new value of a is read from memory and displayed in the trigger window. Thus the result
of the second ST a is 1.

8.5.1.6	 TRIGGER WINDOW CONTROLS

This paragraph deals with the trigger window controls, which allows you to better super-
vise the working of this debugging tool, to get more information on the code under scope.

Trigger window controls act in a well-defined way on the behavior of the window, regard-
less for the type of the module (either IL or FBD) where the related trigger has been
inserted.

All controls except the Accumulator display are not accessible until at least one variable
is dragged into the Variables window.

Window controls are made accessible to users through the grey top half of the debug
window.

	 user manual	 117

Button Command Description

Start/Stop

This control is used to start a triggering session.
If system is triggering you can click this button to
force stop. Otherwise session automatically stops
when conditions are reached. At this point you
can press this button to start another triggering
session.

Single step
execution

This control is used to execute a single step
trigger. It is enabled only when there is no active
triggering session and None is selected. Specified
condition is considered. After the single step
trigger is done, triggering session automatically
stops.

Accumulator
display

This control adds the Accumulator to the list of
variables already dragged into the trigger window.
A new row is added at the bottom of the table of
variables, containing the string Accumulator in
column Symbol, the accumulator’s value in column
Value, Type is not specified and Location is set
to global as shown in the following figure.

In order to remove the accumulator from the table, click its name in Symbol column, and
press the Del key.

This control can be very useful if a trigger was inserted before a ST statement, because
it allows you to know what value is being written in the destination variable, during the
current execution of the task. You can get the same result by moving the trigger to an
instruction following the one marked by the green arrowhead.

Trigger counter

This read-only control counts how many times the debug window manager has been trig-
gered, since the window was installed.

The window manager automatically resets this counter every time a new triggering ses-
sion is started.

118	 user manual

Trigger state

This read-only control shows the user the state of the Debug window. It can assume the
following values.

The trigger has not occurred during the current task execution.

The trigger has occurred during the current task execution.

System is not triggering. Triggering has not been started yet
or it has been stopped by user or an halt condition has been
reached.

Communication with target interrupted, the state of the trigger
window cannot be determined.

User-defined condition

If you define a condition by using this control, the values in the Debug window are re-
freshed every time the window manager is triggered and the user-defined condition is
true.

After you have entered a condition, the control displays its simplified expression.

Counters

These controls allow the user to define conditions on the trigger counter.

The trigger window can be in one of the following three states.

-- None: no counter has been started up, thus no condition has been specified upon the
trigger.

-- For: assuming that you gave the counter limit the value N, the window manager adds
1 to the current value of the counter and refreshes the value of its variables, each time
the debug window is triggered. However, when the counter equals N, the window stops
refreshing the values, and it changes to the Stop state.

-- After: assuming that you gave the counter limit the value N, the window manager re-
sets the counter and adds 1 to its current value each time it is triggered. The window
remains in the Ready state and does not update the value of its variables until the
counter reaches N.

8.5.2	 DEBUGGING WITH TRIGGER WINDOWS

8.5.2.1	 INTRODUCTION

The trigger window tool allows the user to select a set of variables and to have their val-
ues displayed and updated synchronously in a pop-up window. Unlike the Watch window,
trigger windows refresh simultaneously all the variables they contain, every time they are
triggered.

	 user manual	 119

8.5.2.2	 OPENING A TRIGGER WINDOW FROM AN IL MODULE

Let us assume that you have an IL module, also containing the following instructions.

Let us also assume that you want to know the value of b, d, and k, just before the ST k
instruction is executed. To do so, move the cursor to line 12.

Then you can click the Set/Remove trigger button in the Debug toolbar

or you can press the F9 key.

In both cases, a green arrowhead appears next to the line number, and the related trigger
window pops up.

Not all the IL instructions support triggers. For example, it is not possible to place a trig-
ger at the beginning of a line containing a JMP statement.

8.5.2.3	 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN IL MODULE

In order to watch the value of a variable, you need to add it to the trigger window. To this
purpose, select a variable by double-clicking it, and then drag it into the Variables win-
dow, that is the lower white box in the pop-up window. The variable’s name now appears
in the Symbol column.

The same procedure applies to all the variables you wish to inspect.

120	 user manual

8.5.2.4	 OPENING A TRIGGER WINDOW FROM AN FBD MODULE

Let us assume that you have an FBD module, also containing the following instructions.

Let us also assume that you want to know the values of C, D, and K, just before the ST
k instruction is executed.

Provided that you can never place a trigger in a block representing a variable such as

you must select the first available block preceding the selected variable. In the example
of the above figure, you must move the cursor to network 3, and click the ADD block.

You can click the Set/Remove trigger button in the Debug bar

or you can press the F9 key.

In both cases, the color of the selected block turns to green, a white circle with a number
inside appears in the middle of the block, and the related trigger window pops up.

	 user manual	 121

When preprocessing FBD source code, the compiler translates it into IL instructions. The
ADD instruction in network 3 is expanded to:

LD k

ADD 1

ST k

When you add a trigger to an FBD block, you actually place the trigger before the first
statement of its IL equivalent code.

8.5.2.5	 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN FBD MODULE

In order to watch the value of a variable, you need to add it to the trigger window. Let
us assume that you want to inspect the value of variable k of the FBD code in the figure
below.

To this purpose, press the Watch button in the FBD bar.

The cursor will become as follows.

Now you can click the block representing the variable you wish to be shown in the trigger
window.

In the example we are considering, click the button block.

A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

In order to display the variable k in the trigger window, select its reference in the Debug
windows column, then press OK. The name of the variable is now printed in the Symbol
column.

122	 user manual

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press the normal cursor button, so as to let the cursor take back its original
shape.

8.5.2.6	 OPENING A TRIGGER WINDOW FROM AN LD MODULE

Let us assume that you have an LD module, also containing the following instructions.

You can place a trigger on a block such as follows.

	 user manual	 123

In this case, the same rules apply as to insert a trigger in an FBD module on a contact

or a coil

In this case, follow the SE instructions. Let us also assume that you want to know the
value of some variables every time the processor reaches network number 1.

First you must click one of the items making up network number 1. Now you can click the
Set/Remove trigger button in the Debug bar.

Alternatively you can press the F9 key.

In both cases, the grey raised button containing the network number turns to green, and
a white circle with the number of the trigger inside appears in the middle of the button,
while the related trigger window pops up.

Unlike the other languages supported by Application, LD does not allow you to insert a
trigger into a single contact or coil, as it lets you select only an entire network. Thus the
variables in the trigger window will be refreshed every time the processor reaches the
beginning of the selected network.

8.5.2.7	 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN LD MODULE

In order to watch the value of a variable, you need to add it to the trigger window. Let
us assume that you want to inspect the value of variable b in the LD code represented in
the figure below.

To this purpose, press the Watch button in the FBD bar.

The cursor will become as follows.

124	 user manual

Now you can click the item representing the variable you wish to be shown in the trigger
window.

A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

In order to display variable B in the trigger window, select its reference in the Debug win-
dow column, then press OK.

The name of the variable is now printed in the Symbol column.

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press the Normal cursor button, so as to restore the original shape of
the cursor.

	 user manual	 125

8.5.2.8	 OPENING A TRIGGER WINDOW FROM AN ST MODULE

Let us assume that you have an ST module, also containing the following instructions.

Let us also assume that you want to know the value of e, d, and f, just before the in-
struction

f := f+ SHR(d, 16#04)

is executed. To do so, move the cursor to line 6.

Then you can click the Set/Remove trigger button in the Debug toolbar

or you can press the F9 key.

In both cases, a green arrowhead appears next to the line number, and the related trigger
window pops up.

Not all the ST instructions support triggers. For example, it is not possible to place a trig-
ger on a line containing a terminator such as END_IF, END_FOR, END_WHILE, etc..

8.5.2.9	 ADDING A VARIABLE TO A TRIGGER WINDOW FROM AN ST MODULE

In order to watch the value of a variable, you need to add it to the trigger window. To
this purpose, select a variable, by double clicking it, and then drag it into the Variables
window, that is the the lower white box in the pop-up window. The variable name now
appears in the Symbol column.

126	 user manual

The same procedure applies to all the variables you wish to inspect.

8.5.2.10	REMOVING A VARIABLE FROM THE TRIGGER WINDOW

If you want a variable not to be displayed any more in the trigger window, select it by
clicking its name once, then press the Del key.

8.5.2.11	USING CONTROLS

This paragraph deals with trigger windows controls, which allow you to better supervise
the working of this debugging tool to get more information on the code under scope. The
main purpose of trigger window controls is to let you define more limiting conditions, so
that variables in Variables window are refreshed when the processor reaches the trig-
ger location and these conditions are satisfied. If you do not use controls, variables are
refreshed every single time the processor reaches the relative trigger.

Enabling controls

When you set a trigger, all the elements in the Control window look disabled.

As a matter of fact, you cannot access any of the controls, except the Accumulator dis-
play, until at least one variable is dragged into the Debug window. When this happens
triggering automatically starts and the Controls window changes as follows.

Triggering can be started/stopped with the apposite button.

	 user manual	 127

Fixing the number of refresh

If you want the values to be refreshed the first time the window is triggered, select None,
and press the single step button, otherwise set the counter to 1 and select For.

If you want the values to be refreshed the first X times the window is triggered, set the
counter to X and select For.

If you want the values to be refreshed after Y times the window is triggered, set the coun-
ter to Y and select After.

Triggers and conditions settings become the actual settings when the triggering is (re)
started.

Watching the accumulator

As stated in the Refresh of values section (see 9.5.1.5), when you insert a trigger on an
instruction line, you establish that the variables in the relative debugging window will be
updated every time the processor reaches that location, before the instruction itself is ex-
ecuted. In some cases, for example when a trigger is placed before a ST statement, it can
be useful to know the value of the accumulator. This allows you to forecast the outcome
of the instruction that will be executed after all the variables in the trigger window have
been updated. To add the accumulator to the trigger window, click on the Accumulator
display button.

Defining a condition

This control enables users to set a condition on the occurrences of a trigger. By default,
this condition is set to TRUE, and the values in the debug window are refreshed every time
the window manager is triggered.

If you want to put a restriction on the refreshment mechanism, you can specify a condi-
tion by clicking on the apposite button.

When you do so, a text window pops up, where you can write the IL code that sets the
condition.

Once you have finished writing the condition code, click the OK button to install it, or press
the Esc button to cancel. If you choose to install it, the values in the debug window are
refreshed every time the window manager is triggered and the user-defined condition is
true.

A simplified expression of the condition now appears in the control.

128	 user manual

To modify it, press again the above mentioned button.

The text window appears, containing the text you originally wrote, which you can now
edit.

To completely remove a user-defined condition, delete the whole IL code in the text win-
dow, then click OK.

After the execution of the condition code, the accumulator must be of type Boolean (TRUE
or FALSE), otherwise a compiler error occurs.

Only global variables and dragged-in variables can be used in the condition code. Namely,
all variables local to the module where the trigger was originally inserted are out of scope,
if they have not been dragged into the debug window. No new variables can be declared
in the condition window.

8.5.2.12	CLOSING A TRIGGER WINDOW AND REMOVING A TRIGGER

This web page deals with what you can do when you finish a debug session with a trigger
window. You can choose between the following options.

-- Closing the trigger window.

-- Removing the trigger.

-- Removing all the triggers.

Notice that the actions listed above produce very different results.

Closing the trigger window

If you have finished watching a set of variables by means of a trigger window, you may
want to close the Debug window, without removing the trigger. If you click the button in
the top right-hand corner, you just hide the interface window, while the window manager
and the relative trigger keep working.

As a matter of fact, if later you want to resume debugging with a trigger window that you
previously hid, you just need to open the Trigger list window, to select the record
referred to that trigger window, and to click the Open button.

	 user manual	 129

The interface window appears with value of variables and trigger counter updated, as if it
had not been closed.

Removing a trigger

If you choose this option, you completely remove the code both of the window manager
and of its trigger. To this purpose, just open the Trigger list window, select the record
referred to the trigger window you want to eliminate, and click the Remove button.

Alternatively, you can move the cursor to the line (if the module is in IL or ST), or click
the block (if the module is in FBD or LD) where you placed the trigger. Now press the Set/
Remove trigger button in the Debug toolbar.

Removing all the triggers

Alternatively, you can remove all the existing triggers at once, regardless for which re-
cords are selected, by clicking on the Remove all button.

8.6	 GRAPHIC TRIGGERS

8.6.1	 GRAPHIC TRIGGER WINDOW

The graphic trigger window tool allows you to select a set of variables and to have them
sampled synchronously and to have their curve displayed in a special pop-up window.

Sampling of the dragged-in variables occurs every time the processor reaches the position
(i.e. the instruction - if IL, ST - or the block - if FBD, LD) where you placed the trigger.

8.6.1.1	 PRE-CONDITIONS TO OPEN A GRAPHIC TRIGGER WINDOW

No need for special compilation

All the Application debugging tools operate at run-time. Thus, unlike other programming
languages such as C++, the compiler does not need to be told whether or not to support
trigger windows: given a PLC code, the compiler’s output is unique, and there is no dis-
tinction between debug and release version.

Memory availability

A graphic trigger window takes all the free memory space in the application code sector.
Obviously, in order to start up a trigger window, it is necessary that a sufficient amount
of memory is available, otherwise an error message appears.

130	 user manual

8.6.1.2	 GRAPHIC TRIGGER WINDOW INTERFACE

Setting a graphic trigger causes a pop-up window to appear, which is called Interface
window. This is the main interface for accessing the debugging functions that the graphic
trigger window makes available. It consists of several elements, as shown below.

The caption bar

The Caption bar at the top of the pop-up window shows information on the location of
the trigger which causes the variables listed in the Variables window to be sampled.

The text in the caption has the following format:

ModuleName#Location

Where

ModuleName Name of program, function, or function block where the trigger was
placed.

Location

Exact location of the trigger, within module ModuleName.

If ModuleName is in IL, ST, Location has the format:

N1

Otherwise, if ModuleName is in FBD, LD, it becomes:

N2$BT:BID

N1 = instruction line number

N2 = network number

BT = block type (operand, function, function block, etc.)

BID = block identifier

The Controls bar

This dialog box allows you to better control the working of the graphic trigger window. A
detailed description of the function of each control is given in the Graphic trigger window
controls section (see 9.6.1.5).

The Chart area

The Chart area includes six items:

1)	 Plot: area containing the actual plot of the curve of the dragged-in variables.

	 user manual	 131

2)	 Samples to acquire: number of samples to be collected by the graphic trigger window
manager.

3)	 Horizontal cursor: cursor identifying a horizontal line. The value of each variable at
the intersection with this line is reported in the column horz cursor.

4)	 Blue cursor: cursor identifying a vertical line. The value of each variable at the inter-
section with this line is reported in the column left cursor.

5)	 Red cursor: same as blue cursor.

6)	 Scroll bar: if the scale of the x-axis is too large to display all the samples in the Plot
area, the scroll bar allows you to slide back and forth along the horizontal axis.

The Variables window

This lower section of the Debug window is a table consisting of a row for each variable
that you have dragged in. Every row has several fields, which are described in detail in
the Drag and drop information section.

8.6.1.3	 GRAPHIC TRIGGER WINDOW:DRAG AND DROP INFORMATION

To watch a variable, you need to copy it to the lower section of the Debug window.

This lower section of the Debug window is a table consisting of a row for each variable that
you dragged in. Each row has several fields, as shown in the picture below.

Field Description

Track Name of the variable.

Um Unit of measurement.

Min value Minimum value in the record set.

Max value Maximum value in the record set.

132	 user manual

Field Description

Cur value Current value of the variable.

v/div
How many engineering units are represented by a unit
of the y-axis (i.e. the space between two ticks on the
vertical axis).

Blue cursor Value of the variable at the intersection with the line
identified by the blue cursor.

Red cursor Value of the variable at the intersection with the line
identified by the red cursor.

Horz cursor Value of the variable at the intersection with the line
identified by the horizontal cursor.

Note that you can drag into the graphic trigger window only variables local to the module
where you placed the relative trigger, or global variables, or parameters. You cannot drag
variables declared in another program, or function, or function block.

8.6.1.4	 SAMPLING OF VARIABLES

Let us consider the following example.

The value of the variables is sampled every time the window manager is triggered, that is
every time the processor executes the instruction marked by the green arrowhead. How-
ever, you can set controls in order to have variables sampled when triggers also satisfy
further limiting conditions that you define.

The value of the variables in the column Track is read from memory just before the
marked instruction and immediately after the previous instruction.

8.6.1.5	 GRAPHIC TRIGGER WINDOW CONTROLS

This paragraph deals with controls of the Graphic trigger window. Controls allow you
to specify in detail when Application is supposed to sample the variables added to the
Variables window.

Graphic trigger window controls act in a well-defined way on the behavior of the window,
regardless for the type of the module (IL, ST, FBD or LD) where the related trigger has
been inserted.

Window controls are made accessible to users through the Controls bar of the debug
window.

Button Command Description

Start graphic
trace

When you push this button down, you let
acquisition start. Now, if acquisition is running
and you release this button, you stop the sample
collection process, and you reset all the data you
have acquired so far.

Enable/Disable
cursors

The two cursors (red cursor, blue cursor) may be
seen and moved along their axis as long as this
button is pressed. Release this button if you want
to hide simultaneously all the cursors.

Show samples
This control is used to put in evidence the exact
point in which the variables are triggered at each
sample.

	 user manual	 133

Button Command Description

Split variables

When pressed, this control splits the y-axis into
as many segments as the dragged-in variables,
so that the diagram of each variable is drawn in a
separate band.

Show all values
It is used to fill in the graph window all the values
sampled for the selected variables in the current
recordset.

Horizontal Zoom In
and Zoom Out

Zooming in is an operation that makes the curves
in the Chart area appear larger on the screen,
so that greater detail may be viewed. Zooming
out is an operation that makes the curves appear
smaller on the screen, so that it may be viewed
in its entirety. Horizontal zoom acts only on the
horizontal axis.

Horizontal show
all

This control is used to horizontally center record
set samples. So first sample will be placed on the
left margin, and last will be placed on the right
margin of the graphic window.

Vertical Zoom In
and Zoom Out Vertical Zoom acts only on the vertical axis.

Vertical show all

This control is used to vertically center record set
samples. So max value sample will be placed near
top margin and low value sample will be placed on
the bottom margin of the graphic window.

Graphic trigger
window properties

Pushing this button causes a tabs dialog box
to appear, which allows you to set general user
options affecting the action of the graphic trigger
window. Since the options you can set are quite
numerous, they are dealt with in a section apart.
Click here to access this section.

Print chart Push this button to print both the Chart area and
the Variables window.

Save chart Press this button to save the chart.

Trigger counter

This read-only control displays two numbers with the following format: X/Y.

X indicates how many times the debug window manager has been triggered, since the
graphic trigger was installed.

Y represents the number of samples the graphic window has to collect before stopping
data acquisition and drawing the curves.

Trigger state

This read-only control shows you the state of the Debug window. It can assume the fol-
lowing values.

134	 user manual

No sample(s) taken, as the trigger has not occurred during the
current task execution.

Sample(s) collected, as the trigger has occurred during the
current task execution.

The trigger counter indicates that a number of samples
has been collected satisfying the user request or memory
constraints, thus the acquisition process is stopped.

Communication with target interrupted, the state of the trigger
window cannot be determined.

8.6.1.6	 GRAPHIC TRIGGER WINDOW OPTIONS

In order to open the options tab, you must click the Properties button in the Controls
bar. When you do this, the following dialog box appears.

General

Control

Control Description

Show grid Tick this control to display a grid in the Chart area
background.

Show time
bar

The scroll bar at the bottom of the Chart area is
available as long as this box is checked.

Show tracks
list

The Variables window is shown as long as this box
is checked, otherwise the Chart area extends to the
bottom of the graphic trigger window.

Values

Control Description

Horizontal
scale Number of samples per unit of the x-axis. By unit of the

x-axis the space is meant between two vertical lines of
the background grid.

	 user manual	 135

Control Description

Buffer size

Number of samples to acquire. When you open the
option tab, after having dragged-in all the variables you
want to watch, you can read a default number in this
field, representing the maximum number of samples you
can collect for each variable. You can therefore type a
number which is less or equal to the default one.

Tracks

This tab allows you to define some graphic properties of the plot of each variable. To select
a variable, click its name in the Track list column.

Control Description

Unit Unit of measurement, printed in the table of the
Variables window.

Value/div
Δ value per unit of the y-axis. By unit of the y-axis is
meant the space between two horizontal lines of the
background grid.

Hide Check this flag to hide selected track on the graph.

Push Apply to make your changes effective, or push OK to apply your changes and to
close the options tab.

User-defined condition

If you define a condition by using this control, the sampling process does not start until
that condition is satisfied. Note that, unlike trigger windows, once data acquisition begins,
samples are taken every time the window manager is triggered, regardless of the user
condition being still true or not.

After you enter a condition, the control displays its simplified expression.

8.6.2	 DEBUGGING WITH THE GRAPHIC TRIGGER WINDOW

The graphic trigger window tool allows you to select a set of variables and to have them
sampled synchronously and their curve displayed in a special pop-up window.

8.6.2.1	 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN IL MODULE

Let us assume that you have an IL module, also containing the following instructions.

136	 user manual

Let us also assume that you want to know the value of b, d, and k, just before the ST k
instruction is executed. To do so, move the cursor to line 12.

Then click the Graphic trace button in the Debug toolbar.

A green arrowhead appears next to the line number, and the graphic trigger window pops
up.

Not all the IL instructions support triggers. For example, it is not possible to place a trig-
ger at the beginning of a line containing a JMP statement.

8.6.2.2	 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN IL MODULE

In order to get the diagram of a variable plotted, you need to add it to the graphic trigger
window. To this purpose, select a variable, by double clicking it, and then drag it into the
Variables window. The variable now appears in the Track column.

The same procedure applies to all the variables you wish to inspect.

Once the first variable is dropped into a graphic trace, the Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

	 user manual	 137

8.6.2.3	 OPENING THE GRAPHIC TRIGGER WINDOW FORM AN FBD MODULE

Let us assume that you have an FBD module, also containing the following instructions.

Let us also assume that you want to know the values of c, d, and k, just before the ST
k instruction is executed.

Provided that you can never place a trigger in a block representing a variable such as

you must select the first available block preceding the selected variable. In the example
of the above figure, you must move the cursor to network 3, and click the ADD block.

Now click the Graphic trace button in the Debug toolbar.

This causes the colour of the selected block to turn to green, a white circle with the trig-
ger ID number inside to appear in the middle of the block, and the related trigger window
to pop up.

138	 user manual

When preprocessing the FBD source code, compiler translates it into IL instructions. The
ADD instruction in network 3 is expanded to:

LD k

ADD 1

ST k

When you add a trigger to an FBD block, you actually place the trigger before the first
statement of its IL equivalent code.

8.6.2.4	 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN FBD
MODULE

In order to watch the diagram of a variable, you need to add it to the trigger window. Let
us assume that you want to see the plot of the variable k of the FBD code in the figure
below.

To this purpose, press the Watch button in the FBD bar.

The cursor will become as follows.

Now you can click the block representing the variable you wish to be shown in the graphic
trigger window.

In the example we are considering, click the button block.

A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

In order to plot the curve of variable k, select Graphic Trace in the Debug windows col-
umn, then press OK. The name of the variable is now printed in the Track column.

	 user manual	 139

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press the Normal cursor button, in order to restore the original cursor.

Once the first variable is dropped into a graphic trace, the Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

8.6.2.5	 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN LD MODULE

Let us assume that you have an LD module, also containing the following instructions.

You can place a trigger on a block such as follows.

In this case, the same rules apply as to insert the graphic trigger in an FBD module on a
contact

140	 user manual

or coil

In this case, follow the instructions. Let us also assume that you want to know the value
of some variables every time the processor reaches network number 1.

Click one of the items making up network nr. 1, then press the Graphic trace button in
the Debug toolbar.

This causes the grey raised button containing the network number to turn to green, a
white circle with a number inside to appear in the middle of the button, and the graphic
trigger window to pop up.

Note that unlike the other languages supported by Application, LD does not allow you to
insert a trigger before a single contact or coil, as it lets you select only an entire network.
Thus the variables in the Graphic trigger window will be sampled every time the pro-
cessor reaches the beginning of the selected network.

8.6.2.6	 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN LD
MODULE

In order to watch the diagram of a variable, you need to add it to the Graphic trigger
window. Let us assume that you want to see the plot of the variable b in the LD code
represented in the figure below.

To this purpose, press the Watch button in the FBD bar.

The cursor will become as follows.

Now you can click the item representing the variable you wish to be shown in the Graphic
trigger window.

A dialog box appears listing all the currently existing instances of debug windows, and
asking you which one is to receive the object you have just clicked.

In order to plot the curve of variable b, select Graphic trace in the Debug windows col-
umn, then press OK. The name of the variable is now printed in the Track column.

	 user manual	 141

The same procedure applies to all the variables you wish to inspect.

Once you have added to the Graphic watch window all the variables you want to ob-
serve, you can press again the Normal cursor button, so as to restore the original shape
of the cursor.

Once the first variable is dropped into a graphic trace, the Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

8.6.2.7	 OPENING THE GRAPHIC TRIGGER WINDOW FROM AN ST MODULE

Let us assume that you have an ST module, also containing the following instructions.

Let us also assume that you want to know the value of e, d, and f, just before the in-
struction

f := f+ SHR(d, 16#04)

is executed. To do so, move the cursor to line 6.

Then click the Graphic trace button in the Debug toolbar.

A green arrowhead appears next to the line number, and the Graphic trigger window
pops up.

142	 user manual

Not all the ST instructions support triggers. For example, it is not possible to place a trig-
ger on a line containing a terminator such as END_IF, END_FOR, END_WHILE, etc.

8.6.2.8	 ADDING A VARIABLE TO THE GRAPHIC TRIGGER WINDOW FROM AN ST
MODULE

In order to get the diagram of a variable plotted, you need to add it to the Graphic trig-
ger window. To this purpose, select a variable, by double clicking it, and then drag it into
the Variables window, that is the lower white box in the pop-up window. The variable
now appears in the Track column.

The same procedure applies to all the variables you wish to inspect.

Once the first variable is dropped into a graphic trace, the Graphic properties window
is automatically shown and allows the user to setup sampling and visualization properties.

8.6.2.9	 REMOVING A VARIABLE FROM THE GRAPHIC TRIGGER WINDOW

If you want to remove a variable from the Graphic trigger window, select it by clicking its
name once, then press the Del key.

8.6.2.10	USING CONTROLS

This paragraph deals with graphic trigger window controls, which allow you to better
supervise the working of this debugging tool, so as to get more information on the code
under scope.

Enabling controls

When you set a trigger, all the elements in the Control bar are enabled. You can start
data acquisition by clicking the Start graphic trace acquisition button.

	 user manual	 143

If you defined a user condition, which is currently false, data acquisition does not start,
even though you press the apposite button.

On the contrary, once the condition becomes true, data acquisition starts and continues
until the Start graphic trace acquisition button is released, regardless for the con-
dition being or not still true.

if you release the Start graphic trace acquisition button before all the required
samples have been acquired, the acquisition process stops and all the collected data get
lost.

Defining a condition

This control enables users to set a condition on when to start acquisition. By default, this
condition is set to true, and acquisition begins as soon as you press the Enable/Disable
acquisition button. From that moment on, the value of the variables in the Debug win-
dow is sampled every time the trigger occurs.

In order to specify a condition, open the Condition tab of the Options dialog box, then
press the relevant button.

A text window pops up, where you can write the IL code that sets the condition.

Once you have finished writing the condition code, click the OK button to install it, or press
the Esc button to cancel. The collection of samples will not start until the Start graphic
trace acquisition button is pressed and the user-defined condition is true. A simplified
expression of the condition now appears in the control.

To modify it, press again the relevant button.

The text window appears, containing the text you originally wrote, which you can now
edit.

To completely remove a user-defined condition, press again on the above mentioned but-
ton, delete the whole IL code in the text window, then click OK.

After the execution of the condition code, the accumulator must be of type Boolean (TRUE
or FALSE), otherwise a compiler error occurs.

144	 user manual

Only global variables and dragged-in variables can be used in the condition code. Namely,
all variables local to the module where the trigger was originally inserted are out of scope,
if they have not been dragged into the Debug window. Also, no new variables can be de-
clared in the condition window.

Setting the scale of axes

-- x-axis

When acquisition is completed, Application plots the curve of the dragged-in variables ad-
justing the x-axis so that all the data fit in the the Chart window. If you want to apply a
different scale, open the General tab of the Graph properties dialog box, type a number
in the horizontal scale edit box, then confirm by clicking Apply.

-- y-axis

You can change the scale of the plot of each variable through the Tracks list tab of the
Graph properties dialog box. Otherwise, if you do not need to specify exactly a scale,
you can use the Zoom In and Zoom Out controls.

8.6.2.11	CLOSING THE GRAPHIC TRIGGER WINDOW AND REMOVING THE TRIGGER

At the end of a debug session with the graphic trigger window you can choose between
the following options:

-- Closing the Graphic trigger window.

-- Removing the trigger.

-- Removing all the triggers.

Closing the graphic trigger window

If you have finished plotting the diagram of a set of variables by means of the Graphic
trigger window, you may want to close the Debug window without removing the trigger.
If you click the button in the top right-hand corner, you just hide the Interface window,
while the window manager and the relative trigger keep working.

As a matter of fact, if later you want to restore the Graphic trigger window that you
previously hid:

-- open the Trigger list window;

-- select the record (having type G);

-- click the Open button.

The Interface window appears with the trigger counter properly updated, as if it had
never been closed.

Removing the trigger

If you choose this option, you completely remove the code both of the window manager
and of its trigger. To this purpose:

-- open the Trigger list window;

-- select the record (having type G);

-- click the Remove button.

Alternatively, you can move the cursor to the line (if the module is in IL), or click the block
(if the module is in FBD) where you placed the trigger. Now press the Graphic trace
button in the Debug toolbar.

Removing all the triggers

Alternatively, you can remove all the existing triggers at once, regardless for which re-
cords are selected, by clicking on the Remove all triggers button.

	 user manual	 145

9.	 APPLICATION REFERENCE

9.1	 MENUS REFERENCE

In the following tables you can see the list of all Application’s commands. However, since
Application has a multi-document interface (MDI), you may find some disabled commands
or even some unavailable menus, depending on what kind of document is currently active.

9.1.1	 FILE MENU

Command Description

New project Lets you create a new Application project.

Open project Lets you open an existing Application project.

View project Opens an existing Application project in read-only mode.

Save project

Same as Save all, but it saves also the ppj file. Note that,
since all modifications to a Application project are first applied
in memory only, you need to release the Save project
command to make them permanent.

Save project As Asks you to specify a new project name and a new location,
and saves there a copy of all the files of the project.

Close project Asks you whether you want to keep unsaved changes, then
closes the active project.

New text file Opens a blank new generic text file.

Open file
Opens an existing file, whatever its extension. The file is
displayed in the text editor. Anyway, if you open a project file,
you actually open the Application project it refers to.

Save Lets you save the document in the currently active window.

Close Closes the document in the currently active window.

Options Opens the Programming environment options dialog box.

Print Displays a dialog box, which lets you set printing options and
print the document in the currently active window.

Print preview
Shows a picture on your video, that reproduces faithfully
what you get if you print the document in the currently active
window.

Print project Prints all the documents making up the project.

Printer setup Opens the Printer setup dialog box.

..recent.. Lists a set of ppj file of recently opened Application projects.
Click one of them, if you want to open the relevant project.

Exit Closes Application.

146	 user manual

9.1.2	 EDIT MENU

Command Description

Undo Cancels last change made in the document.

Redo Restores the last change canceled by Undo.

Cut Removes the selected items from the active document and
stores them in a system buffer.

Copy Copies the selected items to a system buffer.

Paste Pastes in the active document the contents of the system
buffer.

Delete Deletes the selected item.

Delete line Deletes the whole source code line.

Find in project Opens the Find in project dialog box.

Bookmarks Lets you set, remove, and move between bookmarks.

Go to line Allows you to quickly move to a specific line in the source
code editor.

Find
Asks you to type a string and searches for its first instance
within the active document from the current location of the
cursor.

Find next Iterates the search previously performed by the Find
command.

Replace Allows you to automatically replace one or all the instances of
a string with another string.

Insert/Move mode Editing mode which allows you to insert and move blocks.

Connection mode Editing mode which allows you to draw logical wires to
connect pins.

Watch mode Editing mode which allows you to add variables to any
debugging tool.

9.1.3	 VIEW MENU

Command Description

Main Toolbar If checked, displays the Main toolbar, otherwise hides it.

Status bar If checked, displays the Status bar, otherwise hides it.

Debug bar If checked, displays the Debug bar, otherwise hides it.

FBD bar If checked, displays the FBD toolbar, otherwise hides it.

LD bar If checked, displays the LD toolbar, otherwise hides it.

SFC bar If checked, displays the SFC bar, otherwise hides it.

Project bar If checked, displays the Project bar, otherwise hides it.

Network If checked, displays the Network toolbar, otherwise hides it.

Document bar If checked, displays the Document bar, otherwise hides it.

Force I/O bar If checked, displays the Force I/O bar, otherwise hides it.

Workspace If checked, displays the Workspace (also called Project
window), otherwise hides it.

Library If checked, displays the Libraries window, otherwise hides
it.

	 user manual	 147

Command Description

Output If checked, displays the Output window, otherwise hides it.

Async Graphic
window

If checked, displays the Oscilloscope window, otherwise
hides it.

Watch window If checked, displays the Watch window, otherwise hides it.

Full screen
Expands the currently active document window to full screen.
Press Esc to restore the normal appearance of the Application
interface.

Grid If checked, displays a dotted grid in a graphical source code
editor background.

9.1.4	 PROJECT MENU

Command Description

New object Opens another menu which lets you create a new POU or
declare a new global variable.

Copy object Copies the object currently selected in the Workspace.

Paste object Pastes the previously copied object.

Duplicate object Duplicates the object currently selected in the Workspace, and
asks you to type the name of the copy.

Delete object
Deletes the currently selected object. As explained above, you
need to release the Save project command to definitively
erase a document from your project.

PLC object
properties

Shows properties and description of the object currently
selected in the Workspace.

Object browser Opens the Oject browser, which lets you navigate between
objects.

Compile Asks you whether to save unsaved changes, then launches
the Application compiler.

Recompile all Recompiles the project.

Generate
redistributable
source module

Generates an RSM file.

Import object
from library Lets you import a Application object from a library.

Export object to
library Lets you export a Application object to a library.

Library manager Opens the Library manager.

Macros Opens another menu which lets you create/delete macros.

Select target Lets you change the target.

Options... Lets you specify the project options.

148	 user manual

9.1.5	 DEBUG MENU

Command Description

Add symbol to
watch Adds a symbol to the Watch window.

Insert new item
into watch Inserts a new item into the Watch window.

Add symbol to a
debug window Adds a symbol to a debug window.

Insert new item
into a debug

window
Inserts a new item into a debug window.

Quick watch Opens a dialog with the actual value of the variable.

Run Restarts program after a breakpoint is hit.

Add/Remove
breakpoint Adds/removes a breakpoint.

Remove all
breakpoints Removes all the active breakpoints.

Breakpoint list Lists all the active breakpoints.

Add/remove text
trigger Adds/removes a text trigger.

Add/remove
graphic trigger Adds/removes a graphic trigger.

Remove all
triggers Removes all the active triggers.

Trigger list Lists all the active triggers.

Debug mode Switches the debug mode on.

Live debug mode Switches the live debug mode on.

9.1.6	 COMMUNICATION MENU

Command Description

Download code
Application checks if any changes have been applied since last
compilation, and compiles the project if this is the case. Then,
it sends the target the compiled code.

Connect Application tries to establish a connection to the target.

Settings Lets you set the properties of the connection to the target.

Upload IMG file If the target device is connected, lets you upload the img file.

Start/Stop
watch value Freezes/resumes refreshment of the Watch window.

	 user manual	 149

9.1.7	 SCHEME MENU

Command Description

Network> New> Top Adds a blank network at the top of the active LD/FBD
document.

Network> New>
Bottom

Adds a blank network at the bottom of the active LD/FBD
document.

Network> New>
Before

Adds a blank network before the selected network in the
active LD/FBD document.

Network >New >
After

Adds a blank network after the selected network in the active
LD/FBD document.

Network >Label Assigns a label to the selected network, so that it can be
indicated as the target of a jump instruction.

Object >New Lets you insert a new object into the selected network.

Object >
Instance name

Lets you assign a name to an instance of a function block,
that you have previously selected by clicking it once.

Object >
Open source

Opens the editor by which the selected object was created,
and displays the relevant source code:

-- if the object is a program, or a function, or a function block,
this command opens its source code;

-- if the object is a variable or a parameter, this command
opens the corresponding variable editor;

-- if the object is a standard function or an operator, this
command opens nothing.

Auto connect
If checked, enables autoconnection, that is automatic creation
of a logical wire linking the pins of two blocks, when they are
brought close.

Delete invalid
connection

Removes all invalid connections, represented by a red line in
the active scheme.

Increment pins

By default some operators like ADD, MUL, etc. have two input
pins, however you may occasionally need to perform such
operations on more than two operands. This command allows
you to add as many input pins as to reach the required
number of operands.

Decrement pins Undoes the Increment pins command.

Enable EN/ENO
pins

Adds the enable in/enable out pins to the selected block.
The code implementing the selected block will be executed
only when the enable in signal is true. The enable out
signal simply repeats the value of enable in, allowing you
either to enable or to disable a set of blocks in cascade.

Object properties

Shows some properties of the selected block:

-- if the object is a function or a function block, displays a
table with the input and output variables;

-- if the object is a variable or a parameter, opens a dialog box
which lets you change the name and the logical direction
(input/output).

150	 user manual

9.1.8	 VARIABLES MENU

Command Description

Insert
Adds a new row to the table in the currently active editor (if
PLC editor, to the table of local variables; if parameters editor,
to the table of parameters, etc.).

Delete Deletes the variable in the selected row of the currently active
table.

Group Opens a dialog box which lets you create and delete groups of
variables.

9.1.9	 DEFINITIONS MENU

Command Description

Insert> Enum Creates a new enumerated data type.

Insert> Structure Creates a new structured data type.

Insert> Subrange Creates a new subrange data type.

Insert> Typedef Creates a new typedef data type.

9.1.10	 WINDOW MENU

Command Description

Cascade Displaces all open documents in cascade, so that they
completely overlap except for the caption.

Tile

The PLC editors area is split into frames having the same
dimensions, depending on the number of currently open
documents. Each frame is automatically assigned to one of
such documents.

Arrange Icons Displaces the icons of the minimized documents in the bottom
left-hand corner of the PLC editors area.

Close all Closes all open documents.

9.1.11	 HELP MENU

Command Description

Index Lists all the Help keywords and opens the related topic.

Context Context-sensitive help. Opens the topic related to the
currently active window.

About... Information on producers and version.

	 user manual	 151

9.2	 TOOLBARS REFERENCE

In the following tables you can see the list of all Application’s toolbars. The buttons making
up each toolbar are always the same, whatever the currently active document. However,
some of them may produce no effect, if there is no logical relation to the active document.

9.2.1	 MAIN TOOLBAR

Button Command Description

New project Creates a new project.

Open project Opens an existing project.

Save project

Saves all documents in the currently open
windows, including the project file. Note that,
since all modifications to a Application project are
first applied in memory only, you need to release
the Save project command to make them
permanent.

Undo Cancels last change made in the document.

Redo Restores the last change canceled by Undo.

Cut Removes the selected items from the active
document and stores them in a system buffer.

Copy Copies the selected items to a system buffer.

Paste Pastes in the active document the contents of the
system buffer.

Find
Asks you to type a string and searches for its first
instance within the active document from the
current location of the cursor.

Find next Iterates the search previously performed by the
Find command.

Find in project Opens the Find in project dialog box.

Print
Displays a dialog box, which lets you set printing
options and print the document in the currently
active window.

Print preview
Shows a picture on your video, that reproduces
faithfully what you get if you print the document
in the currently active window.

Workspace If pressed, displays the Workspace (also called
Project window), otherwise hides it.

Output If pressed, displays the Output window, otherwise
hides it.

Library If pressed, displays the Libraries window,
otherwise hides it.

152	 user manual

Button Command Description

Watch If checked, displays the Watch window, otherwise
hides it.

Async If checked, displays the Oscilloscope window,
otherwise hides it.

Force I/O If pressed, displays the Force I/O window,
otherwise hides it.

PLC run-time
monitor

If checked, displays the PLC run-time window,
otherwise hides it.

Full screen

Expands the currently active document window to
full screen. Press Esc or release the Full screen
button to restore the normal appearance of the
Application interface.

9.2.2	 FBD TOOLBAR

Button Command Description

Move/Insert Editing mode which allows you to insert and move
blocks.

Connection Editing mode which allows you to draw logical
wires to connect pins.

Watch Editing mode which allows you to add variables to
any debugging tool.

New block Lets you insert a new block into the selected
network.

Constant Adds a constant to the selected network.

Return Adds a conditional return block to the selected
network.

Jump Adds a conditional jump block to the selected
network.

Comment Adds a comment to the selected network.

Inc pins

By default some operators like ADD, MUL, etc. have
two input pins, however you may occasionally
need to perform such operations on more than
two operands. This command allows you to add as
many input pins as to reach the required number
of operands.

Dec pins Undoes the Inc pins command.

	 user manual	 153

Button Command Description

EN/ENO

Adds the enable in/enable out pins to the
selected block. The code implementing the
selected block will be executed only when the
enable in signal is true. The enable out signal
simply repeats the value of enable in, allowing
you either to enable or to disable a cascade of
blocks.

FBD properties

Shows some properties of the selected block:

-- if the object is a function or a function block,
displays a table with the input and output
variables;

-- if the object is a variable or a parameter, opens
a dialog box which lets you change the name
and the logical direction (input/output).

View source

Opens the editor by which the selected object was
created, and displays the relevant source code:

-- if the object is a program, or a function, or a
function block, this command opens the relevant
source code editor;

-- if the object is a variable or a parameter, then
this command opens the corresponding variable
editor;

-- if the object is a standard function or an
operator, this command opens nothing.

9.2.3	 LD TOOLBAR

Button Command Description

Insert parallel
Activates the parallel insertion mode. All contacts
inserted in this mode will be inserted in parallel
with the actually selected contacts.

Insert series

Activates the series insertion mode. All contacts
inserted in this mode will be inserted on the
right of the currently selected contact/block. If
a connection is selected, the new contact will be
placed in the middle of the connection segment.

Insert contact Insertion of a new contact according to the
selected mode (series or parallel).

Insert negated
contact

Insertion of a new negative contact according to
the selected mode (series or parallel).

Insert rising
edge contact

Insertion of a new rising edge contact according to
the selected mode (serial or parallel).

Insert falling
edge contact

Insertion of a new falling edge contact according
to the selected mode (serial or parallel).

Insert coil Insertion of a new coil attached to the right power
rail.

154	 user manual

Button Command Description

Insert negated
coil

Insertion of a new negative coil attached to the
right power rail.

Insert set
contact

Insertion of a new set coil attached to the right
power rail.

Insert reset coil Insertion of a new reset coil attached to the right
power rail.

Insert rising
edge contact

Insert positive transition-sensing coil to the right
power rail.

Insert falling
edge contact

Insert negative transition-sensing coil to the right
power rail.

9.2.4	 SFC TOOLBAR

Button Command Description

New step Inserts a new step into the currently open SFC
document.

Add transition Adds a new transition to the currently open SFC
document.

Add jump Adds a new jump block to the currently open SFC
document.

Add divergent pin Adds a new pin to the selected divergent
transition.

Remove divergent
pin

Removes the rightmost pin from the selected
divergent transition.

Add convergent
pin

Adds a new pin to the selected convergent
transition.

Remove convergent
pin

Removes the rightmost pin from the selected
convergent transition.

Add simultaneous
divergent pin

Adds a new pin to the selected simultaneous
divergent transition.

Remove
simultaneous
divergent pin

Removes the rightmost pin from the selected
simultaneous divergent transition.

Add simultaneous
convergent pin

Adds a new pin to the selected simultaneous
convergent transition.

Remove
simultaneous
convergent pin

Removes the rightmost pin from the selected
simultaneous divergent transition.

Shift pin right

Increases the distance between the two rightmost
pins of the currently selected transition, in order
to let the SFC subnet linked to the pin on the left
contain divergent branches.

	 user manual	 155

Button Command Description

Shift pin left Decreases the distance between the two rightmost
pins of the currently selected transition.

New action code

Allows the user to create a new action to be
associated with one of the steps. When you press
this button, Application asks you which language
you want to use to implement the new action,
then opens the corresponding editor.

New transition
code

Allows the user to write the code to be associated
with one of the transitions. When you press this
button, Application asks you which language you
want to use to implement the new transition, then
opens the corresponding editor.

9.2.5	 PROJECT TOOLBAR

Button Command Description

Library manager Opens the library manager.

Compile Asks you whether to save unsaved changes, then
launches the Application compiler.

Recompile all
Asks you whether to save unsaved changes, then
launches the Application compiler to recompile the
whole project.

Connect to the
target

Application tries to establish a connection to the
target.

Code download

Application checks if any changes have been
applied since last compilation, and compiles the
project if this is the case. Then, it sends the target
the compiled code.

New macro Defines a new macro.

Object browser Opens the object browser, which lets you navigate
between objects.

PLC Obj
properties

Shows properties and description of the object
currently selected in the Workspace.

Insert record

Adds a new row to the table in the currently active
editor (if PLC editor, to the table of local variables;
if parameters editor, to the table of parameters,
etc.).

Delete record Deletes the variable in the selected row of the
currently active table.

Generate
redistributable
source module

Creates an RSM file of the project.

156	 user manual

9.2.6	 NETWORK TOOLBAR

Button Command Description

Insert Top Adds a blank network at the top of the active LD/
FBD document.

Insert Bottom Adds a blank network at the bottom of the active
LD/FBD document.

Insert After Adds a blank network after the selected network
in the active LD/FBD document.

Insert Before Adds a blank network before the selected network
in the active LD/FBD document.

View grid If checked, displays a dotted grid in the LD/FBD
editor background.

Auto connect
If checked, enables auto connection, that is
automatic creation of a logical wire linking the pins
of two blocks, when they are brought close.

9.2.7	 DEBUG TOOLBAR

Button Command Description

Debug mode Switch on/off the Debug mode.

Live debug mode Switch on/off the Live debug mode.

Set/Remove
trigger

Sets/removes a trigger at the current source code
line.

Graphic trigger Sets/removes a graphic trigger at the current
source code line.

Remove all
triggers Removes all triggers.

Trigger list Lists all triggers.

Set breakpoints Sets a breakpoint at the current source code line.

Remove all
breakpoints Removes all breakpoints.

Run Restarts program execution after a breakpoint is
hit.

Breakpoint list Lists all breakpoints.

Change current
instance

Changes the current function block instance (live
debug mode).

	 user manual	 157

10.	LANGUAGE REFERENCE

All Application languages are IEC 61131-3 standard-compliant.

-- Common elements

-- Instruction list (IL)

-- Function block diagram (FBD)

-- Ladder diagram (LD)

-- Structured text (ST)

-- Sequential Function Chart (SFC).

Moreover, Application implements some extensions:

-- Pointers

-- Macros.

10.1	COMMON ELEMENTS

By common elements textual and graphic elements are means which are common to all
the programmable controller programming languages specified by IEC 61131-3 standard.
Note:	 the definition and editing of the most part of the common elements (variables, structured

elements, function blocks definitions etc.) are managed by Application through specific
editors, forms and tables.
Application does not allow to edit directly the source code related to the above mentioned
common elements.
The following paragraphs are meant as a language specification. To correctly manage
common elements refer to the Application user guide.

10.1.1	 BASIC ELEMENTS

10.1.1.1	CHARACTER SET

Textual documents and textual elements of graphic languages are written by using the
standard ASCII character set.

10.1.1.2	COMMENTS

User comments are delimited at the beginning and end by the special character combina-
tions “(*” and “*)”, respectively. Comments are permitted anywhere in the program,
and they have no syntactic or semantic significance in any of the languages defined in
this standard.

The use of nested comments, e.g., (* (* NESTED *) *), is treated as an error.

10.1.2	 ELEMENTARY DATA TYPES

A number of elementary (i.e. pre-defined) data types are made available by Application,
all compliant with IEC 61131-3 standard.

The elementary data types, keyword for each data type, number of bits per data element,
and range of values for each elementary data type are described in the following table.

Keyword Data type Bits Range

BOOL Boolean See note 0 to 1

SINT Short integer 8 -128 to 127

USINT Unsigned short integer 8 0 to 255

INT Integer 16 -32768 to 32767

158	 user manual

Keyword Data type Bits Range

UINT Unsigned integer 16 0 to 65536

DINT Double integer 32 -231 to 231-1

UDINT Unsigned long integer 32 0 to 232

BYTE Bit string of length 8 8 —

WORD Bit string of length 16 16 —

DWORD Bit string of length 32 32 —

REAL Real number 32 -3.40E+38 to +3.40E+38

STRING String of characters - -

Note:	 the actual implementation of the BOOL data type depends on the processor of the target
device, e.g. it is 1 bit long for devices that have a bit-addressable area.

10.1.3	 DERIVED DATA TYPES

Derived data types can be declared using the TYPE...END_TYPE construct. These derived
data types can then be used in variable declarations, in addition to the elementary data
types.

Both single-element variables and elements of a multi-element variable, which are de-
clared to be of derived data types, can be used anywhere that a variable of its parent type
can be used.

10.1.3.1	TYPEDEFS

The purpose of typedefs is to assign alternative names to existing types. No difference
between a typedef and its parent type exists, apart from the name.

Typedefs can be declared using the following syntax:

	 TYPE

		 <enumerated data type name> : <parent type name>;

	 END_TYPE

For example, consider the following declaration, mapping the name LONGWORD to the IEC
61131-3 standard type DWORD:

	 TYPE

		 longword : DWORD;

	 END_TYPE

10.1.3.2	ENUMERATED DATA TYPES

An enumerated data type declaration specifies that the value of any data element of that
type can only be one of the values given in the associated list of identifiers. The enumera-
tion list defines an ordered set of enumerated values, starting with the first identifier of
the list, and ending with the last.

Enumerated data types can be declared using the following syntax:

	 TYPE

		 <enumerated data type name> : (<enumeration list>);

	 END_TYPE

For example, consider the following declaration of two enumerated data types. Note that,
when no explicit value is given to an identifier in the enumeration list, its value equals the
value assigned to the previous identifier augmented by one.

	 user manual	 159

	 TYPE

		 enum1: (

			 val1,	(* the value of val1 is 0 *)

			 val2, 	 (* the value of val1 is 1 *)

			 val3	 (* the value of val1 is 2 *)

);

		 enum2: (

			 k := -11,

			 i := 0,

			 j,		 (* the value of j is (i + 1) = 1	 *)

			 l := 5

);

	 END_TYPE

Different enumerated data types may use the same identifiers for enumerated values. In
order to be uniquely identified when used in a particular context, enumerated literals may
be qualified by a prefix consisting of their associated data type name and the # sign.

10.1.3.3	SUBRANGES

A subrange declaration specifies that the value of any data element of that type is re-
stricted between and including the specified upper and lower limits.

Subranges can be declared using the following syntax:

	 TYPE

		 <subrange name> : <parent type name> (<lower limit>..<upper limit>
);

	 END_TYPE

For a concrete example consider the following declaration:

	 TYPE

		 int_0_to_100 : INT (0..100);

	 END_TYPE

10.1.3.4	STRUCTURES

A STRUCT declaration specifies that data elements of that type shall contain sub-elements
of specified types which can be accessed by the specified names.

Structures can be declared using the following syntax:

	 TYPE

		 <structured type name> : STRUCT

			 <declaration of stucture elements>

		 END_STRUCT;

	 END_TYPE

For example, consider the following declaration:

	 TYPE

		 structure1 : STRUCT

			 elem1 : USINT;

			 elem2 : USINT;

			 elem3 : INT;

160	 user manual

			 elem3 : REAL;

		 END_STRUCT;

	 END_TYPE

10.1.4	 LITERALS

10.1.4.1	NUMERIC LITERALS

External representation of data in the various programmable controller programming lan-
guages consists of numeric literals.

There are two classes of numeric literals: integer literals and real literals. A numeric literal
is defined as a decimal number or a based number.

Decimal literals are represented in conventional decimal notation. Real literals are dis-
tinguished by the presence of a decimal point. An exponent indicates the integer power
of ten by which the preceding number needs to be multiplied to obtain the represented
value. Decimal literals and their exponents can contain a preceding sign (+ or -).

Integer literals can also be represented in base 2, 8 or 16. The base is in decimal notation.
For base 16, an extended set of digits consisting of letters A through F is used, with the
conventional significance of decimal 10 through 15, respectively. Based numbers do not
contain any leading sign (+ or -).

Boolean data are represented by the keywords FALSE or TRUE.

Numerical literal features and examples are shown in the table below.

Feature description Examples

Integer literals -12 0 123 +986

Real literals -12.0 0.0 0.4560

Real literals with exponents
-1.34E-12 or -1.34e-12

1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

Base 2 literals 2#11111111 (256 decimal)
2#11100000 (240 decimal)

Base 8 literals 8#377 (256 decimal)
8#340 (240 decimal)

Base 16 literals 16#FF or 16#ff (256 decimal)
16#E0 or 16#e0 (240 decimal)

Boolean FALSE and TRUE FALSE TRUE

10.1.4.2	CHARACTER STRING LITERALS

A character string literal is a sequence of zero or more characters prefixed and terminated
by the single quote character (').

The three-character combination of the dollar sign ($) followed by two hexadecimal digits
shall be interpreted as the hexadecimal representation of the eight-bit character code.

Example Explanation
'' Empty string (length zero)
'A' String of length one containing the single character A
' ' String of length one containing the space character
'$'' String of length one containing the single quote character

	 user manual	 161

Example Explanation
'”' String of length one containing the double quote character

'RL' String of length two containing CR and LF characters
'$0A' String of length one containing the LF character

Two-character combinations beginning with the dollar sign shall be interpreted as shown
in the following table when they occur in character strings.

Combination Interpretation when printed
$$ Dollar sign
$' Single quote

$L or $1 Line feed

$N or $n Newline

$P or $p Form feed (page)

$R or $r Carriage return

$T or $t Tab

10.1.5	 VARIABLES

10.1.5.1	FOREWORD

Variables provide a means of identifying data objects whose contents may change, e.g.,
data associated with the inputs, outputs, or memory of the programmable controller. A
variable must be declared to be one of the elementary types. Variables can be represent-
ed symbolically, or alternatively in a manner which directly represents the association of
the data element with physical or logical locations in the programmable controller’s input,
output, or memory structure.

Each program organization unit (POU) (i.e., each program, function, or function block)
contains at its beginning at least one declaration part, consisting of one or more structur-
ing elements, which specify the types (and, if necessary, the physical or logical location)
of the variables used in the organization unit. This declaration part has the textual form of
one of the keywords VAR, VAR_INPUT, or VAR_OUTPUT as defined in the keywords section,
followed in the case of VAR by zero or one occurrence of the qualifiers RETAIN, NON_RE-
TAIN or the qualifier CONSTANT, and in the case of VAR_INPUT or VAR_OUTPUT by zero or
one occurrence of the qualifier RETAIN or NON_RETAIN, followed by one or more decla-
rations separated by semicolons and terminated by the keyword END_VAR. A declaration
may also specify an initialization for the declared variable, when a programmable control-
ler supports the declaration by the user of initial values for variables.

10.1.5.2	STRUCTURING ELEMENT

The declaration of a variable must be performed within the following program structuring
element:

KEYWORD [RETAIN] [CONSTANT]

 Declaration 1

 Declaration 2

...

 Declaration N

END_VAR

162	 user manual

10.1.5.3	KEYWORDS AND SCOPE

Keyword Variable usage
VAR Internal to organization unit.

VAR_INPUT Externally supplied.

VAR_OUTPUT Supplied by organization unit to external
entities.

VAR_IN_OUT Supplied by external entities, can be
modified within organization unit.

VAR_EXTERNAL Supplied by configuration via VAR_GLOBAL,
can be modified within organization unit.

VAR_GLOBAL Global variable declaration.

The scope (range of validity) of the declarations contained in structuring elements is local
to the program organization unit (POU) in which the declaration part is contained. That
is, the declared variables are accessible to other program organization units except by
explicit argument passing via variables which have been declared as inputs or outputs
of those units. The one exception to this rule is the case of variables which have been
declared to be global. Such variables are only accessible to a program organization unit
via a VAR_EXTERNAL declaration. The type of a variable declared in a VAR_EXTERNAL must
agree with the type declared in the VAR_GLOBAL block.

There is an error if:

-- any program organization unit attempts to modify the value of a variable that has been
declared with the CONSTANT qualifier;

-- a variable declared as VAR_GLOBAL CONSTANT in a configuration element or program or-
ganization unit (the “containing element”) is used in a VAR_EXTERNAL declaration (with-
out the CONSTANT qualifier) of any element contained within the containing element.

10.1.5.4	QUALIFIERS

Qualifier Description

CONST

The attribute CONST indicates that the variables within
the structuring elements are constants, i.e. they have
a constant value, which cannot be modified once the
PLC project has been compiled.

RETAIN

The attribute RETAIN indicates that the variables
within the structuring elements are retentive, i.e. they
keep their value even after the target device is reset
or switched off.

10.1.5.5	SINGLE-ELEMENT VARIABLES AND ARRAYS

A single-element variable represents a single data element of either one of the elemen-
tary types or one of the derived data types.

An array is a collection of data elements of the same data type; in order to access a single
element of the array, a subscript (or index) enclosed in square brackets has to be used.
Subscripts can be either integer literals or single-element variables.

To easily represent data matrices, arrays can be multi-dimensional; in this case, a com-
posite subscript is required, one index per dimension, separated by commas. The maxi-
mum number of dimensions allowed in the definition of an array is three.

	 user manual	 163

10.1.5.6	DECLARATION SYNTAX

Variables must be declared within structuring elements, using the following syntax:

VarName1 : Typename1 [:= InitialVal1];

VarName2 AT Location2 : Typename2 [:= InitialVal2];

VarName3 : ARRAY [0..N] OF Typename3;

where:

Keyword Description

VarNameX
Variable identifier, consisting of a string of
alphanumeric characters, of length 1 or more. It is
used for symbolic representation of variables.

TypenameX Data type of the variable, selected from elementary
data types.

InitialValX The value the variable assumes after reset of the
target.

LocationX See the next paragraph.

N Index of the last element, the array having length
N + 1.

10.1.5.7	LOCATION

Variables can be represented symbolically, i.e. accessed through their identifier, or alter-
natively in a manner which directly represents the association of the data element with
physical or logical locations in the programmable controller’s input, output, or memory
structure.

Direct representation of a single-element variable is provided by a special symbol formed
by the concatenation of the percent sign “%” , a location prefix and a size prefix, and one
or two unsigned integers, separated by periods (.).

%location.size.index.index

1)	 location

The location prefix may be one of the following:

Location prefix Description
I Input location
Q Output location
M Memory location

2)	 size

The size prefix may be one of the following:

Size prefix Description
X Single bit size
B Byte (8 bits) size
W Word (16 bits) size
D Double word (32 bits) size

164	 user manual

3)	 index.index

This sequence of unsigned integers, separated by dots, specifies the actual position
of the variable in the area specified by the location prefix.

Example:

Direct representation Description

%MW4.6 Word starting from the first byte of the 7th
element of memory datablock 4.

%IX0.4 First bit of the first byte of the 5th element
of input set 0.

Note that the absolute position depends on the size of the datablock elements, not on the
size prefix. As a matter of fact, %MW4.6 and %MD4.6 begin from the same byte in memory,
but the former points to an area which is 16 bits shorter than the latter.

For advanced users only: if the index consists of one integer only (no dots), then it loses
any reference to datablocks, and it points directly to the byte in memory having the index
value as its absolute address.

Direct representation Description

%MW4.6 Word starting from the first byte of the 7th
element of datablock 4 in memory.

%MW4 Word starting from byte 4 of memory.

Example

VAR [RETAIN] [CONSTANT]
	 XQuote : DINT;	 Enabling : BOOL := FALSE;
	 TorqueCurrent AT %MW4.32 : INT;
	 Counters : ARRAY [0 .. 9] OF UINT;
Limits: ARRAY [0..3, 0..9]

END_VAR

-- Variable XQuote is 32 bits long, and it is automatically allocated by the Application com-
piler.

-- Variable Enabling is initialized to FALSE after target reset.

-- Variable TorqueCurrent is allocated in the memory area of the target device, and it
takes 16 bits starting from the first byte of the 33rd element of datablock 4.

-- Variable Counters is an array of 10 independent variables of type unsigned integer.

10.1.5.8	DECLARING VARIABLES IN APPLICATION

Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies the Local variables editor, the Global variables editor, and the Param-
eters editor, which provide a friendly interface to declare all kinds of variables.

10.1.6	 PROGRAM ORGANIZATION UNITS

Program organization units are functions, function blocks, and programs. These program
organization units can be delivered by the manufacturer, or programmed by the user
through the means defined in this part of the standard

Program organization units are not recursive; that is, the invocation of a program organi-
zation unit cannot cause the invocation of another program organization unit of the same
type.

	 user manual	 165

10.1.6.1	FUNCTIONS

Introduction

For the purposes of programmable controller programming languages, a function is de-
fined as a program organization unit (POU) which, when executed, yields exactly one data
element, which is considered to be the function result.

Functions contain no internal state information, i.e., invocation of a function with the
same arguments (input variables VAR_INPUT and in-out variables VAR_IN_OUT) always
yields the same values (output variables VAR_OUTPUT, in-out variables VAR_IN_OUT and
function result).

Declaration syntax

The declaration of a function must be performed as follows:

FUNCTION FunctionName : RetDataType

VAR_INPUT

	 declaration of input variables (see the relevant section)

END_VAR

VAR

	 declaration of local variables (see the relevant section)

END_VAR

	 Function body

END_FUNCTION

Keyword Description

FunctionName Name of the function being declared.

RetDataType Data type of the value to be returned by the function.

Function body

Specifies the operations to be performed upon the
input variables in order to assign values dependent on
the function’s semantics to a variable with the same
name as the function, which represents the function
result. It can be written in any of the languages
supported by Application.

Declaring functions in Application

Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies a friendly interface for using functions.

10.1.6.2	FUNCTION BLOCKS

Introduction

For the purposes of programmable controller programming languages, a function block is
a program organization unit which, when executed, yields one or more values. Multiple,
named instances (copies) of a function block can be created. Each instance has an associ-
ated identifier (the instance name), and a data structure containing its input, output and
internal variables. All the values of the output variables and the necessary internal vari-
ables of this data structure persist from one execution of the function block to the next;
therefore, invocation of a function block with the same arguments (input variables) does
not always yield the same output values.

Only the input and output variables are accessible outside of an instance of a function
block, i.e., the function block’s internal variables are hidden from the user of the function
block.

In order to execute its operations, a function block needs to be invoked by another POU.

166	 user manual

Invocation depends on the specific language of the module calling the function block.

The scope of an instance of a function block is local to the program organization unit in
which it is instantiated.

Declaration syntax

The declaration of a function must be performed as follows:

FUNCTION_BLOCK FunctionBlockName

 VAR_INPUT

	 declaration of input variables (see the relevant section)

 END_VAR

 VAR_OUTPUT

	 declaration of output variables

 END_VAR

 VAR_EXTERNAL

	 declaration of external variables

 END_VAR

 VAR

	 declaration of local variables

 END_VAR

	 Function block body

END_FUNCTION_BLOCK

Keyword Description

FunctionBlockName Name of the function block being declared (note:
name of the template, not of its instances).

VAR_EXTERNAL .. END_VAR

A function block can access global variables only
if they are listed in a VAR_EXTERNAL structuring
element. Variables passed to the FB via a VAR_
EXTERNAL construct can be modified from within the
FB.

Function block body

Specifies the operations to be performed upon the
input variables in order to assign values to the
output variables - dependent on the function block’s
semantics and on the value of the internal variables.
It can be written in any of the languages supported
by Application.

Declaring functions in Application

Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies a friendly interface for using function blocks.

10.1.6.3	PROGRAMS

Introduction

A program is defined in IEC 61131-1 as a “logical assembly of all the programming lan-
guage elements and constructs necessary for the intended signal processing required for
the control of a machine or process by a programmable controller system.

Declaration syntax

	 user manual	 167

The declaration of a program must be performed as follows:

PROGRAM < program name>

	 Declaration of variables (see the relevant section)

	 Program body

END_PROGRAM

Keyword Description
Program Name Name of the program being declared.

Program body
Specifies the operations to be performed to get the
intended signal processing. It can be written in any of
the languages supported by Application.

Writing programs in Application

Whatever the PLC language you are using, Application allows you to disregard the syntax
above, as it supplies a friendly interface for writing programs.

Standard functions

Definitions of functions common to all programmable controller programming languages
are given in this paragraph.

A standard function specified in this paragraph to be extensible (Ext.) is allowed to have a
variable number of inputs, and applies the indicated operation to each input in turn, e.g.,
extensible addition gives as its output the sum of all its inputs.

-- Type conversion functions

-- Numerical functions

-- Bit string functions

-- Selection functions

-- Comparison functions

Type conversion functions

Type conversion functions have the form *_TO_** or TO_**, where “**” is the type of the
input variable, and “**” the type of the output variable, e.g., DINT_TO_INT or TO_REAL.

Name Nr.
operands Ext.

Input
data
types

Output
data
types

Function

DINT_TO_INT 1 No DINT INT
Converts a double integer (32
bits, signed) into a long integer
(16 bits, signed).

INT_TO_DINT 1 No INT DINT
Converts an integer (16 bits,
signed) into a long integer (32
bits, signed).

TO_BOOL 1 No Any BOOL Converts any data type into a
boolean.

TO_SINT 1 No Any SINT Converts any data type into a
short integer (8 bits, signed).

TO_USINT 1 No Any USINT
Converts any data type into an
unsigned short integer (8 bits,
unsigned).

168	 user manual

Name Nr.
operands Ext.

Input
data
types

Output
data
types

Function

TO_INT 1 No Any INT Converts any data type into an
integer (16 bits, signed).

TO_UINT 1 No Any UINT
Converts any data type into
an unsigned integer (16 bits,
unsigned).

TO_DINT 1 No Any DINT Converts any data type into a
long integer (32 bits, signed).

TO_UDINT 1 No Any UDINT
Converts any data type into an
unsigned long integer (32 bits,
unsigned).

TO_REAL 1 No Any REAL Converts any data type into a
floating point (32 bits, signed).

Numerical functions

Type conversion functions have the form *_TO_** or TO_**, where “*” is the type of the
input variable, and “**” the type of the output variable, e.g., DINT_TO_INT or TO_REAL.

Name Nr.
operands Ext.

Input
data
types

Output data
types Function

ABS 1 No Any Same as Input Absolute value
SQRT 1 No REAL REAL Square root
LN 1 No REAL REAL Natural logarithm
LOG 1 No REAL REAL Base-10 logarithm
EXP 1 No REAL REAL Natural exponential
SIN 1 No REAL REAL Sine of input in radians
COS 1 No REAL REAL Cosine of input in radians
TAN 1 No REAL REAL Tangent of input in radians
ASIN 1 No REAL REAL Principal arc sine
ACOS 1 No REAL REAL Principal arc cosine
ATAN 1 No REAL REAL Principal arc tangent
ADD 2 Yes Any Same as Input Addition
MUL 2 Yes Any Same as Input Multiplication
SUB 2 No Any Same as Input Subtraction
DIV 2 No Any Same as Input Division
MOD 2 No Any Same as Input Input1 modulo Input2

Bit string functions

Type conversion functions have the form *_TO_** or TO_**, where “*” is the type of the
input variable, and “**” is the type of the output variable, e.g., DINT_TO_INT or TO_REAL.

	 user manual	 169

Name Nr.
operands Ext.

Input
data
types

Output data
types Function

SHL 2 No
Any
but
BOOL

Same as Input1 Input1 left-shifted of Input2
bits, zero filled on right.

SHR 2 No
Any
but
BOOL

Same as Input1 Input1 right-shifted of Input2
bits, zero filled on left.

ROL 2 No
Any
but
BOOL

Same as Input1 Input1 left-shifted of Input2
bits, circular.

ROR 2 No
Any
but
BOOL

REAL Input1 right-shifted of Input2
bits, circular.

AND 2 Yes Any Same as Input1,2
Logical AND if both Input1
and Input2 are BOOL,
otherwise bitwise AND.

OR 2 Yes Any Same as Input1,2
Logical OR if both Input1 and
Input2 are BOOL, otherwise
bitwise OR.

XOR 2 Yes Any Same as Input1,2
Logical XOR if both Input1
and Input2 are BOOL,
otherwise bitwise XOR.

NOT 1 No Any Same as Input Logical NOT if Input is BOOL,
otherwise bitwise NOT.

Selection functions

Type conversion functions have the form *_TO_** or TO_**, where “*” is the type of the
input variable, and “**” the type of the output variable, e.g., DINT_TO_INT or TO_REAL

Name Nr.
operands Ext. Input data

types
Output

data types Function

SEL 3 No
(BOOL, Any but
BOOL, Any but

BOOL)

Same as
selected

Input

Select Input2 if Input1 is
FALSE, Input3 if Input1 is
TRUE.

MAX 3 Yes
(Any but BOOL,

..., Any but
BOOL)

Same as
max Input

Returns the maximum value
among Input1, ..., InputN.

MIN 3 Yes
(Any but BOOL,

..., Any but
BOOL)

Same as
min Input

Returns the minimum value
among Input1, ..., InputN.

LIMIT 3 No
(Any but BOOL,
Any but BOOL,
Any but BOOL)

Same as
Input1,2

Limits Input1 to be equal or
more than Input2, and equal
or less than Input3.

MUX 3 Yes (Any but BOOL,
Any, ..., Any)

Same as
selected

Input

Selects one of Input2, ...,
InputN depending on the
value of Input1, which acts
as a zero-based index.

170	 user manual

Comparison functions

Type conversion functions have the form *_TO_** or TO_**, where “*” is the type of the
input variable, and “**” the type of the output variable, e.g., DINT_TO_INT or TO_REAL.

Name Nr.
operands Ext. Input data

types
Output

data types Function

GT 2 Yes
(Any but

BOOL, ..., Any
but BOOL)

BOOL
Returns TRUE if Input1
Input2 ... InputN,
otherwise FALSE.

GE 2 Yes
(Any but

BOOL, ..., Any
but BOOL)

BOOL
Returns TRUE if Input1
= Input2 = ... = InputN,
otherwise FALSE.

EQ 2 Yes
(Any but

BOOL, ..., Any
but BOOL)

BOOL
Returns TRUE if Input1
= Input2 = ... = InputN,
otherwise FALSE.

LE 2 Yes
(Any but

BOOL, ..., Any
but BOOL)

BOOL
Returns TRUE if Input1
Input2 ... InputN, otherwise
FALSE.

LT 2 Yes
(Any but

BOOL, ..., Any
but BOOL)

BOOL
Returns TRUE if Input1
Input2 ... InputN, otherwise
FALSE.

NE 2 No
(Any but

BOOL, Any but
BOOL)

BOOL Returns TRUE if Input1
Input2, otherwise FALSE.

10.2	INSTRUCTION LIST (IL)

This section defines the semantics of the IL (Instruction List) language.

10.2.1	 SYNTAX AND SEMANTICS

10.2.1.1	SYNTAX OF IL INSTRUCTIONS

IL code is composed of a sequence of instructions. Each instruction begins on a new line
and contains an operator with optional modifiers, and, if necessary for the particular op-
eration, one or more operands separated by commas. Operands can be any of the data
representations for literals and for variables.

The instruction can be preceded by an identifying label followed by a colon (:). Empty
lines can be inserted between instructions.

Example

Let us parse a small piece of code:

START:	

	 LD %IX1 (* Push button *)		

	 ANDN %MX5.4 (* Not inhibited *)		

	 ST %QX2 (* Fan out *)

The elements making up each instruction are classified as follows:

Label Operator
[+ modifier] Operand Comment

START: LD %IX1 (* Push button *)

ANDN %MX5.4 (* Not inhibited *)

	 user manual	 171

Label Operator
[+ modifier] Operand Comment

ST %QX2 (* Fan out *)

Semantics of IL instructions

-- Accumulator

By accumulator a register is meant containing the value of the currently evaluated re-
sult.

-- Operators

Unless otherwise specified, the semantics of the operators is

accumulator := accumulator OP operand

That is, the value of the accumulator is replaced by the result yielded by operation OP
applied to the current value of the accumulator itself, with respect to the operand. For
instance, the instruction “AND %IX1” is interpreted as

accumulator := accumulator AND %IX1

and the instruction “GT %IW10” will have the Boolean result TRUE if the current value
of the accumulator is greater than the value of input word 10, and the Boolean result
FALSE otherwise:

accumulator := accumulator GT %IW10

-- Modifiers

The modifier “N” indicates bitwise negation of the operand.

The left parenthesis modifier “(” indicates that evaluation of the operator must be de-
ferred until a right parenthesis operator “)” is encountered. The form of a parenthesized
sequence of instructions is shown below, referred to the instruction

accumulator := accumulator AND (%MX1.3 OR %MX1.4)

The modifier “C” indicates that the associated instruction can be performed only if the
value of the currently evaluated result is Boolean 1 (or Boolean 0 if the operator is com-
bined with the “N” modifier).

10.2.2	 STANDARD OPERATORS

Standard operators with their allowed modifiers and operands are as listed below.

Operator Modifiers
Supported operand

types: Acc_type,
Op_type

Semantics

LD N Any, Any Sets the accumulator equal to
operand.

ST N Any, Any Stores the accumulator into
operand location.

S BOOL, BOOL Sets operand to TRUE if
accumulator is TRUE.

R BOOL, BOOL Sets operand to FALSE if
accumulator is TRUE.

AND N, (Any but REAL, Any but
REAL Logical or bitwise AND

OR N, (Any but REAL, Any but
REAL Logical or bitwise OR

172	 user manual

Operator Modifiers
Supported operand

types: Acc_type,
Op_type

Semantics

XOR N, (Any but REAL, Any but
REAL Logical or bitwise XOR

NOT Any but REAL Logical or bitwise NOT
ADD (Any but BOOL Addition
SUB (Any but BOOL Subtraction
MUL (Any but BOOL Multiplication
DIV (Any but BOOL Division
MOD (Any but BOOL Modulo-division
GT (Any but BOOL Comparison:
GE (Any but BOOL Comparison: =
EQ (Any but BOOL Comparison: =
NE (Any but BOOL Comparison:
LE (Any but BOOL Comparison:
LT (Any but BOOL Comparison:
JMP C, N Label Jumps to label
CAL C, N FB instance name Calls function block

RET C, N Returns from called program,
function, or function block.

) Evaluates deferred operation.

10.2.3	 CALLING FUNCTIONS AND FUNCTION BLOCKS

10.2.3.1	CALLING FUNCTIONS

Functions (as defined in the relevant section) are invoked by placing the function name in
the operator field. This invocation takes the following form:

LD 1

MUX 5, var0, -6.5, 3.14

ST vRES

Note that the first argument is not contained in the input list, but the accumulator is used
as the first argument of the function. Additional arguments (starting with the 2nd), if re-
quired, are given in the operand field, separated by commas, in the order of their decla-
ration. For example, operator MUX in the table above takes 5 operands, the first of which
is loaded into the accumulator, whereas the remaining 4 arguments are orderly reported
after the function name.

The following rules apply to function invocation.

1)	 Assignments to VAR_INPUT arguments may be empty, constants, or variables.

2)	 Execution of a function ends upon reaching a RET instruction or the physical end of
the function. When this happens, the output variable of the function is copied into the
accumulator.

Calling Function Blocks

Function blocks (as defined in the relevant section) can be invoked conditionally and un-
conditionally via the CAL operator. This invocation takes the following form:

LD A

	 user manual	 173

ADD 5

ST INST5.IN1

LD 3.141592

ST INST5.IN2

CAL INST5

LD INST5.OUT1

ST vRES

LD INST5.OUT2

ST vVALID

This method of invocation is equivalent to a CAL with an argument list, which contains only
one variable with the name of the FB instance.

Input arguments are passed to / output arguments are read from the FB instance through
ST / LD operations performed on operands taking the following form:

FBInstanceName.IO_var

where

Keyword Description
FBInstanceName Name of the instance to be invoked.

IO_var Input or output variable to be written / read.

10.3	FUNCTION BLOCK DIAGRAM (FBD)

This section defines the semantics of the FBD (Function Block Diagram) language.

10.3.1	 REPRESENTATION OF LINES AND BLOCKS

The graphic language elements are drawn using graphic or semi graphic elements, as
shown in the table below.

No storage of data or association with data elements can be associated with the use of
connectors; hence, to avoid ambiguity, connectors cannot be given any identifier.

Feature Example

Lines

Line crossing with connection

Blocks with connecting lines
and unconnected pins

174	 user manual

10.3.2	 DIRECTION OF FLOW IN NETWORKS

A network is defined as a maximal set of interconnected graphic elements. A network
label delimited on the right by a colon (:) can be associated with each network or group
of networks. The scope of a network and its label is local to the program organization unit
(POU) where the network is located.

Graphic languages are used to represent the flow of a conceptual quantity through one
or more networks representing a control plan. Namely, in the case of function block dia-
grams (FBD), the “Signal flow” is typically used, analogous to the flow of signals between
elements of a signal processing system. Signal flow in the FBD language is from the out-
put (right-hand) side of a function or function block to the input (left-hand) side of the
function or function block(s) so connected.

10.3.3	 EVALUATION OF NETWORKS

10.3.3.1	ORDER OF EVALUATION OF NETWORKS

The order in which networks and their elements are evaluated is not necessarily the same
as the order in which they are labeled or displayed. When the body of a program organiza-
tion unit (POU) consists of one or more networks, the results of network evaluation within
said body are functionally equivalent to the observance of the following rules:

1)	 No element of a network is evaluated until the states of all of its inputs have been
evaluated.

2)	 The evaluation of a network element is not complete until the states of all of its out-
puts have been evaluated.

3)	 As stated when describing the FBD editor, a network number is automatically as-
signed to every network. Within a program organization unit (POU), networks are
evaluated according to the sequence of their number: network N is evaluated before
network N+1, unless otherwise specified by means of the execution control elements.

10.3.3.2	COMBINATION OF ELEMENTS

Elements of the FBD language must be interconnected by signal flow lines.

Outputs of blocks shall not be connected together. In particular, the “wired-OR” construct
of the LD language is not allowed, as an explicit Boolean “OR” block is required.

Feedback

A feedback path is said to exist in a network when the output of a function or function
block is used as the input to a function or function block which precedes it in the network;
the associated variable is called a feedback variable.

Feedback paths can be utilized subject to the following rules:

1)	 Feedback variables must be initialized, and the initial value is used during the first
evaluation of the network. Look the Global variables editor, the Local variables editor,
or the Parameters editor to know how to initialize the respective item.

2)	 Once the element with a feedback variable as output has been evaluated, the new
value of the feedback variable is used until the next evaluation of the element.

For instance, the Boolean variable RUN is the feedback variable in the example shown
below.

	 user manual	 175

Explicit loop

Implicit loop

10.3.4	 EXECUTION CONTROL ELEMENTS

10.3.4.1	EN/ENO SIGNALS

Additional Boolean EN (Enable) input and ENO (Enable Out) characterize Application blocks,
according to the declarations

EN ENO
VAR_INPUT	

 EN: BOOL := 1;

END_VAR

VAR_OUTPUT

 ENO: BOOL;

END_VAR

See the Modifying properties of blocks section to know how to add these pins to a block.

When these variables are used, the execution of the operations defined by the block are
controlled according to the following rules:

1)	 If the value of EN is FALSE when the block is invoked, the operations defined by the
function body are not executed and the value of ENO is reset to FALSE by the program-
mable controller system.

176	 user manual

2)	 Otherwise, the value of ENO is set to TRUE by the programmable controller system,
and the operations defined by the block body are executed.

10.3.4.2	JUMPS

Jumps are represented by a Boolean signal line terminated in a double arrowhead. The
signal line for a jump condition originates at a Boolean variable, or at a Boolean output of
a function or function block. A transfer of program control to the designated network label
occurs when the Boolean value of the signal line is TRUE; thus, the unconditional jump is
a special case of the conditional jump.

The target of a jump is a network label within the program organization unit within which
the jump occurs.

Symbol / Example Explanation

Unconditional Jump

Conditional Jump

Example: Jump Condition
Network

10.3.4.3	CONDITIONAL RETURNS

-- Conditional returns from functions and function blocks are implemented using a RETURN
construction as shown in the table below. Program execution is transferred back to the
invoking entity when the Boolean input is TRUE, and continues in the normal fashion
when the Boolean input is FALSE.

-- Unconditional returns are provided by the physical end of the function or function block.

Symbol / Example Explanation

Conditional Return

Example: Return Condition
Network

	 user manual	 177

10.4	LADDER DIAGRAM (LD)

This section defines the semantics of the LD (Ladder Diagram) language.

10.4.1	 POWER RAILS

The LD network is delimited on the left side by a vertical line known as the left power rail,
and on the right side by a vertical line known as the right power rail. The right power rail
may be explicit in the Application implementation and it is always shown.

The two power rails are always connected with an horizontal line named signal link. All LD
elements should be placed and connected to the signal link.

Description Symbol

Left power rail (with attached
horizontal link)

Right power rail (with attached
horizontal link)

Power rails connected by the
signal link

10.4.2	 LINK ELEMENTS AND STATES

Link elements may be horizontal or vertical. The state of the link elements shall be de-
noted “ON” or “OFF”, corresponding to the literal Boolean values 1 or 0, respectively. The
term link state shall be synonymous with the term power flow.

The following properties apply to the link elements:

-- The state of the left rail shall be considered ON at all times. No state is defined for the
right rail.

-- A horizontal link element is indicated by a horizontal line. A horizontal link element
transmits the state of the element on its immediate left to the element on its immedi-
ate right.

-- The vertical link element consists of a vertical line intersecting with one or more hori-
zontal link elements on each side. The state of the vertical link represents the inclusive
OR of the ON states of the horizontal links on its left side, that is, the state of the verti-
cal link is:

OFF if the states of all the attached horizontal links to its left are OFF;

	 ON if the state of one or more of the attached horizontal links to its left is ON.

-- The state of the vertical link is copied to all of the attached horizontal links on its right.

-- The state of the vertical link is not copied to any of the attached horizontal links on its
left.

178	 user manual

Description Symbol

Vertical link with attached
horizontal links

10.4.3	 CONTACTS

A contact is an element which imparts a state to the horizontal link on its right side which
is equal to the Boolean AND of the state of the horizontal link at its left side with an ap-
propriate function of an associated Boolean input, output, or memory variable.

A contact does not modify the value of the associated Boolean variable. Standard contact
symbols are given in the following table.

Name Description Symbol

Normally open
contact

The state of the left link is copied
to the right link if the state of the
associated Boolean variable is ON.
Otherwise, the state of the right
link is OFF.

Normally closed
contact

The state of the left link is copied
to the right link if the state of the
associated Boolean variable is OFF.
Otherwise, the state of the right
link is OFF.

Positive transition-
sensing contact

The state of the right link is
ON from one evaluation of
this element to the next when
a transition of the associated
variable from OFF to ON is sensed
at the same time that the state of
the left link is ON. The state of the
right link shall be OFF at all other
times.

Negative transition-
sensing contact

The state of the right link is
ON from one evaluation of
this element to the next when
a transition of the associated
variable from ON to OFF is sensed
at the same time that the state of
the left link is ON. The state of the
right link shall be OFF at all other
times.

	 user manual	 179

10.4.4	 COILS

A coil copies the state of the link on its left side to the link on its right side without modi-
fication, and stores an appropriate function of the state or transition of the left link into
the associated Boolean variable.

Standard coil symbols are shown in the following table.

Name Description Symbol

Coil
The state of the left link is
copied to the associated
Boolean variable.

Negated coil

The inverse of the state of
the left link is copied to the
associated Boolean variable,
that is, if the state of the left
link is OFF, then the state of the
associated variable is ON, and
vice versa.

SET (latch) coil

The associated Boolean variable
is set to the ON state when the
left link is in the ON state, and
remains set until reset by a
RESET coil.

RESET (unlatch) coil

The associated Boolean variable
is reset to the OFF state when
the left link is in the ON state,
and remains reset until set by a
SET coil.

Positive transition-
sensing coil

The state of the associated
Boolean variable is ON from
one evaluation of this element
to the next when a transition of
the left link from OFF to ON is
sensed.

Negative transition-
sensing coil

The state of the associated
Boolean variable is ON from
one evaluation of this element
to the next when a transition of
the left link from ON to OFF is
sensed.

10.4.5	 OPERATORS, FUNCTIONS AND FUNCTION BLOCKS

The representation of functions and function blocks in the LD language is similar to the
one used for FBD. At least one Boolean input and one Boolean output shall be shown on
each block to allow for power flow through the block as shown in the following figure.

180	 user manual

10.5	STRUCTURED TEXT (ST)

This section defines the semantics of the ST (Structured Text) language.

10.5.1	 EXPRESSIONS

An expression is a construct which, when evaluated, yields a value corresponding to one
of the data types listed in the elementary data types table. Application does not set any
constraint on the maximum length of expressions.

Expressions are composed of operators and operands.

10.5.1.1	OPERANDS

An operand can be a literal, a variable, a function invocation, or another expression.

10.5.1.2	OPERATORS

Open the table of operators to see the list of all the operators supported by ST. The evalu-
ation of an expression consists of applying the operators to the operands in a sequence
defined by the operator precedence rules.

10.5.1.3	OPERATOR PRECEDENCE RULES

Operators have different levels of precedence, as specified in the table of operators. The
operator with highest precedence in an expression is applied first, followed by the opera-
tor of next lower precedence, etc., until evaluation is complete. Operators of equal prec-
edence are applied as written in the expression from left to right.

For example if A, B, C, and D are of type INT with values 1, 2, 3, and 4, respectively, then:

A+B-C*ABS(D)

yields -9, and:

(A+B-C)*ABS(D)

yields 0.

When an operator has two operands, the leftmost operand is evaluated first. For example,
in the expression

SIN(A)*COS(B)

the expression SIN(A) is evaluated first, followed by COS(B), followed by evaluation of
the product.

Functions are invoked as elements of expressions consisting of the function name fol-
lowed by a parenthesized list of arguments, as defined in the relevant section.

	 user manual	 181

10.5.1.4	OPERATORS OF THE ST LANGUAGE

Operation Symbol Precedence

Parenthesization (<expression>) HIGHEST

.

.

.

.

.

.

.

.

.

.

.

.

.

Function evaluation <fname>(<arglist>)

Negation Complement
-

NOT

Exponentiation **

Multiply Divide Modulo

*

/

MOD

Add Subtract
+

-

Comparison <, >, <=, >=

Equality Inequality
=

<>

Boolean AND AND

Boolean Exclusive OR XOR

Boolean OR OR LOWEST

10.5.2	 STATEMENTS IN ST

All statements comply with the following rules:

-- they are terminated by semicolons;

-- unlike IL, a carriage return or new line character is treated the same as a space char-
acter;

-- Application does not set any constraint on the maximum length of statements.

ST statements can be divided into classes, according to their semantics.

10.5.2.1	ASSIGNMENTS

Semantics

The assignment statement replaces the current value of a single or multi-element variable
by the result of evaluating an expression.

The assignment statement is also used to assign the value to be returned by a function,
by placing the function name to the left of an assignment operator in the body of the
function declaration. The value returned by the function is the result of the most recent
evaluation of such an assignment.

Syntax

An assignment statement consists of a variable reference on the left-hand side, followed
by the assignment operator “:=”, followed by the expression to be evaluated. For in-
stance, the statement

A := B ;

would be used to replace the single data value of variable A by the current value of vari-
able B if both were of type INT.

182	 user manual

Examples

a := b ;

assignment

pCV := pCV + 1 ;

assignment

c := SIN(x);

assignment with function invocation

FUNCTION SIMPLE_FUN : REAL

variables declaration

...

function body

...

SIMPLE_FUN := a * b - c ;

END_FUNCTION

assigning the output value to a function

10.5.2.2	FUNCTION AND FUNCTION BLOCK STATEMENTS

Semantics

-- Functions are invoked as elements of expressions consisting of the function name fol-
lowed by a parenthesized list of arguments. Each argument can be a literal, a variable,
or an arbitrarily complex expression.

-- Function blocks are invoked by a statement consisting of the name of the function block
instance followed by a parenthesized list of arguments. Both invocation with formal ar-
gument list and with assignment of arguments are supported.

-- RETURN: function and function block control statements consist of the mechanisms for
invoking function blocks and for returning control to the invoking entity before the phys-
ical end of a function or function block. The RETURN statement provides early exit from
a function or a function block (e.g., as the result of the evaluation of an IF statement).

Syntax

1)	 Function:

	 dst_var := function_name(arg1, arg2 , ... , argN);

2)	 Function block with formal argument list:

	 instance_name(var_in1 := arg1 ,
					 var_in2 := arg2 ,
					 ... ,
					 var_inN := argN);

3)	 Function block with assignment of arguments:

	 instance_name.var_in1 := arg1;
	 ...
	 instance_name.var_inN := argN;
	 instance_name();

4)	 Function and function block control statement:

	 RETURN;

Examples

CMD_TMR(IN := %IX5,

 PT:= 300) ;

	 user manual	 183

FB invocation with formal argument list:

IN := %IX5 ;

PT:= 300 ;

CMD_TMR() ;

FB invocation with assignment of arguments:

a := CMD_TMR.Q;

FB output usage:

RETURN ;

early exit from function or function block.

10.5.2.3	SELECTION STATEMENTS

Semantics

Selection statements include the IF and CASE statements. A selection statement selects
one (or a group) of its component statements for execution based on a specified condi-
tion.

-- IF: the IF statement specifies that a group of statements is to be executed only if the
associated Boolean expression evaluates to the value TRUE. If the condition is false,
then either no statement is to be executed, or the statement group following the ELSE
keyword (or the ELSIF keyword if its associated Boolean condition is true) is executed.

-- CASE: the CASE statement consists of an expression which evaluates to a variable of
type DINT (the “selector”), and a list of statement groups, each group being labeled by
one or more integer or ranges of integer values, as applicable. It specifies that the first
group of statements, one of whose ranges contains the computed value of the selector,
is to be executed. If the value of the selector does not occur in a range of any case, the
statement sequence following the keyword ELSE (if it occurs in the CASE statement) is
executed. Otherwise, none of the statement sequences is executed.

Application does not set any constraint on the maximum allowed number of selections in
CASE statements.

Syntax

Note that square brackets include optional code, while braces include repeatable portions
of code.

1)	 IF:

	 IF expression1 THEN

	 stat_list

	 [{ ELSIF expression2 THEN

	 stat_list }]

	 ELSE

	 stat_list

	 END_IF ;

2)	 CASE:

	 CASE expression1 OF

	 intv [{, intv }] :

	 stat_list

	 { intv [{, intv }] :

	 stat_list }

	 [ELSE

	 stat_list]

184	 user manual

	 END_CASE ;

	 intv being either a constant or an interval: a or a..b

Examples

IF statement:

IF d 0.0 THEN

nRoots := 0 ;

ELSIF d = 0.0 THEN

nRoots := 1 ;

x1 := -b / (2.0 * a) ;

ELSE

nRoots := 2 ;

x1 := (-b + SQRT(d)) / (2.0 * a) ;

x2 := (-b - SQRT(d)) / (2.0 * a) ;

END_IF ;

CASE statement:

CASE tw OF

1, 5:

display := oven_temp ;

2:

display := motor_speed ;

3:

display := gross_tare;

4, 6..10:

display := status(tw - 4) ;

ELSE

 display := 0;

 tw_error := 1;

END_CASE ;

10.5.2.4	ITERATION STATEMENTS

Semantics

Iteration statements specify that the group of associated statements are executed repeat-
edly. The FOR statement is used if the number of iterations can be determined in advance;
otherwise, the WHILE or REPEAT constructs are used.

-- FOR: the FOR statement indicates that a statement sequence is repeatedly executed,
up to the END_FOR keyword, while a progression of values is assigned to the FOR loop
control variable. The control variable, initial value, and final value are expressions of
the same integer type (e.g., SINT, INT, or DINT) and cannot be altered by any of the
repeated statements. The FOR statement increments the control variable up or down
from an initial value to a final value in increments determined by the value of an ex-
pression; this value defaults to 1.The test for the termination condition is made at the
beginning of each iteration, so that the statement sequence is not executed if the initial
value exceeds the final value.

-- WHILE: the WHILE statement causes the sequence of statements up to the END_WHILE
keyword to be executed repeatedly until the associated Boolean expression is false. If
the expression is initially false, then the group of statements is not executed at all.

-- REPEAT: the REPEAT statement causes the sequence of statements up to the UNTIL

	 user manual	 185

keyword to be executed repeatedly (and at least once) until the associated Boolean
condition is true.

-- EXIT: the EXIT statement is used to terminate iterations before the termination condi-
tion is satisfied. When the EXIT statement is located within nested iterative constructs,
exit is from the innermost loop in which the EXIT is located, that is, control passes to
the next statement after the first loop terminator (END_FOR, END_WHILE, or END_RE-
PEAT) following the EXIT statement.

Note:	 the WHILE and REPEAT statements cannot be used to achieve interprocess synchronization,
for example as a “wait loop” with an externally determined termination condition. The SFC
elements defined must be used for this purpose.

Syntax

Note that square brackets include optional code, while braces include repeatable portions
of code.

1)	 FOR:

	 FOR control_var := init_val TO end_val [BY increm_val] DO

	 stat_list

	 END_FOR ;

2)	 WHILE:

	 WHILE expression DO

	 stat_list

	 END_WHILE ;

3)	 REPEAT:

	 REPEAT

	 stat_list

	 UNTIL expression

	 END_REPEAT ;

Examples

FOR statement:

j := 101 ;

FOR i := 1 TO 100 BY 2 DO

 IF arrvals[i] = 57 THEN

j := i ;

 EXIT ;

 END_IF ;

END_FOR ;

WHILE statement:

j := 1 ;

WHILE j <=100 AND arrvals[i] <> 57 DO

j := j + 2 ;

END_WHILE ;

REPEAT statement:

j := -1 ;

REPEAT

 j := j + 2 ;

UNTIL j = 101 AND arrvals[i] = 57

186	 user manual

END_REPEAT ;

10.6	SEQUENTIAL FUNCTION CHART (SFC)

This section defines Sequential Function Chart (SFC) elements to structure the internal
organization of a PLC program organization unit (POU), written in one of the languages
defined in this standard, for the purpose of performing sequential control functions. The
definitions in this section are derived from IEC 848, with the changes necessary to convert
the representations from a documentation standard to a set of execution control elements
for a PLC program organization unit.

Since SFC elements require storage of state information, the only program organization
units which can be structured using these elements are function blocks and programs.

If any part of a program organization unit is partitioned into SFC elements, the entire
program organization unit is so partitioned. If no SFC partitioning is given for a program
organization unit, the entire program organization unit is considered to be a single action
which executes under the control of the invoking entity.

SFC elements

The SFC elements provide a means of partitioning a PLC program organization unit into a
set of steps and transitions interconnected by directed links. Associated with each step is
a set of actions, and with each transition is associated a transition condition.

10.6.1	 STEPS

10.6.1.1	DEFINITION

A step represents a situation where the behavior of a program organization unit (POU)
with respect to its inputs and outputs follows a set of rules defined by the associated ac-
tions of the step. A step is either active or inactive. At any given moment, the state of
the program organization unit is defined by the set of active steps and the values of its
internal and output variables.

A step is represented graphically by a block containing a step name in the form of an iden-
tifier. The directed link(s) into the step can be represented graphically by a vertical line
attached to the top of the step. The directed link(s) out of the step can be represented by
a vertical line attached to the bottom of the step.

Representation Description

Step
(graphical representation with

direct links)

Application does not set any constraint on the maximum number of steps per SFC.

Step flag

The step flag (active or inactive state of a step) can be represented by the logic value of a
Boolean variable ***_x, where *** is the step name. This Boolean variable has the value
TRUE when the corresponding step is active, and FALSE when it is inactive. The scope of
step names and step flags is local to the program organization unit where the steps ap-
pear.

	 user manual	 187

Representation Description

Step Name_x
Step flag

= TRUE when Step Name_x is active
= FALSE otherwise

Users cannot assign a value directly to a step state.

10.6.1.2	INITIAL STEP

The initial state of the program organization unit is represented by the initial values of
its internal and output variables, and by its set of initial steps, i.e., the steps which are
initially active. Each SFC network, or its textual equivalent, has exactly one initial step.
An initial step can be drawn graphically with double lines for the borders, as shown below.
For system initialization, the default initial state is FALSE for ordinary steps and TRUE for
initial steps.

Application cannot compile an SFC network not containing exactly one initial step.

Representation Description

Initial step
(graphical representation with

direct links)

10.6.1.3	ACTIONS

An action can be:

-- a collection of instructions in the IL language;

-- a collection of networks in the FBD language;

-- a collection of rungs in the LD language;

-- a collection of statements in the ST language;

-- a sequential function chart (SFC) organized as defined in this section.

Zero or more actions can be associated with each step. Actions are declared via one of the
textual structuring elements listed in the following table.

Structuring element Description

STEP StepName :
(* Step body *)

END_STEP
Step (textual form)

INITIAL_STEP StepName :
(* Step body *)

END_STEP
Initial step (textual form)

Such a structuring element exists in the lsc file for every step having at least one associ-
ate action.

188	 user manual

10.6.1.4	ACTION QUALIFIERS

The time when an action associated to a step is executed depends on its action qualifier.

Application implements the following action qualifiers.

Qualifier Description Meaning

N Non-stored (null qualifier). The action is executed as long as
the step remains active.

P Pulse.

The action is executed only once per
step activation, regardless of the
number of cycles the step remains
active.

If a step has zero associated actions, then it is considered as having a WAIT function, that
is, waiting for a successor transition condition to become true.

10.6.1.5	JUMPS

Direct links flow only downwards. Therefore, if you want to return to a upper step from a
lower one, you cannot draw a logical wire from the latter to the former. A special type of
block exists, called Jump, which lets you implement such a transition.

A Jump block is logically equivalent to a step, as they have to always be separated by a
transition. The only effect of a Jump is to activate the step flag of the preceding step and
to activate the flag of the step it points to.

Representation Description

Jump
(logical link to the destination step)

10.6.2	 TRANSITIONS

10.6.2.1	DEFINITION

A transition represents the condition whereby control passes from one or more steps
preceding the transition to one or more successor steps along the corresponding directed
link. The transition is represented by a small grey square across the vertical directed link.

The direction of evolution following the directed links is from the bottom of the predeces-
sor step(s) to the top of the successor step(s).

10.6.2.2	TRANSITION CONDITION

Each transition has an associated transition condition which is the result of the evaluation
of a single Boolean expression. A transition condition which is always true is represented
by the keyword TRUE, whereas a transition condition always false is symbolized by the
keyword FALSE.

A transition condition can be associated with a transition by one of the following means:

Representation Description

By placing the appropriate Boolean constant {TRUE,
FALSE} adjacent to the vertical directed link.

	 user manual	 189

Representation Description

By declaring a Boolean variable, whose value
determines whether or not the transition is cleared.

By writing a piece of code, in any of the languages
supported by Application, except for SFC. The result
of the evaluation of such a code determines the
transition condition.

The scope of a transition name is local to the program organization unit (POU) in which
the transition is located.

10.6.3	 RULES OF EVOLUTION

Introduction

The initial situation of a SFC network is characterized by the initial step which is in the
active state upon initialization of the program or function block containing the network.

Evolutions of the active states of steps take place along the directed links when caused by
the clearing of one or more transitions.

A transition is enabled when all the preceding steps, connected to the corresponding tran-
sition symbol by directed links, are active. The clearing of a transition occurs when the
transition is enabled and when the associated transition condition is true.

The clearing of a transition causes the deactivation (or “resetting”) of all the immediately
preceding steps connected to the corresponding transition symbol by directed links, fol-
lowed by the activation of all the immediately following steps.

The alternation Step/Transition and Transition/Step is always maintained in SFC element
connections, that is:

-- two steps are never directly linked; they are always separated by a transition;

-- two transitions are never directly linked; they are always separated by a step.

When the clearing of a transition leads to the activation of several steps at the same time,
the sequences to which these steps belong are called simultaneous sequences. After their
simultaneous activation, the evolution of each of these sequences becomes independent.
In order to emphasize the special nature of such constructs, the divergence and conver-
gence of simultaneous sequences is indicated by a double horizontal line.

The clearing time of a transition may theoretically be considered as short as one may
wish, but it can never be zero. In practice, the clearing time will be imposed by the PLC
implementation: several transitions which can be cleared simultaneously will be cleared
simultaneously, within the timing constraints of the particular PLC implementation and
the priority constraints defined in the sequence evolution table. For the same reason, the
duration of a step activity can never be considered to be zero. Testing of the successor
transition condition(s) of an active step shall not be performed until the effects of the step
activation have propagated throughout the program organization unit in which the step
is declared.

190	 user manual

Sequence evolution table

This table defines the syntax and semantics of the allowed combinations of steps and
transitions.

Example Rule

Normal transition

An evolution from step S3 to step S4
takes place if and only if step S3 is
in the active state and the transition
condition c is TRUE.

Divergent transition

An evolution takes place from S5 to
S6 if and only if S5 is active and the
transition condition e is TRUE, or from
S5 to S8 only if S5 is active and f is
TRUE and e is FALSE.

Convergent transition

An evolution takes place from S7
to S10 only if S7 is active and the
transition condition h is TRUE, or from
S9 to S10 only if S9 is active and j is
TRUE.

Simultaneous divergent transition

An evolution takes place from S11 to
S12, S14,... only if S11 is active and
the transition condition b associated
to the common transition is TRUE.
After the simultaneous activation of
S12, S14, etc., the evolution of each
sequence proceeds independently.

Simultaneous convergent transition

An evolution takes place from S13,
S15,... to S16 only if all steps above
and connected to the double horizontal
line are active and the transition
condition d associated to the common
transition is TRUE.

	 user manual	 191

Examples

Invalid scheme Equivalent allowed scheme Note

Expected behavior: an
evolution takes place
from S30 to S33 if a is
FALSE and d is TRUE.

The scheme in the
leftmost column
is invalid because
conditions d and TRUE
are directly linked.

Expected behavior: an
evolution takes place
from S32 to S31 if c is
FALSE and d is TRUE.

The scheme in the
leftmost column
is invalid because
direct links flow only
downwards. Upward
transitions can be
performed via jump
blocks.

10.7	APPLICATION LANGUAGE EXTENSIONS

Application features a few extensions to the IEC 61131-3 standard, in order to further
enrich the language and to adapt to different coding styles.

10.7.1	 MACROS

Application implements macros in the same way a C programming language pre-proces-
sor does.

Macros can be defined using the following syntax:

	 MACRO <macro name>

		 PAR_MACRO

			 <parameter list>

		 END_PAR

		 <macro body>

	 END_MACRO

Note that the parameter list may eventually be empty, thus distinguishing between ob-
ject-like macros, which do not take parameters, and function-like macros, which do take
parameters.

192	 user manual

A concrete example of macro definition is the following, which takes two bytes and com-
poses a 16-bit word:

MACRO MAKEWORD

	 PAR_MACRO

		 lobyte;

		 hibyte;

	 END_PAR

	 { CODE:ST }

	 lobyte + SHL(TO_UINT(hibyte), 8)

END_MACRO

Whenever the macro name appears in the source code, it is replaced (along with the ac-
tual parameter list, in case of function-like macros) with the macro body. For example,
given the definition of the macro MAKEWORD and the following Structured Text code frag-
ment:

	 w := MAKEWORD(b1, b2);

the macro pre-processor expands it to

	 w := b1 + SHL(TO_UINT(b2), 8);

10.7.2	 POINTERS

Pointers are a special kind of variables which act as a reference to another variable (the
1pointed variable). The value of a pointer is, in fact, the address of the pointed variable;
in order to access the data stored at the address pointed to, pointers can be dereferenced.

Pointer declaration requires the same syntax used in variable declaration, where the type
name is the type name of the pointed variable preceded by a @ sign:

	 VAR

		 <pointer name> : @<pointed variable type name>;

	 END_VAR

For example, the declaration of a pointer to a REAL variable shall be as follows:

	 VAR

		 px : @REAL;

	 END_VAR

A pointer can be assigned with another pointer or with an address. A special operator, ADR,
is available to retrieve the address of a variable.

	 px := py;		 (* px and py are pointers to REAL (that is, vari-
ables of type @REAL) *)

	 px := ADR(x)	 (* x is a variable of type REAL *)

	 px := ?x		 (* ? is an alternative notation for ADR *)

The @ operator is used to dereference a pointer, hence to access the pointed variable.

	 px := ADR(x);

	 @px := 3.141592;	 (* the approximate value of pi is assigned to x *)

		 pn := ADR(n);

	 n := @pn + 1;		 (* n is incremented by 1 *)

Beware that careless use of pointers is potentially dangerous: indeed, pointers can point
to any arbitrary location, which can cause undesirable effects.

	1.	Overview
	1.1	The workspace
	1.1.1	The output window
	1.1.2	The status bar
	1.1.3	The document bar
	1.1.4	The watch window
	1.1.5	The library window
	1.1.6	The workspace window
	1.1.7	The source code editors

	2.	Using the environment
	2.1	Layout customization
	2.2	Toolbars
	2.2.1	Showing/hiding toolbars
	2.2.2	Moving toolbars

	2.3	Docking windows
	2.3.1	Showing/hiding tool windows
	2.3.2	Moving tool windows

	2.4	Working with windows
	2.4.1	The document bar
	2.4.2	The window menu

	2.5	Full screen mode
	2.6	Environment options

	3.	Managing projects
	3.1	Creating a new project
	3.2	Uploading the project from the target device
	3.3	Saving the project
	3.3.1	Persisting changes to the project
	3.3.2	Saving to an alternative location

	3.4	Managing existing projects
	3.4.1	Opening an existing Application project
	3.4.2	Editing the project
	3.4.3	Closing the project

	3.5	Distributing projects
	3.6	Project options
	3.7	Selecting the target device
	3.8	Working with libraries
	3.8.1	The library manager
	3.8.2	Exporting to a library
	3.8.3	Importing from a library or another source

	4.	Managing project elements
	4.1	Program Organization Units
	4.1.1	Creating a new Program Organization Unit
	4.1.2	Editing POUs
	4.1.3	Deleting POUs
	4.1.4	Source code encryption

	4.2	Variables
	4.2.1	Global variables
	4.2.2	Local variables

	4.3	Tasks
	4.3.1	Assigning a program to a task
	4.3.2	Task configuration

	4.4	Derived data types
	4.4.1	Typedefs
	4.4.2	Structures
	4.4.3	Enumerations
	4.4.4	Subranges

	4.5	Browsing the project
	4.5.1	object browser
	4.5.2	Searching with the Find in project command

	4.6	Working with Application extensions

	5.	Editing the source code
	5.1	Instruction List (IL) editor
	5.1.1	Editing functions
	5.1.2	Reference to PLC objects
	5.1.3	Automatic error location
	5.1.4	Bookmarks

	5.2	Structured Text (ST) Editor
	5.2.1	Creating and editing ST objects
	5.2.2	Editing functions
	5.2.3	Reference to PLC objects
	5.2.4	Automatic error location
	5.2.5	Bookmarks

	5.3	Ladder Diagram (LD) editor
	5.3.1	Creating a new LD document
	5.3.2	Adding/Removing networks
	5.3.3	Labeling networks
	5.3.4	Inserting contacts
	5.3.5	Inserting coils
	5.3.6	Inserting blocks
	5.3.7	Editing coils and contacts properties
	5.3.8	Editing networks
	5.3.9	Modifying properties of blocks
	5.3.10	Getting information on a block
	5.3.11	Automatic error retrieval

	5.4	Function Block Diagram (FBD) editor
	5.4.1	Creating a new FBD document
	5.4.2	Adding/Removing networks
	5.4.3	Labeling networks
	5.4.4	Inserting and connecting blocks
	5.4.5	Editing networks
	5.4.6	Modifying properties of blocks
	5.4.7	Getting information on a block
	5.4.8	Automatic error retrieval

	5.5	Sequential Function Chart (SFC) Editor
	5.5.1	Creating a new SFC document
	5.5.2	Inserting a new SFC element
	5.5.3	Connecting SFC elements
	5.5.4	Assigning an action to a step
	5.5.5	Specifying a constant/a variable as the condition of a transition
	5.5.6	Assigning conditional code to a transition
	5.5.7	Specifying the destination of a jump
	5.5.8	Editing SFC networks

	5.6	Variables editor
	5.6.1	Opening a variables editor
	5.6.2	Creating a new variable
	5.6.3	Editing variables
	5.6.4	Deleting variables
	5.6.5	Sorting variables
	5.6.6	Copying variables

	6.	Compiling
	6.1	Compiling the project
	6.1.1	Image file loading

	6.2	Compiler output
	6.2.1	Compiler errors

	6.3	Command-line compiler

	7.	Launching the application
	7.1	Setting up the communication
	7.1.1	Saving the last used communication port

	7.2	On-line status
	7.2.1	Connection status
	7.2.2	Application status

	7.3	Downloading the application
	7.3.1	Controlling source code download

	7.4	Simulation

	8.	Debugging
	8.1	Watch window
	8.1.1	Opening and closing the watch window
	8.1.2	Adding items to the watch window
	8.1.3	Removing a variable
	8.1.4	Refreshment of values
	8.1.5	Changing the format of data
	8.1.6	Working with watch lists

	8.2	Oscilloscope
	8.2.1	Opening and closing the oscilloscope
	8.2.2	Adding items to the oscilloscope
	8.2.3	Removing a variable
	8.2.4	Variables sampling
	8.2.5	Controlling data acquisition and display
	8.2.6	Changing the polling rate
	8.2.7	Saving and printing the graph

	8.3	Edit and debug mode
	8.4	Live debug
	8.4.1	SFC animation
	8.4.2	LD animation
	8.4.3	FBD animation
	8.4.4	IL and ST animation

	8.5	Triggers
	8.5.1	Trigger window
	8.5.2	Debugging with trigger windows

	8.6	Graphic triggers
	8.6.1	Graphic trigger window
	8.6.2	Debugging with the graphic trigger window

	9.	Application reference
	9.1	Menus reference
	9.1.1	File menu
	9.1.2	Edit menu
	9.1.3	View menu
	9.1.4	Project menu
	9.1.5	Debug menu
	9.1.6	Communication menu
	9.1.7	Scheme menu
	9.1.8	Variables menu
	9.1.9	Definitions menu
	9.1.10	Window menu
	9.1.11	Help menu

	9.2	Toolbars reference
	9.2.1	Main toolbar
	9.2.2	FBD toolbar
	9.2.3	LD toolbar
	9.2.4	SFC toolbar
	9.2.5	Project toolbar
	9.2.6	Network toolbar
	9.2.7	Debug toolbar

	10.	Language reference
	10.1	Common elements
	10.1.1	Basic elements
	10.1.2	Elementary data types
	10.1.3	Derived data types
	10.1.4	Literals
	10.1.5	Variables
	10.1.6	Program Organization Units

	10.2	Instruction List (IL)
	10.2.1	Syntax and semantics
	10.2.2	Standard operators
	10.2.3	Calling Functions and Function blocks

	10.3	Function Block Diagram (FBD)
	10.3.1	Representation of lines and blocks
	10.3.2	Direction of flow in networks
	10.3.3	Evaluation of networks
	10.3.4	Execution control elements

	10.4	Ladder Diagram (LD)
	10.4.1	Power rails
	10.4.2	Link elements and states
	10.4.3	Contacts
	10.4.4	Coils
	10.4.5	Operators, functions and function blocks

	10.5	Structured Text (ST)
	10.5.1	Expressions
	10.5.2	Statements in ST

	10.6	Sequential Function Chart (SFC)
	10.6.1	Steps
	10.6.2	Transitions
	10.6.3	Rules of evolution

	10.7	Application Language Extensions
	10.7.1	Macros
	10.7.2	Pointers

